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Improving the System Capacity of Broadband
Services Using Multiple High-Altitude Platforms

David Grace, Member, IEEE, John Thornton, Guanhua Chen, George P. White, and Tim C. Tozer, Member, IEEE

Abstract—A method of significantly improving the capacity of
high-altitude platform (HAP) communications networks oper-
ating in the millimeter-wave bands is presented. It is shown how
constellations of HAPs can share a common frequency allocation
by exploiting the directionality of the user antenna. The system
capacity of such constellations is critically affected by the min-
imum angular separation of the HAPs and the sidelobe level of the
user antenna. For typical antenna beamwidths of approximately
5 an inter-HAP spacing of 4 km is sufficient to deliver optimium
performance. The aggregate bandwidth efficiency is evaluated,
both theoretically using the Shannon equation, and using practical
modulation and coding schemes, for multiple HAP configurations
delivering either single or multiple cells. For the user antenna
beamwidths used, it is shown that capacity increases are com-
mensurate with the increase in the number of platforms, up to
10 HAPs. For increases beyond this the choice of constellation
strategy becomes increasingly important.

Index Terms—Antennas, broadband communication, high-alti-
tude platforms (HAPs), interference management, stratospheric
platforms, wireless communication.

I. INTRODUCTION

W
ITH AN EVER increasing demand for capacity for

future generation multimedia applications, service

providers are looking to utilize the frequency allocations in

the millimeter wave bands [1]. In these frequency bands,

line-of-sight paths are required and signals are strongly attenu-

ated by rain [2], [3]. A possible solution is to use high-altitude

platforms (HAPs), which are either airships or planes that

will operate in the stratosphere, 17–22 km above the ground

[4]–[12]. This unique position offers a significant link budget

advantage compared with satellites and a much wider area of

coverage than terrestrial. HAPs can also accommodate longer

link lengths with less rain attenuation than would be associated

with similar terrestrial links. Such platforms will have a rapid

roll-out capability and the ability to serve a large number of

users, using considerably less communications infrastructure

than required by a terrestrial network [1]. To aid the eventual

deployment of HAPs the ITU has recently allocated spectrum

around 48 GHz worldwide [13] and 31/28 GHz for certain

Manuscript received July 17, 2003; revised December 23, 2003, January 22,
2004; accepted January 28, 2004. The editor coordinating the review of this
paper and approving it for publication is V. K. Bhargava. This work was sup-
ported in part by the European FP5 HeliNet Project (IST-1999-11214), in part
by the European FP6 Capanina Project (FP6-IST-2003-506745), and in part by
the British National Space Centre, as part of the third round of the S@tcom pro-
gram (CPBM/C/001/00021).

The authors are with the Communications Research Group, Depart-
ment of Electronics, University of York, York YO10 5DD, U.K. (e-mail:
dg@ohm.york.ac.uk).

Digital Object Identifier 10.1109/TWC.2004.842972

Asian countries [14], with spectrum in the 3G bands also

allocated for use with HAPs [15]. There is now an emerging

body of work on communications delivery from HAPs both for

eventual 3G deployments, e.g., [16]–[20], as well as for com-

munications deployed in the millimeter-wave bands. Spectrum

sharing studies have been carried out e.g., [14], since all of

these bands will be used by, or adjacent to, other services.

Efficient spectrum reuse will be required to ensure that such

deployments can deliver high spectral efficiencies. Cellular so-

lutions have been examined in [21], [22], specifically addressing

the antenna beam characteristics required to produce an efficient

cellular structure on the ground, and the effect of antenna side-

lobe levels on channel reuse plans [22]. HAPs will have rela-

tively loose station-keeping characteristics compared with satel-

lites, and the effects of platform drift on a cellular structure and

the resulting intercell handover requirements have been inves-

tigated [23]. Cellular resource management strategies have also

been developed for HAP use [24]. Cells can be regularly spaced,

as their area and location are substantially unaffected by geog-

raphy and terrain, and since they all originate from the same

HAP this centralization can be additionally exploited by the re-

source management strategy.

