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Quantum communications in a moderate-to-strong turbulent space

Masoud Ghalaii and Stefano Pirandola
Department of Computer Science, University of York, York YO10 5GH, United Kingdom

Since the invention of the laser in the 60s, one of the most fundamental communication channels has been

the free-space optical channel. For this type of channel, a number of effects generally need to be considered,

including diffraction, refraction, atmospheric extinction, pointing errors and, most importantly, turbulence. Be-

cause of all these adverse features, the free-space channel is more difficult to study than a stable fiber-based

link. For the same reasons, only recently it has been possible to establish the ultimate performances achievable

in quantum communications via free-space channels, together with practical rates for continuous variable (CV)

quantum key distribution (QKD). Differently from previous literature, mainly focused on the regime of weak

turbulence, this work considers the free-space optical channel in the more challenging regime of moderate-to-

strong turbulence, where effects of beam widening and breaking are more important than beam wandering. This

regime may occur in long-distance free-space links on the ground, in uplink to high-altitude platform systems

(HAPS) and, more interestingly, in downlink from near-horizon satellites. In such a regime we rigorously in-

vestigate ultimate limits for quantum communications and show that composable keys can be extracted using

CV-QKD. In particular, we apply our results to downlink from satellites at large zenith angles, for which not

only turbulence is strong but also refraction causes non-trivial effects in terms of trajectory elongation.

Yearslong chain of excellent work have stitched quantum

communications and quantum cryptography into the science

of quantum information technologies. In particular, quantum

key distribution (QKD) [1] has been developing rapidly, with

the end goal of making distant individuals able to share a key,

which must be inscrutable for an eavesdropper to learn about,

and which, therefore, can be used for secure classical commu-

nications. Since 1980s that saw the début of QKD [2], optical

fibers have been the main platform to perform and/or experi-

ment most QKD protocols. However, the reach of fiber-based

quantum communications is limited to only a few hundreds

of kilometers [3–6] (because of the exponential decay of the

transmissivity). Whereas, man seems to stand on the verge

of building a quantum internet [7, 8] to make global quantum

communications viable for all. Therefore, as a possible solu-

tion, one may think of a harmonized use of quantum repeater

stations (placed on ground and connected via optical fibers)

and free-space optical (FSO) communication links. The latter

include ground-to-ground free-space channels [9] and HAPS,

downlink/uplink communications with satellites [10, 11], and

inter-satellite links [12] (see Ref. [13] for a review).

It is desirable to find the limits of quantum communica-

tions and QKD in different types of free-space medium, such

as the Earth’s atmosphere and space. In fact, alike the PLOB

bound [14] and quantum repeater capacities [15], one may

work out bounds germane to free-space and satellite links,

where the most detrimental phenomena is perhaps, not sur-

prisingly, turbulence—fluctuations in the atmosphere refrac-

tive index due to the aerodynamics and temperature gradient

of the Earth’s surface [16, 17]. Due to atmospheric turbulence

the spatial coherence of an optical beam is gradually destroyed

as it propagates. This loss of spatial coherence restricts the

reach to which beams can be focused or collimated [18–20].

This in turn results in significant power level reductions in

FSO communication and radar links. Equally fatal, the de-

struction of coherence can effect optical receivers, which are

very sensitive to the loss of spatial coherence [21, 22].

Accounting for realistic effects on optical beams, such as

diffraction, extinction, background noise, and channel fading,

the latter due to pointing errors and atmospheric turbulence,

Pirandola investigated the ultimate quantum communication

limits and the practical security of FSO links, considering

ground-based communications [23] and uplink/downlink with

satellites [24]. Even though the theory developed in Ref. [23]

is very general, the main focus was the regime of weak tur-

bulence, suitable for short-range high-rate FSO links on the

ground. Similarly, the main focus of Ref. [24] was quan-

tum communications with satellites within 1 radiant from the

zenith position, so to enforce the regime of weak fluctuations.

In this manuscript, we extend the investigation to the

regime of moderate-to-strong turbulence [22, 25–27], where

optical waves can harshly be deformed and eventually bro-

ken up into multiple patches [22, 28], such that one would

observe a random multiplicity of spots distributed on the re-

ceiving aperture [29, 30]. In this more challenging regime, we

provide information-theoretic bounds for the maximum rates

that are achievable for key generation and entanglement dis-

tribution. We then study the composable finite-size key rates

that can be achieved by protocols of CV-QKD, showing the

feasibility of this approach in moderate-to-strong FSO links.

The considered stronger regime of turbulence occurs in

long-distance free-space connections on the ground but also,

and more interestingly, in communications with satellites at

large zenith angles (beyond 1 radiant). When a satellite is

close to the horizon, the optical path within Earth’s atmo-

sphere becomes long and turbulence becomes a major prob-

lem.At these angles, another problem is refraction, which cre-

ates an elongation of the atmospheric section of the path (and

therefore further loss and turbulence occur). Accounting for

all these adverse aspects, we bound the optimal performances

and provide achievable key rates.

RESULTS

We first present some preliminary aspects and physics of

FSO communications in turbulent media. We shall use these

in the rest of the paper in order to understand and establish

both ultimate limits and practical security of quantum com-

munications in a moderate-to-strong turbulent space.

http://arxiv.org/abs/2107.12415v1
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Figure of merit for the strength of turbulence. As-

sume an optical-beam signal of wavelength _ that propagates

through a turbulent path of length I. As widely accepted

[16, 22, 25], we introduce the Rytov number to be the fig-

ure of merit for the strength of turbulence. Physically, the

Rytov number, or Rytov variance, is a measure of the strength

of light scintillations—fluctuations in received irradiance, or

in the phase and amplitude of the light, resulting from propa-

gation through a turbulent space [16, 31]. The dimensionless

Rytov number is defined for a plane wave as follows [32]

f2
Ry = 1.23�2

=:
7
6 I

11
6 , (1)

where : = 2c/_ is the wavenumber and �2
= is known as the

index-of-refraction structure constant, measuring the magni-

tude of the fluctuations in the index of refraction (the Rytov

number for a spherical wave is 0.4f2
Ry

). It is interesting to note

that the scintillation of an optical signal does not increase un-

limitedly as predicted by Rytov approximation [32], but satu-

rates for strong turbulence and long propagation links [22]. It

can nevertheless still specify turbulence regimes.

