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ARTICLE

Quantum communications in a moderate-to-strong
turbulent space
Masoud Ghalaii 1✉ & Stefano Pirandola 1

Since the invention of the laser in the 60s, one of the most fundamental communication

channels has been the free-space optical channel. For this type of channel, a number of

effects generally need to be considered, including diffraction, refraction, atmospheric

extinction, pointing errors and, most importantly, turbulence. Because of all these adverse

features, the free-space optical (FSO) channel is more difficult to study than a stable fiber-

based link. For the same reasons, only recently it has been possible to establish the ultimate

performances achievable in quantum communications via free-space channels, together with

practical rates for continuous variable (CV) quantum key distribution (QKD). Differently from

previous literature, mainly focused on the regime of weak turbulence, this work considers the

FSO channel in the more challenging regime of moderate-to-strong turbulence, where effects

of beam widening and breaking are more important than beam wandering. This regime may

occur in long-distance free-space links on the ground, in uplink to high-altitude platform

systems (HAPS) and, more interestingly, in downlink from near-horizon satellites. In such a

regime we rigorously investigate ultimate limits for quantum communications and show that

composable keys can be extracted using CV-QKD.
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Y
ear-long chain of excellent work has stitched quantum
communications and quantum cryptography into the
science of quantum information technologies. In parti-

cular, QKD1 has been developing rapidly, with the end goal of
making distant individuals able to share a key, which must be
inscrutable for an eavesdropper to learn about, and which,
therefore, can be used for secure classical communications. Since
1980s that saw the début of QKD2, optical fibres have been the
main platform to perform and/or experiment most QKD proto-
cols. However, the reach of fibre-based quantum communications
is limited to only a few hundreds of kilometres3–6 (because of the
exponential decay of the transmissivity). Whereas, man seems to
stand on the verge of building a quantum internet7,8 to make
global quantum communications viable.

As a possible solution, one may think of a harmonized use of
quantum repeater stations (placed on ground and connected via
optical fibres) and free-space communication links. The latter
includes ground-to-ground free-space channels, HAPSs, down-
link/uplink communications with satellites, and inter-satellite
links. To make secure free-space and satellite QKD globally
available, certain technological challenges must be addressed.
There has been increasing attempts put by the community in this
direction; many models have been proposed for free-space
channels and several demonstrations have been performed (see,
refs. 9,10 for review). The successful launch of the Micius QKD
satellite in 2017 and the follow-up experiments11–14, have parti-
cularly been pivotal.

Free-space QKD systems must fight the effects of loss and noise
in the link. For instance, a satellite-to-ground link would also
encounter additional problems due to atmospheric turbulence
and pointing errors. Such issues have been addressed widely
through studying fading channels15,16, analysing FSO QKD
protocols17–21, and applying adaptive optics techniques, e.g., to
suppress noise22–24. In the same direction, by focusing on the
establishment of quantum communication and QKD links,
probability distribution functions (PDFs) of the transmittance for
slant propagation paths were derived, and models for atmo-
spheric quantum channels with turbulence were proposed25,26. In
addition, distant FSO atmospheric channels have been experi-
mentally characterized11,27, where optical loss and signal noise
are measured. As well, attempts were made to stabilize trans-
mittance fluctuations caused by beam wandering over free-space
atmospheric channels28.

On the other hand, it is desirable to find the limits of quantum
communications and QKD in different types of free-space med-
ium, such as the Earth’s atmosphere and space. In fact, alike the
PLOB bound29 and quantum repeater capacities30, one may work
out bounds germane to free-space and satellite links, where the
most detrimental phenomena is perhaps, not surprisingly, tur-
bulence—fluctuations in the atmosphere refractive index due to
the aerodynamics and temperature gradient of the Earth’s
surface31,32. Due to atmospheric turbulence the spatial coherence
of an optical beam is gradually destroyed as it propagates. This
loss of spatial coherence restricts the reach to which beams can be
focused or collimated33–35. This in turn results in significant
power level reductions in FSO communication and radar
links. Equally fatal, the destruction of coherence can affect
optical receivers, which are very sensitive to the loss of spatial
coherence36,37.

Accounting for realistic effects on optical beams, such as dif-
fraction, extinction, background noise, and channel fading, the
latter due to pointing errors and atmospheric turbulence, Pir-
andola investigated the ultimate quantum communication limits
and the practical security of FSO links, considering ground-based
communications38 and uplink/downlink with satellites39. Even
though the theory developed in ref. 38 is very general, the main

focus was the regime of weak turbulence, suitable for short-range
high-rate FSO links on the ground. Similarly, the main focus of39

was quantum communications with satellites within 1 radiant
from the zenith position, so to enforce the regime of weak
fluctuations.

In this manuscript, we extend the investigation to the regime of
moderate-to-strong turbulence40–42, where optical waves can
harshly be deformed and eventually broken up into multiple
patches37,43, such that one would observe a random multiplicity
of spots distributed on the receiving aperture44,45. Of main tools
in studying free-space links in the presence of atmospheric tur-
bulence are PDFs, such as log-normal, extended Huygens-Fresnel,
and the recently proposed elliptic-beam models25,31. Such func-
tions are beneficial to the estimation of, e.g., transmissivity of FSO
channels. However, they can be cumbersome to handle, even
numerically, and therefore restrictive for a theoretical account of
the system. As one key contribution to the body of the field,
considering the purposes of quantum communications and QKD,
we put a lower bound on the transmissivity of atmospheric links
that alleviates security analysis of such systems. Not only the
bound is manageable, but also it can be used at all turbulence
regimes. Next, in the more challenging regime of moderate-to-
strong turbulence, we provide information-theoretic bounds for
the maximum rates that are achievable for key generation and
entanglement distribution. We then study the composable finite-
size key rates that can be achieved by protocols of CV-QKD,
showing the feasibility of this approach in moderate-to-strong
FSO links.

The considered stronger regime of turbulence occurs in long-
distance free-space connections on the ground but also in com-
munications with satellites at large zenith angles (beyond 1
radiant). When a satellite is close to the horizon, the optical path
within Earth’s atmosphere becomes long and turbulence becomes
a major problem. At these angles, another problem is refraction,
which creates an elongation of the atmospheric section of the
path (and therefore further loss and turbulence occur).
Accounting for all these adverse aspects, we bound the optimal
performances and provide achievable key rates.

Results and discussion
We first present some preliminary aspects and physics of FSO
communications in turbulent media. We shall use these in the
rest of the paper in order to understand and establish both ulti-
mate limits and practical security of quantum communications in
a moderate-to-strong turbulent space.

Figure of merit for the strength of turbulence. Assume an
optical-beam signal of wavelength λ that propagates through a
turbulent path of length z. As widely accepted31,37,40, we intro-
duce the Rytov number to be the figure of merit for the strength
of turbulence. Physically, the Rytov number, or Rytov variance, is
a measure of the strength of light scintillations—fluctuations in
received irradiance, or in the phase and amplitude of the light,
resulting from propagation through a turbulent space31,46. The
dimensionless Rytov number is defined for a plane wave as
follows47

σ2Ry ¼ 1:23C2
nk

7
6z

11
6 ; ð1Þ

where k= 2π/λ is the wavenumber and C2
n is known as the index-

of-refraction structure constant, measuring the magnitude of the
fluctuations in the index of refraction (the Rytov number for a
spherical wave is 0:4σ2Ry). Note that the scintillation of an optical

signal does not increase unlimitedly as predicted by Rytov
approximation47, but saturates for strong turbulence and long
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propagation links37. It can nevertheless still specify turbulence
regimes.