While it is generally acknowledged that HAPs could offer a

higher spectrally efficiency than GEO satellites, some scepti-

cism remains over whether HAPs can approach the spectral ef-

ficiency of terrestrially based broadband communications. This

is based on the assumption that a cellular approach is used with

the minimum cell size being limited by the maximum size of the

antenna payload that can be accommodated on the HAP. This

paper will illustrate that it is possible to exploit one feature that

has been largely overlooked, the fact that user antennas may also

be highly directive. This allows spatial discrimination between

multiple HAPs located in different parts of the sky, thereby per-

mitting them to share common spectrum. This additional band-

width reuse, and resulting capacity gain, is dependent on several

factors, in particular the number of platforms and the user an-

tenna sidelobe levels. A multiple HAP configuration also pro-

vides for incremental roll-out: initially only one HAP needs to

be deployed, with all user antennas pointing to the single HAP.

As more capacity is required, further HAPs can be brought into

service, with new users served by the newly deployed HAPs.

This paper quantifies the potential gains in capacity that var-

ious HAP constellations can deliver, both theoretically using the

Shannon equation and also while operating a number of prac-

tical modulation and coding schemes. The paper is organized as

follows. In Section II, the multiple HAP scenario and possible

constellations are described. We then illustrate the fundamental

reuse behavior for a single beam (cell) case, explaining how it is

1536-1276/$20.00 © 2005 IEEE
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possible to increase the capacity. In Section III, the potential per-

formance gains are then quantified for multiple platforms each

having a single cell occupying the whole coverage area. This

is then extended in Section IV to a multibeam (cellular) layout

from each platform, and again the increases in capacity resulting

from multiple platform configurations are illustrated. Conclu-

sions are presented in Section V.

II. MULTIPLE PLATFORM SCENARIO

The main purpose of increasing the number of platforms

serving a common coverage area is to increase the capacity

provided per unit area (i.e., the bandwidth efficiency). Nor-

mally, the coverage area is split into multiple cells to increase

the capacity. This technique can also be adopted with a mul-

tiple platform scenario, but for the first part of this analysis

we restrict ourselves to an analysis with one beam (cell) per

HAP serving the whole coverage area. Multiple HAPs can in-

crease the capacity by exploiting the directionality of the fixed

user antenna which is typically a dish with relatively narrow

beamwidth. This narrow beamwidth is required to provide suf-

ficient gain to support the link budget, but additionally, it can be

used to reduce levels of interference from other HAPs arranged

at an angle away from the boresight of the user antenna. It is

assumed that the boresight of the user antenna will always point

directly at the HAP with which it is communicating (henceforth

called the “main” HAP). A scenario showing the user, main

HAP and one interfering HAP is shown in Fig. 1, with all

HAPs being equally spaced around a circle. In this scenario,

we also assume the station keeping of the HAPs is perfect and

the antenna payload is fully stabilized.

To determine the improvement in capacity it is necessary to

calculate the downlink carrier-to-interference-plus-noise ratio

(CINR) caused by one or more of the interfering HAPs.

In the following expressions, we denote the main HAP by

the subscript , which is one of a system of HAPs. The

remaining HAPs are designated the interfering HAPs

(i.e., the set ). Thus, the at an arbitrary point

on the coverage area can be calculated as

(1)

where is the transmission factor taking into account the link

length, transmitter power, etc., from one of the set of inter-

fering HAPs. Losses are assumed to increase with the square of

the link length [8], as propagation is line-of-sight at these fre-

quencies; is the thermal noise floor; and is the gain

of the corresponding HAP antenna at an angle away from

boresight, with the boresight of the HAP antennas pointing at

the center of coverage point “C.”

Again, with reference to Fig. 1, the link length from the user

to an arbitrary HAP, e.g., , can be expressed as

(2)

Fig. 1. Multiple HAP scenario.

The angle between any two any two HAPs, e.g., and

, as seen by the user can be expressed as

(3)

where is the diameter of the circle on which the HAPs are

situated and and are the HAP-user distances for

and , respectively.

is the gain of the user antenna at angle away

from boresight. Here, the user antenna radiation pattern is mod-

eled by the following [22]:

(4)

where is the boresight gain of the antenna, is a notionally

flat sidelobe floor, and controls the rate of power rolloff of

the main lobe. This expression presents a mathematically con-

venient way of describing the main and side lobes. It is assumed

that the boresight of the user antenna is pointed toward the main

HAP, with used to calculate the level of interference re-

duction for an interfering HAP at an angle to boresight (as

shown in Fig. 1).