Values of f2
Ry

< 1 refer to weak turbulent media, while

f2
Ry
> 1 indicate strong turbulence [25]. The regime of inter-

mediate turbulent media hence is lying aroundf2
Ry

∼ 1. Rytov

number is very much similar to the dimensionless Reynolds

number [33], '4, in fluid mechanics, where for a fluid flow-

ing through a packed bed of particles '4 < 10 corresponds

to a laminar flow, whereas '4 > 2000 indicates a turbulent

stream [34]. According to the Rytov number, the specification

of turbulence regimes involves not just the index-of-refraction

structure constant�2
=, but a combination of this parameter, the

beam’s wavelength and the propagation path length.

The positive power dependence of the Rytov number on

path length I implies that the medium is indeed expected to be

highly turbulent at longer distances [22]. It is hence helpful to

introduce another quantity which is relevant to the propaga-

tion distance, which is [25, 27, 35]

I8 = (�2
=:

2ℓ
5/3
0

)−1. (2)

Parameter I8 represents the propagation length at which the

transverse coherence radius of the optical wave is comparable

to the turbulence inner scale ℓ0. The parameter ℓ0, which is on

the order of 1 mm, is a measure of the smallest distances over

which fluctuations in the index of refraction are correlated.

We will shortly discuss that I8 defines the minimum valid dis-

tance for some relevant quantities in studying stronger turbu-

lence media; that is, some equations are sound only for I > I8 .

Fortunately, apropos equations can be found in the literature

for I < I8 , where we may expect a moderate or strong turbu-

lence space. It is worth mentioning that, in the regime of weak

turbulence, a similar quantity, known as the spatial coherence

radius d0 = (¤]�2
=:

2I)− 3
5 , is introduced, where ¤] = 0.55 (1.46)

corresponds to plane (spherical) waves [16].

Pure diffraction and optical loss in free space. A natural

light’s phenomenon is diffraction, which perennially spreads

the wave’s size while it propagates through free space. It also

constantly increases the radius of curvature of the propagating

beam [19, 20]. In our study, we start with a Gaussian beam,

with initial field spot size F0, carrier wavelength _, and ra-

dius of curvature '0. At distance I of propagation, where a

receiver is supposedly placed, free-space diffraction increases

the beam’s spot size to

F2
I = F

2
0

[ (
1 − I

'0

)2

+
( I
I'

)2]
, (3)

with I' = cF2
0
/_ being the beam’s Rayleigh length. A re-

ceiver with infinite radius would collect all the light. However,

practically speaking, only a fraction of the light can be col-

lected by a receiver with a realistic finite aperture with radius

0'. This defines the pure diffraction-induced transmissivity

[dif = 1 − 4
−

202
'

F2
I , (4)

yet, in reality, this would not be the total loss in a turbulent

atmosphere as we shall see below.

Turbulence-induced beam spread. Equation (4) can lead

to incorrect estimations because of Eq. (3), which may under-

estimate the effective spot size of the beam. This is because

a different physics setting may apply in many real-world sce-

narios due to atmospheric turbulence. Therefore, we need to

provide a proper estimation of the I-dependent spot size in

order to modify [dif in Eq. (4). In a moderate-to-strong tur-

bulent regime, a beam can breakup into multiple patches and

this primarily happens at longer propagation distances, where

it is expected to have a large Rytov number. In this case, the

patches of the beam will be in an area with mean square radius

F2
lt
, also known as the long-term beam waist [22]. Note that

the relevant beam spread in the regime of weak turbulence is

the short-term beam waist, F2
st [27]. In general, one has the

decomposition F2
lt
= F2

st + f2
tb

[23, 25, 27], where f2
tb

is the

variance associated with the wandering of the beam centroid.

However, for stronger turbulence, wandering becomes negli-

gible with respect to beam widening, i.e., we have the collapse

f2
tb
≪ F2

st ≃ F2
lt
. See Fig. 1 for a study of these quantities.

Let us now assume a Gaussian beam with initial spot radius

F0 and curvature '0. After travelling through a path of length

I, such a beam is characterized by a pair of parameters [16, 36]

Ω0 = 1 − I

'0

, Λ0 =
2I

:F2
0

. (5)

For example, the pair Ω0 = 0 and Λ0 = 0 corresponds to

a spherical wave, whereas Ω0 = 1 and Λ0 = 0 represents a

plane wave. Alternatively, in the plane of the receiver, such a

Gaussian beam can be described by the similar pair of param-

eters

Ω =
Ω0

Ω
2
0
+ Λ

2
0

= 1 + I

'
, Λ =

Λ0

Ω
2
0
+ Λ

2
0

=
2I

:F2
I

, (6)

where ' is the phase front radius of curvature at the receiver.

It is then shown that, at distances I > I8 , where a strong tur-

bulent space is experienced [22], the long-term beam waist at
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the receiver is given by [16, Chap. 8]

Flt = FI

√
1 + 4

3
@Λ , (7)

with the @ parameter equal to

@ = 0.74f2
Ry&

1/6
< , &< = 35.05I/(:ℓ2

0 ). (8)

In Eq. (7), we see how the diffraction-limited beam waist FI

is revised into the long-term beam waist Flt via an additional

spread factor associated with scattering by turbulent eddies.

Note that even through a short propagation distance the

beam may experience a moderate or strong turbulence space.

In this case (I < I8) the effective beam waist is

Flt = FI

√
1 + 1.63(f2

Ry
) 6

5 Λ . (9)

The above equation is also considered to be adequately precise

for weak turbulence so that it can generally be used to estimate

the long-term beam waist under almost all turbulence condi-

tions. Thus, we may use Eq. (9) at all distances 0 ≃ I < I8 , no

matter of the strength of turbulence.

