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Tables 

 

Table S1. Parameters determined by ITC. 

TESS.1 Kd (nM) N ΔG (kcal/mol) ΔH (kcal/mol) -TΔS (kcal/mol) 
Average (3 titrations) 240 1.15 -9.04 -11 2 

Standard deviation 29 0.09 0.07 1 1 
      

TESS.1short Kd (nM) N ΔG (kcal/mol) ΔH (kcal/mol) -TΔS (kcal/mol) 
Average (3 titrations) 489 0.93 -8.61 -15.7 7.1 
Standard deviation 58 0.07 0.07 0.6 0.6 

Kd: dissociation constant, ΔG: Gibbs free energy change, ΔH: enthalpy change, ΔS: entropy change and N: stoichiometry 

 

Table S2. Comparison of the detection limit (LOD) of the present strategy with 
reported works for determination of testosterone. 

Technique/method Analysis time Linear Range LOD Ref. 

Liquid chromatography-mass spectrometry 
(LC-MS) 

90 min 86.7 pM – 8.7 nM 11.4 pM [1] 

Square-wave adsorptive stripping 
voltammetry (using glassy carbon 

electrode) 
5 min 10–70 nM 1.18 nM [2] 

New automated electrochemiluminescence 
immunoassay 

- 0.42 – 52 nM 6.9 nM [3] 

Biolayer interferometry (using double-
stranded DNA fragments) 

17 min 7.4 – 473.7 nM 0.09 nM [4] 

High performance liquid chromatography 
(HPLC) method 

17–35 min 0.01–20 µM 0.05–0.1 µM [5] 

Capillary electrophoresis - 27.7 nM – 3.3 µM 15.9 nM [6] 
Isotope dilution liquid 

chromatography/tandem mass 
spectrometry 

120 min 1 – 29.5 nM 6.9 pM [7] 

Ultra-performance liquid 
chromatography/tandem mass 
spectrometric (UPLC/MS/MS) 

4 min per 
sample 

0.01 to 5 µM 0.01 µM * [8] 

Automated online in-tube solid-phase 
microextraction (SPME) coupled with liquid 

chromatography–tandem mass 
spectrometry (LC–MS/MS) 

28 min 6.9 pM – 1.7 nM 
1 pM 

34.6 pM * 
[9] 

Electrochemistry using molecular imprinted 
polymers (MIPs) 

- 0.34 pM – 0.34 nM ~pM [10] 

Electrochemical, recombinant Fab 
fragment-based immunosensor 

- 1 – 138.7 nM 0.3 nM [11] 

Near-infrared spectroscopy Few minutes 5.4 – 86.7 mM  1.7 mM [12] 
Double-layer structure molecularly 

imprinted polymer film (MIF) on the surface 
plasmon resonance (SPR) sensor chips 

30 min 1 pM –1 nM 1 pM [13] 

Liquid chromatography-tandem mass 
spectrometry 

5.5 min 13.9 pM – 3.5 nM 13.9 pM [14] 

Electrochemiluminescent assay  
< 5 min 96-
well plate 

0.39−1.56 µM 0.29 µM 
This 

work 

* Limit of quantification in these cases. 
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2. MATERIAL AND METHODS 

Isothermal Titration Calorimetry (ITC) 

ITC experiments were performed on a MicroCal PEAQ-ITC instrument (Malvern 
Panalytical operated by MicroCal PEAQ-ITC control software.  The binding 
experiments were performed using 150 µM of target which was titrated in 10 µM of 
aptamer solution. The assay buffer was a 10 mM phosphate buffer with 150 mM NaCl 
and 150 mM MgCl2 at pH 7.0 and was degassed prior to use. The experiment 
consisted of 15 injections of 2.7 µL with a spacing of 150 s. The first injection was 
0.4 µL to account for diffusion (initial delay 180 s). To correct for the dilution heat of 
the titrant, control titrations were performed consisting of injection of the target into the 
sample cell filled only with buffer. The reference power was set to 5 µcal/s and all 
titrations were performed at 25 °C. Data analysis was performed with the MicroCal 
PEAC-ITC Analysis software using a one-site binding model.  
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Figures 

 

 

Fig. S1. Incubation protocol performed during the ECL measurements. 
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Fig.  S2. Influence of the aptamer concentration during the incubation protocol. 400, 200, 100 and 0 nM 
concentrations of the TESS.1 aptamer were studied comparing the results with (5 µM) and without (0 
µM) testosterone.  

 
 

 

Fig.  S3. Native MS spectra of the a) TESS.1 aptamer and b) TESS.1short aptamer. The bottom spectra 
are the aptamers alone, while the top spectra show the aptamer after testosterone addition (10-fold 
excess). The dashed grey and dotted green lines represent theoretical m/z-values of the aptamer and 
aptamer-testosterone complex, respectively.  
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Fig.  S4. a) Thermogram and b) binding curve of the ITC titration of 10 μM of the TESS.1 aptamer with 
150 μM of testosterone. c) Thermogram and d) binding curve of the ITC titration of 10 μM of the 
TESS.1short aptamer with 150 μM of testosterone. The line in the binding curve represents the fitting 
with the “one set of binding sites” model. 
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