A. HAP Constellations

Two HAP constellation strategies are used in this paper. The

first assumes deployment on a circle whose radius is fixed irre-

spective of the number of platforms [“fixed radius” (FR)]. The

HAP locations are best expressed in terms of cylindrical polar

coordinates, all situated within the horizontal plane containing

the point , i.e.,

(5)

where is the set of HAPs, is the spacing radius, is the

angle subtended by , and the initial line .

The second strategy assumes a fixed arc (FA) length, such that

the spacing radius increases with the number of platforms, i.e.,

(6)



702 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 2, MARCH 2005

where is the fixed arc length. This method should help to en-

sure that the typical angular separation of HAPs as seen by each

user does not become too small, albeit at the expense of poten-

tially increasing the average link length, when the number of

platforms is large.

B. Sidelobe Floor Beamwidth

Another useful measure is the sidelobe floor beamwidth

, defined as the width of the main lobe at the points at

which it terminates and the flat sidelobe floor begins. This will

be used later along with the minimum angular separation (dis-

cussed later) to highlight areas that are subject to interference

within the main lobe of the user antenna. The sidelobe floor

beamwidth can be derived by simple algebraic manipulation

from (4). First, it is useful to determine in terms of the

antenna 3 dB beamwidth dB :

dB
(7)

where dB is the 3-dB beamwidth of the user antenna (in ra-

dians)

(8)

where , i.e., the sidelobe floor expressed in

decibels. Substituting for from (7) and inserting into (8) yields

(9)

In this simple single cell analysis, all the HAP antennas are

modeled as being omnidirectional. Thus, power flux density in

this simple model is a function of link length only. The transmit

power from all users and HAPs are assumed to be identical.

C. Minimum Angular Separation and Link Length Ratio

The following two factors affect performance considerably:

1) the minimum angular separation as seen by a user at

of the main HAP and interfering HAPs, de-

fined as:

(10)

2) the minimum link length ratio of the interferers and

main HAP as seen by a user at , defined as

(11)

An example coverage plot of these constraints for four HAPs,

each situated at a height of 17 km and on a 10-km spacing ra-

dius, has been generated assuming that a “test” user is situated

at each point in the plot (the boresight of the antenna of a test

user will point directly at the main HAP) are shown in Fig. 2.

Fig. 2(a) shows that the minimum angular separation tends to

decrease away from the center of the coverage area, and is best

just to the left of the main HAP. Within the coverage area, as-

sumed to be of 30-km radius, the minimum angular separation

remains above 14 . This means that for the inner part of the cov-

erage area the interference will be entering in the side lobes of

the user antenna or at least well down the main lobe, for most

practical user antenna beamwidths. Hence, good interference re-

jection will result. Fig. 2(b) illustrates that there is a triangular

region containing the main HAP to the right of coverage area

where the link length ratio is above 1, indicating that worst case

interfering HAP has a longer link than the main HAP. This pro-

vides a further slight reduction to the interference level expe-

rienced by users in this region. The converse is true elsewhere,

the worst area being to the left of the coverage area, furthest way

from the main HAP and closest to one of the interfering HAPs.

For the interference limited case, the corresponding coverage

plot of the CIR received by a user with an antenna beamwidth

of 17 has been generated using (1), and this is

shown in Fig. 2(c). The better minimum angular separation and

link length ratio combine to deliver higher CIR to the right of

the main HAP, with the expected poorer performance seen on

the left. With this user antenna, the region inside the 26 con-

tour (half the sidelobe floor beamwidth, as angular separation is

calculated from boresight outwards) in Fig. 2(a) is subject only

to sidelobe interference, with the region outside being subject

to mainlobe interference. The region outside the coverage area

has particularly low CIR due the poor interference rejection pro-

vided by the reduced angular separation. In this region, interfer-

ence is received well within the main lobe where it is subject to

much less attenuation. Clearly, performance would be better if

an antenna was selected for a region of interest with a sidelobe

floor beamwidth much less than half the minimum angular sep-

aration, but that is beyond the scope of this paper. In addition,

commercially it is probably better to have a single user antenna

type, allowing greater economies of scale and a common instal-

lation strategy.