In this study, Eqs. (7) and (9) provide the main quantities

that we shall use to bound the rate of quantum communica-

tions in a moderate-to-strong turbulent space.

More details on beam wandering. While transmitting an

optical signal through free space, it is observed that position

of the instantaneous centroid of the signal (point of maximum

irradiance or “hot spot”) is randomly displaced. This instanta-

neous quivering in the plane of the receiver, which supposedly

happens according to a Gaussian distribution with variance

f2, is commonly called beam or centroid wandering. Overall,

this wandering is caused by pointing error f2
pe, due to Gaus-

sian jitter and off-target tracking, and atmospheric turbulence

f2
tb

. These two effects are independent and sum up such that

the total variance of the wandering is given by f2
= f2

pe +f2
tb

.

The amount of wandering for a typical 1 `rad off-tracking

error at the transmitter is given by f2
pe ≃ 10−12I2. But, the

contribution of atmospheric turbulence is more elaborate.

Different mathematical expressions have been developed to

estimate wandering in strong turbulent media [16, 25, 26, 28].

Here, we use the following estimation [16, Chap. 8]

f2
tb = 7.25�2

=F
− 1

3

0
I3
∫ 1

0

3b

[
1

5
1
6 (b)

−
^

1
3

0
F

1
3

0

[
1 + ^2

0
F2

0
5 (b)

] 1
6

]
,

(10)

where ^0 = 2c/!0, with !0 ≃ 1− 100 m being the outer scale

of turbulence and

5 (b) = [Ω0 + (1 − Ω0)b]2 + 1.63f
12/10

Ry
Λ0 (1 − b)16/5. (11)

This is applicable in moderate-to-strong atmospheric turbu-

lence, and is shown to be consisting with experimental data.

As previously discussed, it turns out that centroid wander-

ing is a negligible effect when turbulence is sufficiently strong.

In Fig. 1, we plot the turbulence-induced centroid wandering
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FIG. 1. We compare the variance of the centroid wandering induced

by turbulence (f2
tb

, middle line) to that of pointing error (f2
pe, lower

line) and the long-term beam waist (F2
lt

, upper line). We assume

a collimated beam ('0 = +∞) with initial radius F0 = 5 cm and

wavelength _ = 800 nm. Other parameters are !0 = 1 m and �2
= =

1.28 × 10−14 m−2/3 (night-time operation). Rytov variance ranges

from f2
Ry

= 1 at I = 1384 m to f2
Ry
> 9.12 × 103 at I = 200 km.

f2
tb

, the pointing-error wandering f2
pe and the long-term beam

waist F2
lt
. While at short distances, where f2

Ry
∼ 1, they tend

towards each other, they diverge at longer distances, where

f2
Ry

≫ 1. Nevertheless, it is clear that at all distances con-

sidered, we have F2
lt
≫ f2

tb
≫ f2

pe. In fact, the beam may

break up into smaller patches in a very wide area, while the

wandering of the centroid becomes negligible.

Turbulence-induced transmissivity. In FSO communica-

tion, turbulence can cause power fading and sometimes com-

plete loss of signal. In addition, communication links can ex-

perience severe signal degradation as well as spatial/temporal

irradiance scintillations in the beam wavefront. To accurately

estimate the signal fading and behaviour at some propagation

distance, and to learn a true picture of how these affect crucial

performance parameters such as the communication rate, it is

important to analyze the distribution of the irradiance and/or

transmittance at the receiver. In addition, having a theoreti-

cal distribution that accurately models these fluctuations un-

der propagation conditions is desirable. This can be achieved

through the knowledge of the statistical properties of the in-

tensity fluctuations of the beams. In particular, the probability

distribution of the transmittance most thoroughly character-

izes the statistics of these fluctuations. Several models have

been introduced to deal with this problem, including the log-

normal model, the parabolic equation model, Feynman path

integral, extended Huygens-Fresnel principle (see Ref. [16]),

and the recently proposed elliptic-beam model [37].

The extended Huygens-Fresnel model is considered to be

rather easier to use than other methods, especially when it

comes to stronger turbulent media. For a Gaussian beam

defined by the set of parameters given in Eqs. (5) and (6),

and long-term waist given in Eqs. (7) and (9), the turbulence-
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induced transmissivity can be computed from

[lt =
1

N

∫

A
32A〈� (A, I)〉, (12)

where the integration is performed over the area A of the cir-

cular aperture, and

N = lim
A→∞

∫

A
32A〈� (A, I)〉 (13)

is a normalization factor. The mean irradiance 〈� (A, I)〉 is pro-

vided by the extended Huygens-Fresnel model [16, Chapt. 7]

〈� (A, I)〉 =
F2

0

F2
lt

exp

{
− 2A2

F2
lt

}
, I > I8 , (14)

and

〈� (A, I)〉 =
2F2

0

F2
I

∫ ∞

0

3C C�0

(
2
√

2 AC

FI

)
4−C

2−HC5/3
, I < I8 ,

(15)

where �0(G) is a Bessel function and H = 1.41f2
Ry
Λ

5
6 .

For I > I8 , we replace Eq. (14) in Eqs. (12) and (13). Solv-

ing the integration, we can find an explicit analytical form for

the transmissivity, given by

[lt = 1 − 4
−

202
'

F2
lt , (16)

where F2
lt

is given in Eq. (7). Thus Eq. (16) should be used

instead of the pure diffraction transmissivity in Eq. (4).

For I < I8 , we cannot find a closed-form but nevertheless

we can compute the result numerically by replacing Eq. (15)

in Eqs. (12) and (13), and noting that the limit for unlimited

area A can be treated by assuming 0' = 0∞
'

for sufficiently

large 0∞
'

. Notwithstanding, we can check that the formula

in Eq. (16), where we replace the long-term waist of Eq. (9),

provides a limiting lower bound to such numerical values, as

shown in Fig. 2. Thus, we may use an analytical expression

for the turbulence-induced transmissivity at all distances, as

given by Eq. (16) where we replace either Eq. (7) (for I > I8)

or Eq. (9) (for I < I8).