Values of σ2Ry < 1 refer to weak turbulent media, while σ2Ry > 1
indicate strong turbulence40. The regime of intermediate
turbulent media hence is lying around σ2Ry � 1. Rytov number

is very much similar to the dimensionless Reynolds number48, Re,
in fluid mechanics, where for a fluid flowing through a packed
bed of particles Re < 10 corresponds to a laminar flow, whereas
Re > 2000 indicates a turbulent stream49. According to the Rytov
number, the specification of turbulence regimes involves not just
the index-of-refraction structure constant C2

n, but a combination
of this parameter, the beam’s wavelength and the propagation
path length.

The positive power dependence of the Rytov number on path
length z implies that the medium is indeed expected to be highly
turbulent at longer distances37. It is hence helpful to introduce
another quantity which is relevant to the propagation distance,
which is40,42,50

zi ¼ ðC2
nk

2‘
5=3
0 Þ

�1
: ð2Þ

Parameter zi represents the propagation length at which the
transverse coherence radius of the optical wave is comparable to
the turbulence inner scale ℓ0. The parameter ℓ0, which is on the
order of 1 mm, is a measure of the smallest distances over which
fluctuations in the index of refraction are correlated. We will
shortly discuss that zi defines the minimum valid distance for
some relevant quantities in studying stronger turbulence media;
that is, some equations are sound only for z > zi. Fortunately,
apropos equations can be found in the literature for z < zi, where
we may expect a moderate or strong turbulence space. It is worth
mentioning that, in the regime of weak turbulence, a similar

quantity, known as the spatial coherence radius ρ0 ¼ ð_ιC2
nk

2zÞ�
3
5,

is introduced, where _ι ¼ 0:55 ð1:46Þ corresponds to plane
(spherical) waves31.

Pure diffraction and optical loss in free space. A natural light’s
phenomenon is diffraction, which perennially spreads the wave’s
size while it propagates through free space. It also constantly
increases the radius of curvature of the propagating beam34,35. In
our study, we start with a Gaussian beam, with initial field spot
size w0, carrier wavelength λ, and radius of curvature R0. At
distance z of propagation, where a receiver is supposedly placed,
free-space diffraction increases the beam’s spot size to

w2
z ¼ w2

0 1� z

R0

� �2

þ z

zR

� �2
" #

; ð3Þ

with zR ¼ πw2
0=λ being the beam’s Rayleigh length. A receiver

with infinite radius would collect all the light. However, practi-
cally speaking, only a fraction of the light can be collected by a
receiver with a realistic finite aperture with radius aR. This defines
the pure diffraction-induced transmissivity

ηdif ¼ 1� e
�

2a2
R

w2z ; ð4Þ

yet, in reality, this would not be the total loss in a turbulent
atmosphere as we shall see below.

Turbulence-induced beam spread. Equation (4) can lead to
incorrect estimations because of Eq. (3), which may under-
estimate the effective spot size of the beam. This is because a
different physics setting may apply in many real-world scenarios
due to atmospheric turbulence. Therefore, we need to provide a
proper estimation of the z-dependent spot size in order to modify

ηdif in Eq. (4). In a moderate-to-strong turbulent regime, a beam
can break up into multiple patches and this primarily happens at
longer propagation distances, where it is expected to have a large
Rytov number. In this case, the patches of the beam will be in an
area with mean square radius w2

lt, also known as the long-term
beam waist37. Note that the relevant beam spread in the regime of
weak turbulence is the short-term beam waist, w2

st
42. In general,

one has the decomposition w2
lt ¼ w2

st þ σ2tb
38,40,42, where σ2tb is the

variance associated with the wandering of the beam centroid.
However, for stronger turbulence, wandering becomes negligible
with respect to beam widening, i.e., we have the collapse
σ2tb � w2

st ’ w2
lt. See Fig. 1 for a study of these quantities.

Let us now assume a Gaussian beam with initial spot radius w0

and curvature R0. After travelling through a path of length z, such
a beam is characterized by a pair of parameters31,51

Ω0 ¼ 1� z

R0

; Λ0 ¼
2z

kw2
0

: ð5Þ

For example, the pair Ω0= 0 and Λ0= 0 corresponds to a
spherical wave, whereas Ω0= 1 and Λ0= 0 represents a plane
wave. Alternatively, in the plane of the receiver, such a Gaussian
beam can be described by the similar pair of parameters

Ω ¼ Ω0

Ω2
0 þ Λ2

0

¼ 1þ z

R
; Λ ¼ Λ0

Ω2
0 þ Λ2

0

¼ 2z

kw2
z

; ð6Þ

where R is the phase front radius of curvature at the receiver. It is
then shown that, at distances z > zi, where a strong turbulent
space is experienced37, the long-term beam waist at the receiver is
given by (ref. 31, Chap. 8)

wlt ¼ wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3
qΛ

r
; ð7Þ

with the q parameter equal to

q ¼ 0:74σ2RyQ
1=6
m ; Qm ¼ 35:05z=ðk‘20Þ: ð8Þ
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Fig. 1 Beam widening in the presence of strong turbulence. Here, we

compare the variance of the centroid wandering induced by turbulence (σ2tb,

middle line) to that of pointing error (σ2pe, lower line) and the long-term

beam waist (w2
lt, upper line). We assume a collimated beam (R0=+∞)

with initial radius w0= 5 cm and wavelength λ= 800 nm. Other

parameters are the outer scale of turbulence L0= 1 m and index-of-

refraction structure constant C2
n
¼ 1:28´ 10�14 m�2=3 (night-time

operation). Rytov variance ranges from σ2Ry ¼ 1 at z= 1384m to

σ2Ry >9:12´ 103 at z= 200 km.
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In Eq. (7), we see how the diffraction-limited beam waist wz is
revised into the long-term beam waist wlt via an additional spread
factor associated with scattering by turbulent eddies.

Note that even through a short propagation distance the beam
may experience a moderate or strong turbulence space. In this
case (z < zi) the effective beam waist is

wlt ¼ wz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1:63ðσ2RyÞ

6
5Λ

q
: ð9Þ

The above equation is also considered to be adequately precise
for weak turbulence so that it can generally be used to estimate
the long-term beam waist under almost all turbulence conditions.
Thus, we may use Eq. (9) at all distances 0≃ z < zi, no matter the
strength of turbulence.

In this study, Eqs. (7) and (9) provide the main quantities that
we shall use to bound the rate of quantum communications in a
moderate-to-strong turbulent space.