III. SINGLE-CELL PERFORMANCE

The performance of the single cell, multiple HAP scenario

has been assessed for different numbers of HAPs, different HAP

constellation strategies, and user antennas with a range of direc-

tionalities. The default parameter values used in the assessments

are listed in Table I.

A. Capacity Determination Using the Shannon Equation

To assess the performance, the distribution of the CINR has

been determined across the circular coverage area. The CINR

at each point relating to each HAP has then been con-

verted into bandwidth efficiency using the Shannon equation

given by1[1]

(12)

The aggregate bandwidth efficiency available across the

coverage area is derived from the summation of that offered

by each HAP. That is, for each ground position there

1The Shannon equation is only perfectly accurate for a Gaussian noise source.
Interference will only be approximately Gaussian.
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Fig. 2. For a configuration of four HAPs (one main HAP “o,” three interfering HAPs “x”). (a) Minimum angular separation (degrees) between the main HAP and
interfering HAPs. (b) Minimum link length ratio of interfering HAPs to main HAP. (c) Downlink CIR, user antenna beamwidth 17 , contour labels: CIR (dB).

TABLE I
DEFAULT PARAMETER VALUES USED TO ASSESS PERFORMANCE

are “test” users, whose antenna points directly at a different

HAP. The links from each “test” user to their respective HAP

will support a specific bandwidth efficiency, and these values

are summed to yield the aggregate bandwidth efficiency for each

ground position. That is

(13)

Similarly, the performance is measured using a cumulative

distribution function (cdf) of the statistics. In the following

couple of examples, we consider an interference-limited case,

when the interference is much higher than the noise floor,

e.g., when the links are not attenuated by rain. This allows

the interaction of the received power components from the

multiple HAPs to be more clearly identified, as in these circum-

stances CINR becomes CIR. Fig. 3 shows the cdf’s of CIR and

bandwidth efficiency for two, three, and four HAPs situated at

the default radius, using the FR strategy. The results illustrate

that, as expected, the CIR performance becomes worse as the

number of HAPs in the configuration increases. This results
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Fig. 3. CDFs of CIR and combined bandwidth efficiency across the coverage
area for configurations of two, three, and four HAPs.

Fig. 4. CIR for different HAP spacing radii and user antenna beamwidths of
30 (n = 20), 15 (n = 80), 5 (n = 730), and 2 (n = 4550).

in a reduction in the rate of increase in bandwidth efficiency,

compared with the increase in the number of HAPs.

Fig. 4 shows the effect on median CIR across the coverage

area for a range of HAP spacing radii and several user antenna

beamwidths, for a configuration of four HAPs (bandwidth ef-

ficiency would follow the same trends). The results show that

nothing is to be gained by increasing the HAP spacing once in-

terference from the other HAPs is received within the sidelobes

of the user antenna (the almost flat part of the graphs). In addi-

tion, from a link budget perspective it is actually better to keep

links as short as possible so it will always be beneficial to use

the minimum HAP spacing radius that yields good bandwidth

efficiency.

The limit on the value of median CIR is governed by the level

of the sidelobes of the user antenna, which in this case are at

30 dB below peak gain. The results of Fig. 3(a) show that the

CIR remains sufficiently high to support high rate modulation

schemes such as 64QAM which require an signal-to-noise ratio

(SNR) of at least 25.5 dB for a bit-error rate of 10 , as will

be discussed in more detail in Section III-B. Hence, there is

little to be gained from a further reduction in the user antenna

sidelobes, and in practice links will also become noise limited.

Dealing with specific results: with a user antenna of beamwidth

30 the median CIR limit is never reached for any practical HAP

spacing radius, so clearly this beamwidth is too wide for this

application. A practical beamwidth would be between 2 –15 ,

TABLE II
MODULATION AND CODING FIGURES USED TO DETERMINE CAPACITY

making the minimum “ideal” HAP spacing radius between 2–11

km for a system of up to 4 HAPs.