Another theoretical model is the log-normal model, where

the beam follows a log-normal distribution rather than a Gaus-

sian one. Using this model, we get a similar formula

[lt,LN = 1 − 4
−

202
'

F2
lt,LN , (17)

where F2
lt,LN

is given in Methods. The validity of the formula

holds for all propagation values I and it has been experimen-

tally verified [38]. In addition, it is shown to match recently

developed descriptions of atmospheric transmissivity, such as

the elliptic-beam model [37]. However, the computation of

F2
lt,LN

is cumbersome to handle even numerically. An heuris-

tic choice is to combine Eq. (17) with the calculation of the

beam waist from other models, in particular, from the previ-

ous Huygens-Fresnel model. Thus, we may consider a hybrid

20 40 60 80 100 120

Distance (km)

10-6

10-4

10-2

lt

FIG. 2. Turbulence-induced transmissivity versus distance I < I8 ,

where I8 = 126.7 km assuming the same parameters of Fig. 1. Brown

curves from top to bottom correspond to the Huygens-Fresnel long-

term transmissivity numerically computed for 0∞
'

=10, 20, 50, and

100 m. The lower (dashed blue) curve is the long-term transmissivity

analytically computed from Eqs. (16) and. (9). The latter can be

assumed as limiting lower value at all distances.

log-normal model where we replace F2
lt,LN

with F2
lt
, whose

expression is given in Eqs. (7) and (9). This is completely

equivalent to the previous approach. For this reason, in our

study, we consider [lt of Eq. (16) with long-term waist Flt

given by Eqs. (7) and (9).

Bounds and security of quantum communications in a

moderate-to-strong turbulent space. Now we are in a posi-

tion to account for the overall optical loss that can occur in a

strong turbulence regime. The overall transmissivity includes

the multiplication of three types of optical transmissivity

[ = [lt[eff[atm, (18)

where we include the receiver’s efficiency [eff and atmo-

spheric loss [atm. The latter is modelled by the Beer-Lambert

equation

[atm = exp
{
− U(_, ℎ0)I

}
, U(_, ℎ0) = U0(_)4−

ℎ0
6600 , (19)

where ℎ0 is the altitude (measured in metres) and U0(_) is the

extinction factor at sea level [39, 40].

By replacing the combined transmissivity of Eq. (18) in the

repeaterless PLOB bound Φ([) = − log2(1−[) [14], one gets

the following upper bound for the rate ' of any QKD protocol

over the FSO link

' ≤ Φ([) := − log2

[
1 − [eff4

−U(_,ℎ0)I (1 − 4
−

202
'

F2
lt

)]
. (20)

We remark that, as shown in Fig. 1, in the moderate-to-strong

turbulence regime (f2
Ry

≥ 1) the variance of long-term beam

widening is several orders of magnitude larger than that asso-

ciated with the centroid wandering. Therefore, we can neglect

the short-term fading process and assume a fixed transmissiv-

ity between the sender and the detector plane at each distance.

This is different from the weak turbulence regime where beam

widening and wandering are equally important [23].
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FIG. 3. Free-space optical quantum communications in a moderate-to-strong turbulent space, at night-time (black curves) and day-time (blue

curves). In (a) we plot the ultimate pure-loss bound of Eq. (20) with an ideal receiver, [eff = 1 and =̄ex = 0, at night-time (solid black

curves) and day-time (solid blue curve). The dashed (dotted) curves are thermal upper (achievable lower) bounds for an ideal receiver with

[eff = 1 but =̄ex = 0 [cf. Eqs. (21) and (22)]. The red star indicates the distance I8 (connecting plots from different equations and therefore

presenting small discontinuities). Here, the following set of parameters are considered: _ = 800 nm, U0 (_) = 5 × 10−6 m−1, F0 = 0' = 5 cm,

Ωfov = 10−10 sr, ΔC = 10 ns, Δ_ = 0.1 pm, ℎ0 = 30 m, so that �2
= = 1.28 (2.06) × 10−14 m−2/3 for night (day). Also, we have thermal

noise =̄� = 4.75 × 10−12 (×10−7) photons per mode at night (day). In (b) and (c) we assume a lossy and noisy receiver with [eff = 0.5 and,

respectively, =̄ex = 0.01 and =̄ex = 0.05. As in panel (a), we compare the pure-loss rates (solid) with the thermal-noise bounds (dashed) and

the achievable lower bounds (dotted).

Apart form loss, the other key element that must be con-

sidered in FSO quantum communications is the number of

thermal noise photons, which may find their way into the re-

ceiver’s aperture. They come from the sky brightness and can

also be generated within the receiver itself. To involve the

effect of thermal noise into the communications bound, we

follow and apply the technique introduced in Ref. [23].

The receiver sees a total mean number of thermal photons

equal to =̄ = [eff =̄� + =̄ex, where =̄� and =̄ex are the number of

background thermal photons per mode and extra photons gen-

erated within the receiver box, respectively. The number =̄�
depends on several factors coupled to the sky and the receiver.

It is given by =̄� = c_Γ'�
sky

_
/ℎ2, where �

sky

_
is the brightness

of the sky, which is in the range of 10−6−10−1 Wm−2nm−1sr−1

from night to cloudy day [41, 42]. The effects of the receiver is

gathered in a single parameter Γ' = Δ_ΔCΩfov0
2
'

, where Ωfov,

Δ_, and ΔC are the angular field of view, spectral filter, and

time window of the detector, respectively. The nominal val-

ues that we use in this study are Ωfov = 10−10 sr, Δ_ = 0.1 pm,

and ΔC = 10 ns. For a receiver with 0' = 5 cm, we estimate

=̄� = 4.75 × 10−12 (10−7) background photons per optical

mode at night (day).