More details on beam wandering. While transmitting an optical
signal through free space, it is observed that position of the
instantaneous centroid of the signal (point of maximum irra-
diance or “hot spot”) is randomly displaced. This instantaneous
quivering in the plane of the receiver, which supposedly happens
according to a Gaussian distribution with variance σ2, is com-
monly called beam or centroid wandering. Overall, this wander-
ing is caused by pointing error σ2pe, due to Gaussian jitter and off-

target tracking, and atmospheric turbulence σ2tb. These two effects
are independent and sum up such that the total variance of the
wandering is given by σ2 ¼ σ2pe þ σ2tb. The amount of wandering

for a typical 1 μrad off-tracking error at the transmitter is given by
σ2pe ’ 10�12z2. But, the contribution of atmospheric turbulence is

more elaborate.
Different mathematical expressions have been developed to

estimate wandering in strong turbulent media31,40,41,43. Here, we

use the following estimation (ref. 31, Chap. 8)

σ2tb ¼ 7:25C2
nw

�1
3

0 z3
Z 1

0

dξξ2
1

f
1
6ðξÞ

� κ
1
3
0w

1
3
0

1þ κ20w
2
0 f ðξÞ

� �1
6

" #

; ð10Þ

where κ0= 2π/L0, with L0≃ 1−100 m being the outer scale of
turbulence and

f ðξÞ ¼ ½Ω0 þ ð1� Ω0Þξ�2 þ 1:63ðσ2RyÞ6=5Λ0ð1� ξÞ16=5: ð11Þ

This is applicable in moderate-to-strong atmospheric turbu-
lence, and is shown to be consisting of experimental data.

As previously discussed, it turns out that centroid wandering is
a negligible effect when turbulence is sufficiently strong. In Fig. 1,
we plot the turbulence-induced centroid wandering σ2tb, the
pointing-error wandering σ2pe and the long-term beam waist w2

lt.

While at short distances, where σ2Ry � 1, they tend towards each

other, they diverge at longer distances, where σ2Ry � 1. Never-

theless, it is clear that at all distances considered, we have
w2
lt � σ2tb � σ2pe. In fact, the beam may break up into smaller

patches in a very wide area, while the wandering of the centroid
becomes negligible.

Turbulence-induced transmissivity. In FSO communication,
turbulence can cause power fading and sometimes complete loss
of signal. In addition, communication links can experience severe
signal degradation as well as spatial/temporal irradiance scintil-
lations in the beam wavefront. To accurately estimate the signal
fading and behaviour at some propagation distance, and to learn
a true picture of how these affect crucial performance parameters
such as the communication rate, it is important to analyze the
distribution of the irradiance and/or transmittance at the receiver.
In addition, having a theoretical distribution that accurately
models these fluctuations under propagation conditions is
desirable. This can be achieved through the knowledge of the
statistical properties of the intensity fluctuations of the beams. In
particular, the probability distribution of the transmittance most
thoroughly characterizes the statistics of these fluctuations. Sev-
eral models have been introduced to deal with this problem,
including the log-normal model, the parabolic equation model,
Feynman path integral, extended Huygens-Fresnel principle (see,
ref. 31), and the recently proposed elliptic-beam model25.

The extended Huygens-Fresnel model is considered to be
rather easier to use than other methods, especially when it comes
to stronger turbulent media. For a Gaussian beam defined by the
set of parameters given in Eqs. (5) and (6), and long-term waist
given in Eqs. (7) and (9), the turbulence-induced transmissivity
can be computed from

ηlt ¼
1

N

Z

A

d2rhIðr; zÞi; ð12Þ

where the integration is performed over the area A of the circular
aperture, and

N ¼ lim
A!1

Z

A

d2rhIðr; zÞi ð13Þ

is a normalization factor. The mean irradiance 〈I(r, z)〉 is
provided by the extended Huygens-Fresnel model (ref. 31,
Chapt. 7)

hIðr; zÞi ¼ w2
0

w2
lt

exp � 2r2

w2
lt

� �
; z > zi; ð14Þ

20 40 60 80 100 120

Distance (km)
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-6
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Fig. 2 Turbulence-induced transmissivity versus distance. By assuming

the same parameters of Fig. 1, here we plot turbulence-induced

transmissivity versus distance z < zi, where zi= 126.7 km. Brown curves

from top to bottom correspond to the Huygens-Fresnel long-term

transmissivity numerically computed for a1
R

¼10, 20, 50 and 100m. The

lower (dashed blue) curve is the long-term transmissivity analytically

computed from Eqs. (16) and (9). The latter can be assumed as limiting

lower value at all distances.
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and

hIðr; zÞi ¼ 2w2
0

w2
z

Z 1

0

dt tJ0
2
ffiffiffi
2

p
rt

wz

� �
e�t2�yt5=3 ; z < zi; ð15Þ

where J0(x) is a Bessel function and y ¼ 1:41σ2RyΛ
5
6.

For z > zi, we replace Eq. (14) in Eqs. (12) and (13). Solving the
integration, we can find an explicit analytical form for the
transmissivity, given by

ηlt ¼ 1� e
�

2a2
R

w2
lt ;

ð16Þ

where w2
lt is given in Eq. (7). Thus Eq. (16) should be used instead

of the pure diffraction transmissivity in Eq. (4).
For z < zi, we cannot find a closed-form but nevertheless we

can compute the result numerically by replacing Eq. (15) in Eqs.
(12) and (13), and noting that the limit for unlimited area A can
be treated by assuming aR ¼ a1R for sufficiently large a1R .
Notwithstanding, we can check that the formula in Eq. (16),
where we replace the long-term waist of Eq. (9), provides a
limiting lower bound to such numerical values, as shown in Fig. 2.
Thus, we may use an analytical expression for the turbulence-
induced transmissivity at all distances, as given by Eq. (16) where
we replace either Eq. (7) (for z > zi) or Eq. (9) (for z < zi).

Another theoretical model is the log-normal model, where the
beam follows a log-normal distribution rather than a Gaussian
one. Using this model, we get a similar formula

ηlt;LN ¼ 1� e
�

2a2
R

w2
lt;LN ;

ð17Þ

where w2
lt;LN is given in ‘Methods’. The validity of the formula

holds for all propagation values z and it has been experimentally
verified52. In addition, it is shown to match recently developed
descriptions of atmospheric transmissivity, such as the elliptic-
beam model25. However, the computation of w2

lt;LN is cumber-

some to handle even numerically. An heuristic choice is to
combine Eq. (17) with the calculation of the beam waist from
other models, in particular, from the previous Huygens-Fresnel
model. Thus, we may consider a hybrid log-normal model where
we replace w2

lt;LN with w2
lt, whose expression is given in Eqs. (7)

and (9). This is completely equivalent to the previous approach.
For this reason, in our study, we consider ηlt of Eq. (16) with
long-term waist wlt given by Eqs. (7) and (9).

Bounds and security of quantum communications in a
moderate-to-strong turbulent space. Now we are in a position to
account for the overall optical loss that can occur in a strong
turbulence regime. The overall transmissivity includes the mul-
tiplication of three types of optical transmissivity

η ¼ ηltηeffηatm; ð18Þ
where we include the receiver’s efficiency ηeff and atmospheric
loss ηatm. The latter is modelled by the Beer-Lambert equation

ηatm ¼ exp �αðλ; h0Þz
	 


; αðλ; h0Þ ¼ α0ðλÞe�
h0
6600; ð19Þ

where h0 is the altitude (measured in metres) and α0(λ) is the
extinction factor at sea level53,54.