B. Capacity Determination Using Modulation and Coding

Schemes

The Shannon equation is an idealized method of determining

the bandwidth efficiency that is very useful for determining rel-

ative performance and general behavior, but to assess the per-

formance more realistically we use four modulation and coding

schemes as shown in Table II. These have been evaluated as-

suming a bit-error rate of 10 , and a Reed Solomon/convolu-

tional concatenated code. The Reed Solomon code is a (204 188)

shortened code and the convolutional code is rate 3/4, constraint

length 7, giving a resulting combined code rate of 0.6912. All

Eb/No values take into account transmission over a predistorted

28-GHz solid-state power amplifier [25].

In a real system, the CINR would be time varying (e.g., when

subject to rain attenuation) so such schemes would form part of

an adaptive modulation and coding strategy, where the highest

rate modulation and coding scheme is selected that can operate

adequately at the CINR available to the user or HAP at the time.

A typical protocol that uses such a strategy is IEEE 802.16 [26].

The effects of the noise floor have been included to provide a

more realistic assessment of actual capacity. The SNR values

shown have been determined assuming that the noise plus in-

terference is Gaussian, and the CINR is equivalent to the SNR.

This is a worst-case approximation, as interference character-

istics are deterministic and so could be mitigated using appro-

priate signal processing techniques.

The distribution of the CINR has been determined across the

circular coverage area. Now, the CINR at each point

relating to each HAP has been converted into bandwidth effi-

ciency using the modulation and coding schemes, with the

scheme selected such that it delivers the highest rate commen-

surate with the received CINR.

Again, the aggregate bandwidth efficiency is determined from

a summation of the bandwidth efficiency of all the individual

HAPs serving the coverage area.

Increasing the Number of HAPs: Fig. 5(a) shows the aggre-

gate bandwidth efficiency for a configuration of 16 HAPs, as-

suming FR spacing. It is now also useful to concentrate on a

user antenna beamwidth of 2 , which will deliver an improved

the link budget and allows more HAPs to be used in a constella-

tion without them causing excessive interference. It can be seen

that the bandwidth efficiency is greatest in the center of the cov-

erage area inside the HAP spacing radius. The bandwidth effi-

ciency falls progressively toward the edge of the coverage area,

as modulation and coding schemes that operate at lower CINR’s
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Fig. 5. Contour plot of aggregate bandwidth efficiencies over the coverage
area for a configuration of 16 HAPs (FR Spacing), using discrete modulation
and coding schemes and a user antenna of 2 (a) noise limited (b) interference
limited [HAPs “o,” contour labels: BW efficiency (bit/second/hertz)].

are selected. This is largely due to the fact that the longer length

links will be noise limited, the 2 user antenna beamwidth en-

sures that these locations are not particularly affected by the re-

duced angular separation for this specific scenario. The inter-

ference-limited case is shown in Fig. 5(b) for comparison. In

this case, the highest modulation and coding combination can

be used by all users in the coverage area, hence accounting for

the constant bandwidth efficiency.

Fig. 6 examines the aggregate bandwidth statistics in more

detail, illustrating the effects of increasing the number of plat-

forms, in this case from 8 to 20, while also showing the ef-

Fig. 6. CDFs of bandwidth efficiency for 8- and 20-HAP configurations for
two constellation strategies.

Fig. 7. Median capacity for different numbers of HAPs, with different user
antenna beamwidths and constellation strategies.

fects of different constellation strategies. The steps shown in

the cdf are a result of the discrete choices of modulation and

coding schemes available. Performance based on the Shannon

equation, shown earlier, allowed a continuous mapping between

bandwidth efficiency and CINR. As expected, increasing the

number of platforms results in higher aggregate bandwidth ef-

ficiency, but the increase is not linear, caused by the overall in-

crease in interference levels. In both the 8- and 20-HAP cases,

it is shown that the constellation strategy has limited effect for

a small number of locations where there are high bandwidth

efficiencies. These cases occur immediately below the HAPs,

where there is already sufficient angular separation. In the case

where there are poorer bandwidth efficiencies there is a more

marked difference in performance, and the best scheme depends

on the number of HAPs in the constellation. The FR scheme is

best in the 8 HAP case, predominantly because the azimuthal

spacing is better (the arc length is greater than 3 km), and the

link length variation is more uniform. In the 20-HAP case with

a fixed spacing radius of 10 km the FR scheme will deliver

spacing below 3 km; in this case, the constant arc length (FA

scheme) is needed to ensure sufficient azimuthal separation, and

performance is better despite the resulting larger spacing radius

causing a greater link length variation.