The total Alice-Bob FSO link is modelled as a thermal-loss

channel with transmissivity [ and overall thermal noise =̄. The

worst-case scenario is when the eavesdropper (Eve) has con-

trol over all the input noise. Such a scenario can be simulated

by her using a beam splitter with transmissivity [ that com-

bines Alice’s signal mode with an input thermal mode with

=̄4 = =̄/(1 − [) mean photons. We then use the thermal-loss

version of the PLOB bound. For =̄ ≤ [, the secret key capacity

in Eq. (20) can be revised to

' ≤  UB ([, =̄) := Φ([) − =̄

1 − [ log2 [ − ℎ
( =̄

1 − [

)
, (21)

where ℎ(G) = (1 + G) log2 (1 + G) − G log2 G. One may also

find the achievable lower bound given by the reverse coherent

information [43, 44], i.e., there is an optimal rate ' such that

' ≥  LB ([, =̄) := Φ([) − ℎ
( =̄

1 − [

)
. (22)

We present numerical simulations of the limits on com-

munication rates in Fig. 3 showing the pure-loss bound of

Eq. (20) and the thermal-loss bound of Eqs. (21) and (22).

One first, and important, conclusion one may make is that we

can obtain positive communication rates even in a strong tur-

bulence regime.

Each curve in Fig. 3(a) is made of two parts because we

have used two different equations in our simulation, i.e.,

Eq. (7) for I ≤ I8 and Eq. (9) for I ≥ I8 . The distance

I = I8 is indicated by a red star, which is different for night

and day operation (the right is for night). We observe a very

slight inconsistency at I = I8 , which is due to using differ-

ent expressions. Notwithstanding it is clear that the second

part of the rate after I8 follows exactly the same trend as the

first part. In Fig. 3(a) we compare the performances at night

and day with an ideal receiver having [eff = 1 and =̄ex = 0.

For night-time operation all curves coincide because of abso-

lutely low background noise (=̄� = 4.75 × 10−12). However,

for day-time, with =̄� = 4.75 × 10−7, the deviation between

the rates becomes distinct at large link distances, so that the

thermal lower bound and upper bound drop at nearly 80 km

and 150 km, respectively. Nevertheless the plot suggests that

high rates can still be achieved at relatively shorter distances

at both night and day.

Then we account for a realistic lossy and noisy receiver

with [eff = 0.5 and =̄ex = 0.01 in Fig. 3(b), while [eff = 0.5

and =̄ex = 0.05 in Fig. 3(c). It is observed that the thermal

photons generated at the receiver suppress the rates so that

distances are of the order of a few kilometres. As we shall

show later, this can be partially alleviated by using a receiver

with a larger aperture size.
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Long free-space distances that we are considering here,

e.g., I = 100 km, may not seem so practical, especially be-

cause Earth’s geometry, in particular its curvature, does not

allow two terrestrial stations to actually “see” each other. For

example, the maximum distance between two communica-

tions towers with height 30 m is about 40 km. Although this

can be true for terrestrial stations, we allow for a wider vari-

ety of FSO links, including HAPS. Otherwise, a long-distance

link could basically be an equivalent section of the atmosphere

with a shorter length but stronger turbulence.

Remarkably, the key rates for a moderate-to-strong turbu-

lence regime can be seen as the tail of the rates found in

Ref. [23] for weak turbulence. This is where, at about 1384 m

distance, we have f2
Ry

= 1 and longer distances induce a

stronger turbulence regime (for sake of comparison, we have

used the same set of parameters used in Ref. [23]). The main

reason is that Eq. (9) is sufficiently precise even in weak turbu-

lence regimes. Let us also remark the reason behind choosing

Δ_ = 0.1 pm, which is discussed in detail in Ref. [23]. Due

to the mode-matching properties of coherent receivers such

as homodyne detection, where a local oscillator (LO) is in-

volved, we are able to assume a narrow-band filter, as small as

Δ_ = 0.1 pm (corresponding to the bandwidth Δa = 50 MHz

of the LO at _ = 800 nm). This would suppress the back-

ground noise =̄� to the order of 10−12 (10−7) at night (day)

time, which in turn allow for positive rates that could not have

been obtained otherwise. We refer to Ref. [23] for more detail.

Composable finite-key security analysis. Equation (22)

gives the achievable lower bound for key distribution rate

when, ideally, an infinite number of signals are used for key

extraction. However, in a real-world scenario, communica-

tion links can only be used a finite number of times. Hence,

we may expect a poorer key rate than the asymptotic one. In

addition, the security of a QKD protocol is desirable to be

composable, i.e., the protocol must not be distinguished from

an ideal protocol which is secure by construction [1]. Mathe-

matically, a composable security proof can be provided by in-

corporating proper error parameters (Y’s) for each segment of

the protocol, namely, error correction, smoothing, and hash-

ing [45, 46]. To address this finiteness and composability, we

study a QKD protocol based on coherent states for which we

compute the composable finite-size key rate.

We consider the homodyne-based coherent-state QKD pro-

tocol [47, 48], the GG02 protocol, where Alice prepares #

Gaussian-modulated signals, with variance+ , and sends them

through a quantum channel to Bob. The latter performs a ho-

modyne measurement, whereby he randomly measures one of

the light quadratures. A number = of signals will be used for

key extraction, while the rest <pe = # − = are left for pa-

rameter estimation. It can then be shown that the composable

finite-size secret key rate is given by [23, 24]

'Y ≥?ec(1 − Ape)
(
'pe −

Δaep√
=

+ Ω
√
=

)
, (23)

where ?ec is the success probability of error correction con-

nected to the frame error rate by FER = 1 − ?ec, Ape = <pe/#
is the fraction of signals used for parameter estimation, 'pe is

the asymptotic key rate accounting for parameter estimation,

and

Δaep :=4 log2 (2
√
3 + 1)

√
log2 (18?−2

ec Y
−4
s ) , (24)

Ω := log2

[
?ec(1 − Y2

s/3)
]
+ 2 log2 (

√
2 Yh). (25)

In Eq. (23), the asymptotic rate 'pe is calculated for the

worst-case values of transmissivity and excess noise to be

evaluated at the parameter estimation stage. These values are

chosen within F confidence intervals so that they are correct

up to an error probability of Ype =
[
1 − erf(F/

√
2 )

]
/2. See

Methods for the calculation of 'pe. Equation (23) is valid for

a protocol with overall security Y = Ycor + Ys + Yh + 2?ecYpe

[23], where Yh(s) is the hashing (smoothing) parameter and

Ycor is the Ycor-correctness bounding the probability that Al-

ice’s and Bob’s sequences are different even if they pass error

correction. Finally, one needs to account for the analog-to-

digital conversion so that each continuous-variable symbol is

encoded in 3 bits.