By replacing the combined transmissivity of Eq. (18) in the
repeaterless PLOB bound ΦðηÞ ¼ �log2ð1� ηÞ29, one gets the
following upper bound for the rate R of any QKD protocol over
the FSO link

R≤ΦðηÞ :¼ �log2 1� ηeff e
�αðλ;h0Þz 1� e

�
2a2
R

w2
lt

 !" #
: ð20Þ

We remark that, as shown in Fig. 1, in the moderate-to-strong
turbulence regime (σ2Ry ≥ 1) the variance of long-term beam

widening is several orders of magnitude larger than that
associated with the centroid wandering. Therefore, we can neglect
the short-term fading process and assume a fixed transmissivity
between the sender and the detector plane at each distance. This
is different from the weak turbulence regime where beam
widening and wandering are equally important38.

Apart from loss, the other key element that must be considered
in FSO quantum communications is the number of thermal-noise
photons, which may find their way into the receiver’s aperture.
They come from the sky brightness and can also be generated
within the receiver itself. To involve the effect of thermal noise
into the communications bound, we follow and apply the
technique introduced in ref. 38.

The receiver sees a total mean number of thermal photons
equal to �n ¼ ηeff�nB þ �nex, where �nB and �nex are the number of
background thermal photons per mode and extra photons
generated within the receiver box, respectively. The number �nB
depends on several factors coupled to the sky and the receiver. It

is given by �nB ¼ πΓRB
sky
λ =ð_ωÞ, where ℏ is the reduced Planck

constant, ω is the angular frequency of light, and B
sky
λ is

the brightness of the sky, which is in the range of
10−6–10−1Wm−2 nm−1 sr−1 from night to cloudy day55,56.
The effects of the receiver is gathered in a single parameter
ΓR ¼ ΔλΔtΩfova

2
R, where Ωfov, Δλ and Δt are the angular field of

view, spectral filter, and time window of the detector, respectively.
The nominal values that we use in this study are Ωfov= 10−10 sr,
Δλ= 0.1 pm, and Δt= 10 ns. The natural interferometric effect of
coherent detection, where the signal and LO pulse overlap,
imposes an effective filter of Δλ= λ2Δν/c, such that assuming
λ= 800 nm, a LO of Δt= 10 ns, and a bandwidth Δν= 50 ≥ 0.44/
ΔtMHz, applies an effective filter of Δλ= 0.1 pm. This would
suppress the background noise �nB to the order of 10−12 (10−7) at
night (day) time, which in turn allow for positive rates that could
not have been obtained otherwise. Precisely, for a receiver with
aR= 5cm, we estimate �nB ¼ 4:75 ´ 10�12 ð10�7Þ background
photons per optical mode at night (day).

The total Alice-Bob FSO link is modelled as a thermal-loss
channel with transmissivity η and overall thermal noise �n. The
worst-case scenario is when the eavesdropper (Eve) has control
over all the input noise. Such a scenario can be simulated by her
using a beam splitter with transmissivity η that combines Alice’s
signal mode with an input thermal mode with �ne ¼ �n=ð1� ηÞ
mean photons. We then use the thermal-loss version of the PLOB
bound. For �n≤ η, the secret-key capacity in Eq. (20) can be
revised to

R≤KUBðη; �nÞ :¼ ΦðηÞ � �n

1� η
log2η� h

�n

1� η

� �
; ð21Þ

where hðxÞ ¼ ð1þ xÞlog2ð1þ xÞ � xlog2x. One may also find the
achievable lower bound given by the reverse coherent
information57,58, i.e., there is an optimal rate R such that

R≥KLBðη; �nÞ :¼ ΦðηÞ � h
�n

1� η

� �
: ð22Þ

We present numerical simulations of the limits on commu-
nication rates in Fig. 3 showing the pure-loss bound of Eq. (20)
and the thermal-loss bound of Eqs. (21) and (22). One first, and
important, conclusion one may make is that we can obtain
positive communication rates even in a strong turbulence regime.

Each curve in Fig. 3a is made of two parts because we have
used two different equations in our simulation, i.e., Eq. (7) for
z ≤ zi and Eq. (9) for z ≥ zi. The distance z= zi is indicated by a
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red star, which is different for night and day operation (the right
is for night). We observe a very slight inconsistency at z= zi,
which is due to using different expressions. Notwithstanding it is
clear that the second part of the rate after zi follows exactly the
same trend as the first part. In Fig. 3a, we compare the
performances at night and day with an ideal receiver having
ηeff= 1 and �nex ¼ 0. For night-time operation, all curves coincide
because of absolutely low background noise (�nB ¼ 4:75 ´ 10�12).
However, for day-time, with �nB ¼ 4:75´ 10�7, the deviation
between the rates becomes distinct at large link distances, so that
the thermal lower bound and upper bound drop at nearly 80 and
150 km, respectively. Nevertheless, the plot suggests that high
rates can still be achieved at relatively shorter distances at both
night and day.

Then we account for a realistic lossy and noisy receiver with
ηeff= 0.5 and �nex ¼ 0:01 in Fig. 3b, while ηeff= 0.5 and �nex ¼
0:05 in Fig. 3c. It is observed that the thermal photons generated
at the receiver suppress the rates so that distances are of the order
of a few kilometres. As we shall show later, this can be partially
alleviated by using a receiver with a larger aperture size.

Long free-space distances that we are considering here, e.g.,
z= 100 km, may not seem so practical, especially because Earth’s
geometry, in particular its curvature, does not allow two
terrestrial stations to actually “see” each other. For example, the
maximum distance between two communications towers with
height 30 m is about 40 km. Although this can be true for
terrestrial stations, we allow for a wider variety of FSO links,
including HAPS. Otherwise, a long-distance link could basically
be an equivalent section of the atmosphere with a shorter length
but stronger turbulence.

The key rates for a moderate-to-strong turbulence regime can
be seen as the tail of the rates found in ref. 38 for weak turbulence.
This is where, at about 1384 m distance, we have σ2Ry ¼ 1 and

longer distances induce a stronger turbulence regime (for sake of
comparison, we have used the same set of parameters used in
ref. 38). The main reason is that Eq. (9) is sufficiently precise even
in weak turbulence regimes. Let us also remark the reason behind
choosing Δλ= 0.1 pm, which is discussed in detail in ref. 38.

Composable finite-key security analysis. Equation (22) gives the
achievable lower bound for key distribution rate when, ideally, an
infinite number of signals are used for key extraction. However, in
a real-world scenario, communication links can only be used a

finite number of times. Hence, we may expect a poorer key rate
than the asymptotic one. In addition, the security of a QKD
protocol is desirable to be composable, i.e., the protocol must not
be distinguished from an ideal protocol which is secure by
construction1. Mathematically, a composable security proof can
be provided by incorporating proper error parameters (ε’s) for
each segment of the protocol, namely, error correction, smooth-
ing and hashing59,60. To address this finiteness and composa-
bility, we study a QKD protocol based on coherent states for
which we compute the composable finite-size key rate.