The increase in median (50th percentile) capacity as the

number of HAPs is increased is illustrated in Fig. 7 for different

user antenna bandwidths and HAP constellation strategies.

It is seen that the narrower beamwidth user antennas cause

an overall increase in capacity, primarily as a result of the

improved interference reduction characteristics. The choice of

constellation strategy has a limited effect, mainly because the

users with the median bandwidth efficiency are affected little.

In the case of the wider beamwidth user antennas, it is seen that

the constellation strategy is much more important, especially

with a larger number of HAPs. Recall from Fig. 2(a) the angular

separation of the main HAP to an interfering HAP will play
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an important part in overall performance. Thus, a narrower

beamwidth user antenna is increasingly beneficial as more

HAPs are added to the constellation. In terms of the pro-rata

increase (relative to one HAP), all configurations increase by

the same amount up to 10 HAPs indicating that the increase

is constrained by the extra sidelobe interference. Beyond this,

the constellation strategy becomes a significant mechanism

for ensuring that main lobe interference is minimized. The FR

scheme with wide user antenna beamwidth performs particu-

larly poorly. In these scenarios, it may be particularly useful to

develop constellations where HAPs are arranged on more than

one spacing radius.

It is also useful to determine the joint CINR statistics for the

same 16 HAP configuration. These statistics can be used to in-

dicate the overall quality of CINR across the coverage area, and

are particularly useful if users can select the most suitable HAP.

To aid the subsequent analysis it is useful to define a set T of

“test” users that are located at arbitrary points within

the coverage area. It then follows that the set of elements

that have CINR at or above a threshold from HAP can be

expressed as

(14)

The sets can be matrix summed to give a new set which

contains elements that record the number of platforms that can

serve each arbitrary points at or above , i.e.,

(15)

A new set of elements can be defined as the set of loca-

tions served by at least out of the set of HAPs

(16)

So the probability that at an arbitrary location within the

coverage area that has a CINR at least dB and can be served

by at least out of HAPs is

(17)

where the vertical bars mean the number of elements in the set.

For the 16-HAP case, Fig. 8 shows for instance that a min-

imum of 14.2-dB CINR is available from all platforms across

the whole of the coverage area—the “All 16” line . If

the user is free to select the HAP with best CINR then a min-

imum CINR of 18 dB is available across the coverage area—the

“At least 1” line . Statistics are presented for other diver-

sity options, for instance when there is a more limited choice of

platform selection e.g., the “Any 5” and “Any 10” lines. Finally,

the “Each HAP” line illustrates the cases studied in previous

figures when the user cannot choose the HAP (the individual

CINR statistics), in this scenario the performance variation is

much wider as it is neither the best or worst case.

IV. MULTIPLE CELL PERFORMANCE

The analysis can be extended to platforms which each serve

multiple cells by use of spot beam antennas. By way of ex-

ample, we have extended the method of [22], [23], which de-

Fig. 8. CINR cdfs for a 16-HAP constellation as in Fig. 5 showing overall
CINR for different combinations of HAPs within the constellation.

rive power and CINR for each beam in a 121-cell network. In

this paper, we use the 121-cell network and the technique of

choosing spot-beam antenna beamwidths which optimally illu-

minate each cell [22], but we have modified the technique to

allow the HAP to be offset from the center of the coverage area.