One further consideration regards the measurement tech-

niques in CV-QKD. The received signals can be detected by

using a coherent (homodyne or heterodyne) detection with the

help of an either transmitted local oscillator (TLO) or local

local oscillator (LLO). It turns out that at long distances the

amount of detection noise is much lower for the LLO case.

But, at the same time, the signal, which propagates through

a turbulent path, and the LO, which is produced locally at

the receiver, would not be spatially matched. As we show

in Methods, this introduces even more loss to the system dur-

ing the detection process. Therefore, we modify the overall

transmissivity in Eq. (18) by a further factor [cd, i.e.,

[ = [lt[eff[cd[atm. (26)

Our estimate is that at long distances we roughly have [cd =

0.63, which is the value used in our simulation.

Fig. 4 shows the composable finite-size key rate versus (a)

block size and (b) receiver aperture size in a strong turbulence

space. The link’s length is I = 10 km, equivalent to 7.84 dB,

and the Rytov number is f2
Ry

= 37.56 (60.45) at night (day).

In Fig. 4(a) we have fixed the receiver aperture size to 0' =

30 cm. The rates at night-time operation can be obtained with

a typical block-size of ∼ 108, while the system demands a

larger block-size, which is still acceptable. We observe that

one main parameter that substantially affects the rates, at fixed

distance and block-size, is the aperture size. From Fig. 4(b)

we see that, at fixed length of I = 10 km, positive rates can

be achieved with a relatively large receiver. However, note

that the aperture cannot be made too large. In fact, increasing

the receiver size lets more thermal photons into the detection

system, e.g., we get =̄� = 1.71×10−10(10−5) for 0' = 30 cm,

versus =̄� = 4.75×10−12(10−7) for 0' = 5 cm, at night (day).

Satellite communications at large zenith angles. Here

we apply the theory to a satellite communication link beyond

1 rad up to the horizon, where turbulence is strong. In partic-

ular, we focus on the mask (or cutoff) angle, \m, which is the

minimum acceptable elevation above the horizon that a satel-

lite has to be at to avoid blockage of line-of-sight. This is im-

portant because the key rates that will be derived for the mask
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FIG. 4. Numerical results for the composable secret-key rate of a

FSO CV-QKD protocol in turbulent space versus (a) block size and

(b) receiver aperture size. In (a), an aperture size 0' = 30 cm is

fixed. In (b), assuming night-time operation, we plot the rate for

various block-size values. In both plots we assume a lossy and noisy

receiver with [eff = 0.5, [cd = 0.63, and =̄ex = 0.001. Distance

is I = 10 km. Other physical parameters are set as given in Fig. 3,

except =̄� which varies with 0' . Protocol parameters are: ` = 10,

Ape = 0.1, 3 = 25, FER = 0.1, Ys = Yh = Ycor = 10−10, F = 6.34,

Y = 4.5 × 10−10, and V = 0.98.

angle represent lower bounds for the entire satellite quantum

communication system. One can set a mask angle that tells

the receiver to ignore the satellite at zenith angles larger than

\m, i.e., lower elevations. The mask angle is roughly 80 deg

(4c/9 rad) that is 10 deg from the horizon.

In this study, we consider a zenith-crossing satellite at alti-

tude ℎ, whose slant distance to the ground station, located at

ℎ0 above sea-level, is given by

I =
√
('� + ℎ)2 + ('� + ℎ0)2(cos2 \ − 1) − ('� + ℎ0) cos \,

(27)

where '� ≃ 6370 km is Earth’s radius and \ the zenith angle.

To continue, we first need to identify the regime of oper-

ation. Replacing the above equation in the Rytov number of

Eq. (1) cannot be used for a slant link out to the space because

the index-of-refraction structure �2
= is not anymore constant

and varies with the altitude ℎ. We then require a more general,

altitude-dependent, theory that stands as a measure for atmo-

spheric scintillations and the turbulence regime. Assuming a

downlink path from space, we take the following expression

for scintillation index [49]

f2
� (ℎ > 20 km, \) =

exp



0.49f2
Ry
(ℎ, \)

(
1 + 1.11f

12/5
Ry

(ℎ, \)
)7/6 +

0.51f2
Ry
(ℎ, \)

(
1 + 0.69f

12/5
Ry

(ℎ, \)
)5/6


− 1,

(28)

where

f2
Ry (ℎ, \) = 2.25:

7
6 sec

11
6 (\)

∫ ℎ

ℎ0

3ℎ′ (ℎ′ − ℎ0)
5
6�2

= (ℎ′).

In fact, f2
�
(ℎ, \) is the modified version of a typical Rytov

number that is now a function of altitude, zenith angle, as

well as varying properties of the atmosphere. According to

the Hufnagel-Valley (H-V) atmospheric model [16, Sec. 12.2],

the index-of-refraction structure is a function of the altitude

�2
= (ℎ) =5.94 × 10−53(E/27)2ℎ104−ℎ/1000

+ 2.7 × 10−164−ℎ/1500 + �4−ℎ/100, (29)

where E is the windspeed [m/s] and � is the nominal value

of �2
= (0) [m−2/3] at the ground. Note that the above equa-

tion gives a good estimate of the index-of-refraction struc-

ture only for ℎ > 20 km. In our simulation, we con-

sider low-wind night-time by assuming E = 21 m/s and

� = 1.7 × 10−14 m−2/3, and high-wind day-time by assum-

ing E = 57 m/s and � = 2.75 × 10−14 m−2/3 [16, 24].