We consider the homodyne-based coherent-state QKD
protocol61,62, the GG02 protocol, where Alice prepares N
Gaussian-modulated signals, with variance V, and sends them
through a quantum channel to Bob. The latter performs a
homodyne measurement, whereby he randomly measures one of
the light quadratures. A number n of signals will be used for key
extraction, while the rest mpe=N− n are left for parameter
estimation. It can then be shown that the composable finite-size
secret-key rate is given by38,39

Rε ≥ pecð1� rpeÞ Rpe �
Δaepffiffiffi
n

p þΩ

n

� �
; ð23Þ

where pec is the success probability of error correction connected
to the frame error rate by FER= 1− pec, rpe=mpe/N is the
fraction of signals used for parameter estimation, Rpe is the
asymptotic key rate accounting for parameter estimation, and
(ref. 63, Sec. F)

Δaep :¼ 4log2ð
ffiffiffi
d

p
þ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2ð18p�2

ec ε
�4
s Þ

q
; ð24Þ

Ω :¼ log2 pecð1� ε2s=3Þ
� �

þ 2log2ð
ffiffiffi
2

p
εhÞ: ð25Þ

In Eq. (23), the asymptotic rate Rpe is calculated for the worst-
case values of transmissivity and excess noise to be evaluated at
the parameter estimation stage. These values are chosen within w
confidence intervals so that they are correct up to an error

probability of εpeðwÞ ¼ 1� erf ðw=
ffiffiffi
2

p
Þ

� �
=2. See ‘Methods’ for

the calculation of Rpe. Equation (23) is valid for a protocol with
overall security ε= εcor+ εs+ εh+ 2pecεpe38, where εh(s) is the
hashing (smoothing) parameter and εcor is the ε-correctness
bounding the probability that Alice’s and Bob’s sequences are
different even if they pass error correction. Finally, one needs to
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Fig. 3 Free-space optical quantum communications in a moderate-to-strong turbulent space. We indicate night- and day-time conditions by black and

blue curves, respectively. In a, we plot the ultimate pure-loss bound of Eq. (20) with an ideal receiver, ηeff= 1 and �nex ¼ 0, at night-time (solid black curves)

and day-time (solid blue curve). The dashed (dotted) curves are thermal upper (achievable lower) bounds for an ideal receiver with ηeff= 1 and �nex ¼ 0 [cf.

Eqs. (21) and (22)]. The red star indicates the distance zi (connecting plots from different equations and therefore presenting small discontinuities). Here,

the following set of parameters are considered: λ= 800 nm, α0(λ)= 5 × 10−6m−1, w0= aR= 5 cm, Ωfov= 10−10 sr, Δt= 10 ns, Δλ= 0.1 pm, h0= 30m, so

that C2
n
¼ 1:28 ð2:06Þ ´ 10�14 m�2=3 for night (day). Also, we have thermal noise �nB ¼ 4:75´ 10�12 ð ´ 10�7Þ photons per mode at night (day). In b and c, we

assume a lossy and noisy receiver with ηeff= 0.5 and, respectively, �nex ¼ 0:01 and �nex ¼ 0:05. As in panel (a), we compare the pure-loss rates (solid) with

the thermal-noise bounds (dashed) and the achievable lower bounds (dotted).
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account for the analogue-to-digital conversion so that each
continuous-variable symbol is encoded in d bits.

One further consideration regards the measurement techniques
in CV-QKD. The received signals can be detected by using a
coherent (homodyne or heterodyne) detection with the help of an
either transmitted local oscillator (TLO) or local local oscillator

(LLO). It turns out that at long distances the amount of detection
noise is much lower for the LLO case. But, at the same time, the
signal, which propagates through a turbulent path, and the LO,
which is produced locally at the receiver, would not be spatially
matched. As we show in ‘Methods’, this introduces even more
loss to the system during the detection process. Therefore, we
modify the overall transmissivity in Eq. (18) by a further factor
ηcd, i.e.,

η ¼ ηltηeffηcdηatm: ð26Þ

Our estimate is that at long distances we roughly have
ηcd= 0.63, which is the value used in our simulation.

Figure 4 shows the composable finite-size key rate versus (a)
block size and (b) receiver aperture size in a strong turbulence
space. The link’s length is z= 10 km, equivalent to 7.84 dB, and
the Rytov number is σ2Ry ¼ 37:56 ð60:45Þ at night (day).

In Fig. 4a, we have fixed the receiver aperture size to aR= 30 cm.
The rates at night-time operation can be obtained with a typical
block size of ~108, while the system demands a larger block size,
which is still acceptable. We observe that one main parameter that
substantially affects the rates, at fixed distance and block size, is
the aperture size. From Fig. 4b we see that, at fixed length of
z= 10 km, positive rates can be achieved with a relatively large
receiver. However, note that the aperture cannot be made too large.
In fact, increasing the receiver size lets more thermal photons into
the detection system, e.g., we get �nB ¼ 1:71´ 10�10ð10�5Þ for
aR= 30 cm, versus �nB ¼ 4:75´ 10�12ð10�7Þ for aR= 5 cm, at
night (day).

Satellite communications at large zenith angles. Here we apply
the theory to a satellite communication link beyond 1 rad up to
the horizon, where turbulence is strong. In particular, we focus on
the mask (or cutoff) angle, θm, which is the minimum acceptable
elevation above the horizon that a satellite has to be at to avoid
blockage of line-of-sight. This is important because the key rates
that will be derived for the mask angle represent lower bounds for
the entire satellite quantum communication system. One can set a
mask angle that tells the receiver to ignore the satellite at zenith
angles larger than θm, i.e., lower elevations. The mask angle is
roughly 80 deg (4π/9 rad) that is 10 deg from the horizon.

In this study, we consider a zenith-crossing satellite at altitude
h, whose slant distance to the ground station, located at h0 above
sea level, is given by

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRE þ hÞ2 þ ðRE þ h0Þ2ðcos2θ � 1Þ

q
� ðRE þ h0Þ cos θ;

ð27Þ
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block-size values. In both plots we assume a lossy and noisy receiver with

ηeff= 0.5, ηcd= 0.63, and �nex ¼ 0:001. Distance is z= 10 km. Other

physical parameters are set as given in Fig. 3, except �nB which varies with

aR. Protocol parameters are μ= 10, rpe= 0.1, d= 25, frame error rate (FER)

is 0.1, εs= εh= εcor= 10−10, w= 6.34, ε= 4.5 × 10−10, and β= 0.98.
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where RE≃ 6370 km is Earth’s radius and θ the zenith angle. To
continue, we first need to identify the regime of operation.
Replacing the above equation in the Rytov number of Eq. (1)
cannot be used for a slant link out to the space because the index-
of-refraction structure C2

n is not anymore constant and varies
with the altitude h. We then require a more general, altitude-
dependent, theory that stands as a measure for atmospheric
scintillations and the turbulence regime. Assuming a downlink
path from space, we take the following expression for scintillation
index64

σ2I ðh; θÞ ¼

exp
0:49σ2Ryðh;θÞ

1þ1:11σ
12=5
Ry

ðh;θÞ
� �7=6 þ

0:51σ2Ryðh;θÞ

1þ0:69σ
12=5
Ry

ðh;θÞ
� �5=6

" #
� 1;

ð28Þ

where

σ2Ryðh; θÞ ¼ 2:25k
7
6 sec

11
6 ðθÞ

Z h

h0

dh0 ðh0 � h0Þ
5
6C2

nðh0Þ:

In fact, σ2I ðh; θÞ is the modified version of a typical Rytov number
that is now a function of altitude, zenith angle, as well as varying
properties of the atmosphere. According to the Hufnagel–Valley
(H-V) atmospheric model (ref. 31, Sec. 12.2), the index-of-

refraction structure is a function of the altitude

C2
nðhÞ ¼ 5:94´ 10�53ðv=27Þ2h10e�h=1000

þ 2:7 ´ 10�16e�h=1500 þ Ae�h=100;
ð29Þ

where v is the windspeed [m/s] and A is the nominal value of

C2
nð0Þ ½m�2=3� at the ground. In our simulation, we consider low-

wind night-time by assuming v= 21m/s and A= 1.7 × 10−14m−2/3,
and high-wind day-time by assuming v= 57m/s and
A= 2.75 × 10−14m−2/3 31,39.