The three interfering HAPs illuminate the same cells with the

same channel (a pessimistic case), and it is apparent that each

of these interfering multibeam footprints can be d

The CINR at each ground position is then derived from the

ratio of required power from the “main” HAP spot beam to

the sum of all the interfering powers. These include the other

cochannel antennas on the “main” HAP, and the sum of the

cochannel antenna powers on the other HAPs scaled by the

pointing loss of the customer antenna (4). Hence, the expres-

sion derived in (1) must be modified to take account of the extra

sources of interference, so for an arbitrary point the

CINR is:

CINR

(18)

where is the received power contribution from the main

HAP in the cell of interest. are interference power contri-

butions from cells on the same channel on the main HAP.

are the interference power contributions from all cells

sharing a common channel on interfering HAPs. This expres-

sion takes into account path loss, transmit power and antenna

gain of each beam, and the relevant angles determine the indi-

vidual power contributions. The multiple beams on each HAP

point to the center of each cell which are arranged on a uniform

hexagonal grid. Just as in several previous examples it is as-

sumed that the multibeam scenario is interference limited, due

to the number of beams and the fact that the antennas on the

HAP are highly directional and hence have a high gain, i.e.,

.



GRACE et al.: IMPROVING THE SYSTEM CAPACITY OF BROADBAND SERVICES USING MULTIPLE HAPS 707

Fig. 9. CIR plot of one channel of four for a 4-HAP configuration [one main
HAP “o,” three interfering HAPs “x,” contour labels: CIR (decibels)].

Fig. 9 plots CIR contours from (18) for a four HAP scenario,

for a single channel in a four-channel reuse plan. The customer

antennabeamwidthhasbeenfixedat5 andhasa 30dBsidelobe

level.TheHAPspot-beamantennaswhich illuminate thecellsare

all modeled after [10], each with a 40 dB (from peak) sidelobe

level, and hence the footprint of each individual cell is computed.

In Fig. 9, it is apparent that the cells with highest CIR are on

the left hand side of the plot, i.e., at a greater distance from the

“main” HAP than those cells on the right, despite the proximity

here of the three interfering HAPs. This effect is consistent with

the findings of [8] and [22] where, for the single-HAP 121-cell

case, the more distant cells experienced greater CIR due to them

being served by more directional spot-beams than for those cells

just below the HAP. This effect is little modified by the addition

of three additional HAPs because they contribute interference

via the user antenna sidelobe only.

We also present a comparison of the one-, two-, and four-HAP

schemes in terms of CIR in Fig. 10(a). These illustrate that CIR

is little affected by the additional HAPs sharing common spec-

trum, ensuring that the bandwidth efficiency increases almost in

line with the number of HAPs. The range of CIR is dominated

by the cellular structure rather than as a result of interference

from the extra HAPs. The 14-dB CIR corresponds to the edge

of a cell with up to 27 dB occurring at the cell centers.

The aggregate bandwidth efficiency variation has again

been determined using the modulation and coding schemes in

Table II, and this is shown in Fig. 10(b) for each configuration.

This follows the range in CIR, with the large differences in

performance being a result of the extra capacity provided by

the additional HAPs, similar to the single cell case.

V. CONCLUSION

In addition to HAPs providing a rapid roll-out capability for

new services, we have shown that incrementally deploying fur-

Fig. 10. CDF comparing systems of one, two, and four HAPs using an FR
constellation. (a) CIR. (b) Bandwidth efficiency (inset: the cellular plan).

ther HAPs operating in the same allocated spectrum will provide

significant increases to capacity, allowing future customers to

be supported. An evaluation methodology has been developed,

consisting of: minimum angular separation of HAPs as seen by

the user, link length ratio, and sidelobe floor beamwidth. These

have been used to help explain the CINR behavior of multi-HAP

constellations. We have shown that for a 5 beamwidth user an-

tenna, the optimum HAP spacing radius is approximately 4 km.

Using a single cell per HAP scenario as an example, we have

shown that constellations of up to 8 HAPs could be deployed

yielding an almost pro-rata increase in capacity for user antenna

bandwidths of up to 5 . For larger HAP constellations, the con-

stellation strategy and user antenna beamwidth become increas-

ingly important as these govern the overall interference reduc-

tion capabilities. We have shown an example where a 20-HAP

deployment, located on a single spacing radius with constant arc

length (3 km) and 2 user antenna works well. Similar increases

in capacity can be seen with multiple HAP deployments when

each HAP supports multiple cells, but in these cases it is the in-

tercell interference from the users’ HAP which dominates the

overall interference seen by the user.
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