As it is seen in Fig. 5(a), for zenith angles larger than 1 rad

we have f2
�
> 1, which means that signals will experience a

moderate/strong turbulent space in such operational regimes.

As \ → 90 deg scintillation drops to 1; precisely, to 1.0033.

In addition, Fig. 5(b) shows f2
�

versus altitude ℎ, at the zenith

angle \ = 1 rad as well as at the mask angle \m = 4c/9 rad. At

\ = 1 rad, the turbulence is weak for both night- and day-time

operation, as also argued previously in Ref. [24]. Whereas, at

relatively high zenith angle, such as a mask angle of 80 deg,

the turbulence in the link is strong at all values of altitude

ℎ > 20 km.

Another important factor that plays a role in a slant satel-

lite path at large zenith angles is geometrical elongation of

the communication links. This is due to the refraction on in-

terfaces of atmospheric layers, which introduces even more

optical loss. It accounts for the apparent position of celestial

objects toward the zenith, and is measured as the elongation

factor, which is defined by the quotient of the (bent) optical

trajectory and the (direct) geometrical slant path. We account

for the elongation factor via the methodology introduced in

Ref. [50]. It uses the so-called standard atmosphere model

and distinguishes 10 atmospheric layers above the Earth’s sur-

face (within each layer the latitude dependence of refractive

index is to be assumed linear). In Fig. 5(c), we plot the op-

tical loss for an elongated path, at night and at mask angle

\m = 4c/9 rad, and compare it with that without elongation.

It is seen that the elongated path imposes more optical loss.
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FIG. 5. Satellite communications at large zenith angle. In (a) we show the scintillation index of Eq. (28) versus the zenith angle, at fixed

I = 200 km. In (b) we plot the scintillation index of Eq. (28) versus altitude, at \ = 1 rad and \m = 4c/9 rad. In (a) and (b) black curves are for

clear-night turbulence conditions, while blue curves are for day-time and high-wind conditions. In (c) we illustrate the non-trivial difference

between the elongated and geometrical paths at the mask angle \m = 4c/9. In (c) we have set F0 = 20 cm, 0' = 40 cm, _ = 800 nm, ℎ0 = 30,

U0 (_) = 5 × 10−6 m−1, and [eff = 0.5.

Let us now apply all the above consideration to the evalu-

ation of finite-size key rates. In Fig. 6(a), for several block-

size values, we have plotted key rates at night-time operation

and at mask angle \m = 4c/9 rad, where turbulence is strong

(cf. Fig. 5). Here we have set F0 = 20 cm, 0' = 50 cm,

which constrains =̄� = 4.75 × 10−10, and =̄ex = 0.001. For

the sake of comparison, we have also shown the pure-loss up-

per bound, which continue to offer higher rates with increas-

ing the satellite altitude, whereas the finite-size rates drop at

relatively lower altitudes. Furthermore, in Fig. 6(b), for sev-

eral altitudes, we have plotted composable finite-size key rates

versus block size, at night and at mask angle \m = 4c/9 rad.

Our simulation illustrates that with a reasonable block size

quantum satellite communication is feasible for altitudes up

to 200km.

SUMMARY

In this work we have extended the field of FSO quan-

tum communications to a moderate-to-strong turbulent space

where atmospheric conditions can be harsh and fatal to opti-

cal signals. Despite the possibility that the signals could be

severely degraded and subjected to high optical loss, our re-

sults demonstrated that it is possible to obtain positive key

rates. After introducing a figure of merit for the strength of

turbulence, we showed that in stronger turbulence regimes the

beam spread dominates pointing errors and beam wandering,

so that the latter effects can be ignored. We have then justi-

fied that the transmissivity estimated by a hybrid log-normal

model can safely be used as a lower bound to the more elabo-

rate extended Huygens-Fresnel model.

With these tools in hand, we have computed the ultimate

bounds for FSO quantum communication in moderate-to-

strong turbulence regimes. Besides establishing these ultimate

limits, we have also derived practical and composable finite-

key rates for CV-QKD operated in such a strong turbulent

space. An important feature is the level of excess noise gener-

ated at the receiver which may greatly reduce the key rates and

reduce the distance for secure communication. However, our

analysis also show that increasing the aperture of the receiver

can mitigate the problem and revive the rates. As a main ap-

plication of our results, we have then investigated satellite

quantum communications at large zenith angles, specifically

at the mask angle where not only turbulence is strong but also

the elongation induced by refraction becomes relevant. This

analysis allowed us to show that CV-QKD is feasible even in

satellite links affected by strong turbulence, therefore remov-

ing the necessity and the restrictions associated with the weak

turbulence regime which is at the basis of previous literature.

METHODS

We here present the main techniques that are needed to

prove or support the results of our main text.

Transmissivity in a turbulence media: log-normal at-

mospheric model. In the log-normal model the probability

distribution for the transmissivity is given by [37]

P([) = 1

[f
√

2c
exp

{
− (− ln [ − `)2

2f2

}
, (30)

where ` = − ln([2/
√
〈[2〉 ) and f2

= ln(〈[2〉/[2) are param-

eters of the log-normal distribution. They are functions of the

first and second moments of the transmissivity

[ =

∫

A
32
r〈� (r, I)〉 =

∫

A
32
rΓ2(r) (31)

and

〈[2〉 =
∫

A
32
r13

2
r2Γ4(r1, r2), (32)

where the integration is performed over the circular aperture

opening area A. In above equations, r = (G H)) is the vector

of transverse coordinates on the receiver plane.