As it is seen in Fig. 5a, for zenith angles larger than 1 (1.32) rad
for day (night), we have σ2I > 1, which means that signals will
experience a moderate/strong turbulent space in such operational
regimes. As θ→ 90 deg scintillation drops to 1; precisely, to
1.0033. In addition, Fig. 5b shows σ2I versus altitude h, at the
zenith angle θ= 1 rad as well as at the mask angle θm= 4π/9 rad.
At θ= 1 rad, the turbulence is weak for both night- and day-time
operation, as also argued previously in ref. 39. Whereas, at
relatively high zenith angle, such as a mask angle of 80 deg, the
turbulence in the link is strong at all values of altitude h > 20 km.

Another important factor that plays a role in a slant satellite
path at large zenith angles is geometrical elongation of the
communication links. This is due to the refraction on interfaces
of atmospheric layers, which introduces even more optical loss. It
accounts for the apparent position of celestial objects toward the
zenith, and is measured as the elongation factor, which is defined
by the quotient of the (bent) optical trajectory and the (direct)
geometrical slant path. We account for the elongation factor via
the methodology introduced in ref. 26. It uses the so-called
standard atmosphere model and distinguishes 10 atmospheric
layers above the Earth’s surface (within each layer the latitude
dependence of refractive index is to be assumed linear). In Fig. 5c,
we plot the optical loss for an elongated path, at night and at
mask angle θm= 4π/9 rad, and compare it with that without
elongation. It is seen that the elongated path imposes more
optical loss.

Let us now apply all the above consideration to the evaluation
of finite-size key rates. In Fig. 6a, for several block-size values, we
have plotted key rates at night-time operation and at mask
angle θm= 4π/9 rad, where turbulence is strong (cf. Fig. 5).
Here we have set w0= 20 cm, aR= 70 cm, which constrains
�nB ¼ 4:75 ´ 10�10, and �nex ¼ 0:001. For the sake of comparison,
we have also shown the pure-loss upper bound, which continue to
offer higher rates with increasing the satellite altitude, whereas the
finite-size rates drop at relatively lower altitudes. Furthermore, in
Fig. 6b, for several altitudes, we have plotted composable finite-
size key rates versus block size, at night and at mask angle
θm= 4π/9 rad. Our simulation illustrates that with a reasonable
block size and receiver size quantum satellite communication is
feasible for altitudes up to 500 km. At the same time, we note that
the lifetime of low Earth orbit satellites with altitudes between 200
and 400 km is considerably short (fewer than 3 years) due to
atmospheric drag, which eventually deorbits the satellites65. This
reads roughly 75 years for a satellite at 700 km altitude.

Finally, let us compare a part of our findings with actual
measured data. For the Chinese Micius satellite11, at altitude
500 km and zenith angle around 70 deg (that is a slant path of
1200 km), the loss was measured to be about 25 dB (using a
transmitter telescope with 30 cm aperture size and a receiver
telescope with 1 m aperture size placed at 890 m above ground
level). There, with a repetition rate of 100MHz, they could
achieve a few kHz key rate from the satellite to ground by
discrete-variable QKD protocols. This is comparable to our
findings, at the same altitude and repetition rate, but a larger
zenith angle (80 deg), which from Fig. 6b and at block size of 1012

reads 4.4 kHz key rate by CV-QKD protocols. In addition, by
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angles. In (a), we have finite-size key rates versus altitude (for fixed values

of block size). In (b), we have similar rates versus block-size (for fixed

values of altitude). Both figures consider a mask angle θm= 4π/9 at night-

time, and windspeed v= 21 m/s and A= 1.7 × 10−14m−2/3 used in Eq.

(29). Here we have set w0= 20 cm, aR= 70 cm, �n
B
¼ 4:75 ´ 10�10,

�nex ¼ 0:001, and ηcd= 0.63. Other parameters chosen as given in Fig. 5.

Protocol parameters are taken as follows: μ= 10, β= 0.98, rpe= 0.1, d= 25,

frame error rate (FER) is 0.1, εs= εh= εcor= 10−10, w= 6.34, and

ε= 4.5 × 10−10.
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assuming an Alphasat-like satellite in a LEO orbit at 500 km27,
estimates the total channel losses from a satellite up to the
receiving aperture, with an aperture of 1 m, to be about 20 dB
(note that this is based on extrapolated data and not actual
measured data). This is comparable to our results, read from
Fig. 5c, that for the same orbit the channel loss is 16.4 dB. The
difference may come from the choice of wavelength, which reads
1064 nm for their setup and 800 nm for ours, or the error in the
extrapolation.

In this work, we have extended the field of FSO quantum
communications to a moderate-to-strong turbulent space where
atmospheric conditions can be harsh and fatal to optical signals.
Despite the possibility that the signals could be severely degraded
and subjected to high optical loss, our results demonstrated that it
is possible to obtain positive key rates. After introducing a figure
of merit for the strength of turbulence, we showed that in
stronger turbulence regimes the beam spread dominates pointing
errors and beam wandering, so that the latter effects can be
ignored. We have then justified that the transmissivity estimated
by a hybrid log-normal model can safely be used as a lower bound
to the more elaborate extended Huygens-Fresnel model.

With these tools in hand, we have computed the ultimate
bounds for FSO quantum communication in moderate-to-strong
turbulence regimes. Besides establishing these ultimate limits, we
have also derived practical and composable finite-key rates for
CV-QKD operated in such a strong turbulent space. An
important feature is the level of excess noise generated at the
receiver which may greatly reduce the key rates and reduce the
distance for secure communication. However, our analysis also
shows that increasing the aperture of the receiver can mitigate the
problem and revive the rates. As a main application of our results,
we have then investigated satellite quantum communications at
large zenith angles, specifically at the mask angle where not only
turbulence is strong but also the elongation induced by refraction
becomes relevant. This analysis allowed us to show that CV-QKD
is feasible even in satellite links affected by strong turbulence,
therefore removing the necessity and the restrictions associated
with the weak turbulence regime which is at the basis of previous
literature.

Methods
We here present the main techniques that are needed to prove or support the
results of our main text.

Transmissivity in a turbulence media: log-normal atmospheric model. In the
log-normal model the probability distribution for the transmissivity is given by25

PðηÞ ¼ 1

ησ
ffiffiffiffiffi
2π

p exp � ð� ln η� μÞ2

2σ2

� �
; ð30Þ

where μ ¼ � lnðη2=
ffiffiffiffiffiffiffiffi
hη2i

p
Þ and σ2 ¼ lnðhη2i=η2Þ are parameters of the log-normal

distribution. They are functions of the first and second moments of the trans-
missivity

η ¼
Z

A

d2rhIðr; zÞi ¼
Z

A

d2rΓ2ðrÞ ð31Þ

and

hη2i ¼
Z

A

d2r1d
2
r2Γ4ðr1; r2Þ; ð32Þ

where the integration is performed over the circular aperture opening area A. In
the above equations, r= (xy)T is the vector of transverse coordinates on the
receiver plane.

The field coherence functions Γ2 and Γ4 are respectively given by25

Γ2ðrÞ ¼
k2

4π2z2

Z

R
2
d2r0e

�g2 jr0 j2

2w2
0

�2i ϒ
w2
0

r:r0�1
2
DSð0;r0Þ ð33Þ

and

Γ4ðr1; r2Þ ¼
2k4

π2ð2πÞ3z4w2
0

Z

R
6
d2r01d

2
r
0
2d

2
r
0
3

´ e
� 1

w2
0

jr01 j2þjr02 j2þjr03 j2ð Þ

´ e
þ2i ϒ

w2
0

ð1�z=R0Þr01 :r02�ðr1�r2 Þ:r02�ðr1þr2 Þ:r03½ �

´ exp



1

2
∑

j¼1;2
DSðr1 � r2; r

0
1 þ ð�1Þjr02Þ

	

�DSðr1 � r2; r
0 þ ð�1Þjr03Þ � DSð0; r02 þ ð�1Þjr03Þ


�
;

ð34Þ

where ϒ ¼ kw2
0=ð2zÞ is the Fresnel number of the transmitter aperture and g2 ¼

1þ ϒ
2ð1� z=R0Þ

2 is the generalized diffraction beam parameter. Here,

DSðr; r0Þ ¼ 2ρ
�5=3
0

Z 1

0

dξ rξ þ r
0ð1� ξÞ

�� ��5=3 ð35Þ

is the phase structure function, where ρ0 is the radius of spatial coherence of the
wave in the atmosphere.

The first moment of the transmissivity in Eq. (31) can be evaluated explicitly

η ¼ 1� e
�

2a2
R

w2
lt;LN ;

ð36Þ

where

w2
lt;LN ¼ Sxx þ 4hx20i

� w2
st;LN þ σ2tb

ð37Þ

is the long-term beam size, with

Sxx ¼ 4

Z

R
2
d2rx2Γ2ðr; zÞ




�
Z

R
4
d2r1d

2
r2x1x2Γ4ðr1; r2; zÞ

� ð38Þ

and

hx20i ¼
Z

R
4
d2r1d

2
r2x1x2Γ4ðr1; r2; zÞ: ð39Þ

Extra photons generated within the receiver. Considering a CV-QKD experi-
ment, there are two techniques whereby one can measure the received signals
through a coherent (homodyne or heterodyne) detection: transmitted local oscil-
lator (TLO) and local local oscillator (LLO). In refs. 38,39, it is shown that these two
may lead to generating totally different amounts of noisy photons within the
coherent receiver system. This is mostly because extra photons generated by LLO,
�nLLOex , is a linear function of the link transmissivity, η, whereas extra photons

generated by TLO, �nTLOex , is an inverse function of it. Precisely, it reads (ref. 38,
Eq. (62))

�nLLOex ¼ Θþ πηVAlwC
�1 and �nTLOex ¼ Θ

η
; ð40Þ

2 4 6 8 10 12 14

Distance (km)

10
-3

10
-2

10
-1

n
e

x

TLO

LLO

Fig. 7 Extra noise photons generated within a coherent receiver

(homodyne detection). Here, we consider night- (solid black curves) and day-

time (dashed blue curves) when a TLO/LLO technique is used. We have

νdet ¼ 1 SNU, NEP¼ 6 pW=
ffiffiffiffiffiffiffi
Hz

p
,W= 100MHz, ΔtLO= 10 ns, PLO= 100mW,

VA= 8 SNU, lw= 1.6 KHz, C= 5MHz, and hc= 1.986 × 10−25 J.m. Other

parameters related to η are set as in Fig. 3.
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where

Θ ¼ νdetNEP
2WΔtLO

2_ωPLO

; ð41Þ

with VA being the modulation variance, PLO the LO power, C the clock, lw the
linewidth, W the detector bandwidth, NEP the noise equivalent power, ΔtLO the LO
pulse duration, and νdet the detection noise variance—νdet ¼ 1ð2Þ for a homodyne
(heterodyne) measurement. We refer to ref. 38 for more detail.

In Fig. 7, we plot �nex versus distance. As seen at relatively large distances, i.e.,
the regime of strong turbulence, the LLO technique is the better detection scheme.
However, the quality of LLO detection may be poorer due to overlapping a fresh
LO with the signal. In TLO, both the signal and the LO undergo the same
(atmospheric turbulent) conditions, so that when they are recombined at the
receiver, ideally, no mismatch is expected. This is not the case of LLO which we
discuss in more detail in the following.

LLO-induced loss. Suppose two continuous-wave optical beams—the signal ES and
the LO EL—of the same frequency are incident on a beam splitter τ. Let us consider

a balanced homodyne detection, i.e., τ ¼ 1=
ffiffiffi
2

p
, where the output number of

photons is given by36,66

n� ¼ ηeff

Z T

0

dt

Z

A

d2r E�
L ðr; z; tÞEþ

S ðr; z; tÞ
�

þ E�
S ðr; z; tÞEþ

L ðr; z; tÞ
�
;

ð42Þ

with spatial-temporal modes defined as follows

Eþ
S ðr; z; tÞ ¼ iâSf SðtÞuSðr; zÞ; Eþ

L ðr; z; tÞ ¼ iâLf LðtÞuLðr; zÞ; ð43Þ

and â being the corresponding annihilation operator.
Usually, for quantum tomography purposes and phase-sensitive detection, the

LO field is assumed a monochromatic coherent state, with the on-axis amplitude

∣αL∣, fL(t)= e−iωt, and uLðr; 0ÞeiϕL (plane wave) or uL(r, 0)= eikr (spherical
wave)36,66–68. This then follows

n� / ηeff jαLj âSe
iΔϕ þ âySe

�iΔϕ
� �

¼ ηeff jαLjq̂SðΔϕÞ; ð44Þ

where q̂SðΔϕÞ is signal’s quadrature with Δϕ= ϕS− ϕL.
Back to the coherent detection in a free-space scenario, in the following, we

show that some loss is expected in the case of LLO, where signal’s shape is different
from that of the LO. We consider coherent Gaussian beams, which in the plane of
the exit aperture of the transmitter are described by

uðr; 0Þ ¼ e
� r2

w2
0

��ikr2

2R0 ; ð45Þ

where w0 is the beam spot radius and R0 is its phase front radius of curvature. For
simplicity, we assume a collimated beam with R0→∞, such that

uðr; 0Þ ¼ e
� r2

w2
0 : ð46Þ

At distance z a Gaussian beam may or may not keep its Gaussian form. If it
does, the beam width w0 will be replaced withW(z)—short- or long-term beam size
according to the turbulence regime. However, in general, u(r, z) can be distorted, or
even completely destroyed, during a turbulent path. In that case, proper functions
u(r, z) should be used that reflect the effects of turbulence. We assume far-field
conditions where Gaussian beams can be approximated by plane waves31.
Therefore, in the case of TLO, the signal and the LO can be taken as pane waves
that reduces the problem to previous (usual) coherent detection scenarios36,66–68,
with the expectation value of photocurrent from Eq. (42) as follows:

hn�iTLO / ηeff jαSðzÞjjαLðzÞj cosðΔϕÞ: ð47Þ
When it comes to LLO, we should consider the Gaussian shape of the fresh LO

generated locally at the receiver, while we assume the signal has the form of a plane
wave. By replacing Eq. (46) for the LO into Eq. (42), and assuming that signal and
the LO are frequency matched, it is straightforward to find

hn�iLLO / ηeff jαSðzÞjjαLð0Þj cosðΔϕÞ
1

N 0

Z

A

dr re
� r2

W2
L
ð0Þ; ð48Þ

which is also normalized by N 0 ¼
R
A!1dr re

� r2

W2
L
ð0Þ (the receiver does not collect

all the light). It is evident that the expression

ηLLO :¼ 1

N 0

Z

A

dr re
� r2

W2
L
ð0Þ ð49Þ

has the same nature as the quantum efficiency of the detectors ηeff; hence, can be
considered as extra loss. One can implicitly find that

ηLLO ¼ 1� e
�

a2
R

W2
L
ð0Þ: ð50Þ

For the special case where the aperture size (or equivalently the lenses that
collect and focus the beam on the detection’s beam splitter) is equal to the LO’s
initial size, we have ηLLO= 1− e−1= 0.63.

The overall transmissivity can then be written as follows:

η ¼ ηltηeffηcdηatm; ð51Þ

where ηcd represents ηTLO or ηLLO. In our estimation of composable CV-QKD
rates, we use ηcd= 0.63.

We remark that a more precise evaluation involves working out a more
precise shape of the beam after propagating through a turbulent medium, where
uS/LO(r, z) functions that include the effects of turbulent are known. One possible
procedure is as follows: due to the extended Huygens-Fresnel principle the
optical wave field after propagating a distance z through a turbulent space is
given by solving ref. 31 (Eq. (21), Chapt. 7), where the most complex function
seems to be the complex phase perturbation of the field69,70. One can then
compute a more accurate loss coherent detection ηcd from the above
methodology.

Details of key rate analysis and parameter estimation. For the secret-key rate
analysis, we use to consider the entanglement-based representation of the coherent-
state QKD protocol. We assume a collective Gaussian entangling-cloner attack71.
At each run of the protocol Alice shares one leg of a two-mode squeezed vacuum
(TMSV) state, with variance μ, through a communications link with Bob. This is
equivalent to the prepare and measure version of the protocol, where Alice pre-
pares coherent states by a bivariate Gaussian modulation with variance σ2x ¼ μ� 1.
Assuming that the link is a thermal-loss channel, characterized by the transmis-
sivity η and thermal noise �n, the end-to-end covariance matrix between Alice and
Bob has the form

VAB ¼
a1 cZ

cZ b1

� �
; ð52Þ

where a= μ, b ¼ ηðμ� 1Þ þ 2�nþ 1, c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηðμ2 � 1Þ

p
, 1 ¼ diag ð1; 1Þ and

Z ¼ diag ð1;�1Þ.
Having the triplet (a, b, c), and assuming a homodyne measurement at Bob’s

side, the asymptotic key rate in the reverse reconciliation case is given by

Rasyðη; �nÞ ¼ βIABðη; �nÞ � χEBðη; �nÞ ð53Þ

where

IABðη; �nÞ ¼
1

2
log2 1þ ηðμ� 1Þ

2�nþ 1

� �
; ð54Þ

also, assuming that the eavesdropper purifies the entangled state between Alice and
Bob, one finds

χBEðη; �nÞ ¼ h
νþ � 1

2

� �
þ h

ν� � 1

2

� �
� h

νc � 1

2

� �
: ð55Þ

with h(x) given in the main text, ν ± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ bÞ2 � 4c2

p
± ðb� aÞ

� �
=2, and

νc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðab� c2Þ=b

p
.

In a realistic setting, Alice and Bob should compute the values of η and �n in
order to estimate the key rate in Eq. (53). This computation is carried out by using
only a finite number of runs, which inevitably reduces the rate to Rpeðηwc; �nwcÞ, for
the worst-case values are ηwc ≤ η and �nwc ≥ �n72,73.

Before discussing the worst-case scenario parameters, let us point out a matter
that eases the parameter estimation in the case of moderate-to-strong turbulence.
Unlike the case of a weak turbulence medium38, where the link transmissivity
varies instantaneously, we can assume a fixed loss and a fixed number of thermal
photons in the moderate-to-strong turbulence regime due to the fact that beam
wandering is negligible here; see Fig. 1. Therefore, we assume a thermal-loss
channel that is characterised by transmissivity η and mean number of thermal
photons �n. This channel induces an input–output relation y ¼ ffiffiffi

η
p

x þ z between

the input Gaussian variable x and the output variable y, with z being a Gaussian
noise variable; the variables x and z have zero mean with variances μ− 1 and
σ2z ¼ 2�nþ 1, respectively.

Back to the estimation of the worst-case parameters, by revealing m pairs of

corresponding data, i.e., [x]i and [y]i, Alice and Bob can build an estimator bT of the

square root of transmissivity T ¼ ffiffiffi
η

p
, that is bT :¼ m�1σ�2

x ∑
m
i¼1 xiyi , with variance

Var ðbTÞ ¼ m�1ð2ηþ σ�2
x σ2z Þ, where σ2x ¼ ∑

m
i¼1 x

2
i ’ μ� 1. Then, the estimator

for transmissivity is bη ¼ ðbTÞ2 , with variance Var ðbηÞ ¼ 4m�1η2 2þ η�1σ�2
x σ2z

� �
þ

Oðm�2Þ. Similarly, Alice and Bob can construct the estimator for �n, that is,

b�n :¼ ð bσ2z � 1Þ=2, with variance Var ðb�nÞ ¼ σ4z=ð2mÞ. Here, bσ2z ¼ m�1 ∑
m
i¼1 z

2
i is the

estimator for the variance of the thermal noise σ2z .
Next, by assuming a certain number w of confidence of intervals, Alice and Bob

compute the worst-case estimators up to some probability of error

εpeðwÞ ¼ 1� erf ðw=
ffiffiffi
2

p
Þ

� �
=2, i.e.,

ηwc ¼ η� 2w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2η2 þ ησ�2

x σ2z
m

r
; �nwc ¼ �nþ w

σ2zffiffiffiffiffiffiffi
2m

p : ð56Þ
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