The field coherence functions Γ2 and Γ4 are respectively

given by [37]

Γ2(r) =
:2

4c2I2

∫

R

2

32
r
′4

− 62 |r′ |2

2F2
0

−28 Υ

F2
0

r.r′− 1
2 �( (0,r′)

(33)
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FIG. 6. Performance of satellite quantum communications at large

zenith angles. In (a), we have finite-size key rates versus altitude

(for fixed values of block-size). In (b) we have similar rates versus

block-size (for fixed values of altitude). Both figures consider a mask

angle \m = 4c/9 at night-time, and windspeed E = 21 m/s and � =

1.7 × 10−14 m−2/3 used in Eq. (29). Here we have set F0 = 20 cm,

0' = 50 cm, =̄� = 4.75 × 10−10, =̄ex = 0.001, and [cd = 0.63. Other

parameters chosen as given in Fig. 5. Protocol parameters are taken

as follows: ` = 10, Ape = 0.1, 3 = 25, FER = 0.1, Ys = Yh = Ycor =

10−10, F = 6.34, Y = 4.5 × 10−10, and V = 0.98.

and

Γ4(r1, r2) =
2:4

c2(2c)3I4F2
0

∫

R

6

32
r
′
13

2
r
′
23

2
r
′
3

× 4
− 1

F2
0

(
|r′

1
|2+|r′

2
|2+|r′

3
|2
)

× 4
+28 Υ

F2
0

[
(1−I/'0)r′

1
.r′

2
−(r1−r2) .r′

2
−(r1+r2) .r′

3

]

× exp

[
1

2

∑

9=1,2

{
�( (r1 − r2, r

′
1 + (−1) 9r′

2)

− �( (r1 − r2, r
′
1 + (−1) 9r′

3) − �( (0, r′
2 + (−1) 9r′

3)
}]
,

(34)

where Υ = :F2
0
/(2I) is the Fresnel number of the transmit-

ter aperture and 62
= 1 + Υ

2(1 − I/'0)2 is the generalized

diffraction beam parameter. Here,

�( (r, r′) = 2d
−5/3
0

∫ 1

0

3b
��
rb + r

′(1 − b)
��5/3 (35)

is the phase structure function, where d0 is the radius of spatial

coherence of the wave in the atmosphere.

The first moment of the transmissivity in Eq. (31) can be

evaluated explicitly

[ = 1 − 4
−

202
'

F2
lt,LN , (36)

where

F2
lt,LN =(GG + 4〈G2

0〉
≡F2

st,LN + f2
tb (37)

is the long-term beam size, with

(GG =4

[ ∫

R

2

32
rG2

Γ2(r, I)

−
∫

R

4

32
r13

2
r2G1G2Γ4(r1, r2, I)

]
(38)

and

〈G2
0〉 =

∫

R

4

32
r13

2
r2G1G2Γ4 (r1, r2, I). (39)

Extra photons generated within the receiver. Consider-

ing a CV-QKD experiment, there are two techniques whereby

one can measure the received signals through a coherent (ho-

modyne or heterodyne) detection: transmitted local oscillator

(TLO) and local local oscillator (LLO). In Ref. [23, 24], it is

shown that these two may lead to generating totally different

amounts of noisy photons within the coherent receiver system.

This is mostly because extra photons generated by LLO, =̄LLO
ex ,

is a linear function of the link transmissivity, [, whereas extra

photons generated by TLO, =̄TLO
ex , is an inverse function of it.

Precisely, it reads [23, Eq. (62)]

=̄LLO
ex = Θ + c[+�;w�

−1 and =̄TLO
ex =

Θ

[
, (40)

where

Θ =
adetNEP2_,ΔCLO

2ℎ2%LO

, (41)

with ℎ being the Planck constant and 2 the speed of light.

Also, +� is the modulation variance, %LO the LO power, �

the clock, ;w the linewidth, , the detector bandwidth, NEP

the noise equivalent power, ΔCLO the LO pulse duration, and

adet the detection noise variance—adet = 1(2) for a homodyne

(heterodyne) measurement. We refer to Ref. [23] for more

detail.

In Fig. 7, we plot =̄ex versus distance. As seen at rela-

tively large distances, i.e., the regime of strong turbulence,
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FIG. 7. Extra noise photons generated within a coherent receiver

(homodyne detection), at night (solid black curves) and day (dashed

blue curves) where a TLO/LLO technique is used. We have adet =

1 SNU, NEP = 6 pW/
√

Hz , , = 100 MHz, ΔCLO=10 ns, %LO =

100 mW, +� = 8 SNU, ;w = 1.6 KHz, � = 5 MHz, and ℎ2 =

1.986 × 10−25 J.m. Other parameters related to [ are set as in Fig. 3.

the LLO technique is the better detection scheme. However,

the quality of LLO detection may be poorer due to overlap-

ping a fresh LO with the signal. In TLO, both the signal and

the LO undergo the same (atmospheric turbulent) conditions,

so that when they are recombined at the receiver, ideally, no

mismatch is expected. This is not the case of LLO which we

discuss in more detail in the following.

LLO-induced loss. Suppose two continuous wave optical

beams—the signal �( and the LO �!—of the same frequency

are incident on a beam splitter g. Let us consider a balanced

homodyne detection, i.e., g = 1/
√

2 , where the output number

of photons is given by [21, 51]

=− =[eff

∫ )

0

3C

∫

A
32A [�−

! (A, I, C)�+
( (A, I, C)

+ �−
( (A, I, C)�+

! (A, I, C)], (42)

with spatial-temporal modes defined as follows

�+
( (A, I, C) = 80̂( 5( (C)D( (A, I), �+

! (A, I, C) = 80̂! 5! (C)D! (A, I),
(43)

and 0̂ being the corresponding annihilation operator.

Usually, for quantum tomography purposes and phase-

sensitive detection, the LO field is assumed a monochro-

matic coherent state, with the on-axis amplitude |U! |, 5! (C) =
4−8lC , and D! (A, 0)48q! (plane wave) or D! (A, 0) = 48:A

(spherical wave) [21, 51–53]. This then follows

=− ∝ [eff |U! |
(
0̂(4

8Δq + 0̂†
(
4−8Δq

)
= [eff |U! |@̂( (Δq), (44)

where @̂( (Δq) is signal’s quadrature with Δq = q( − q!.

Back to the the coherent detection in a free-space scenario,

in the following we show that some loss is expected in the case

of LLO, where signal’s shape is different from that of the LO.

We consider coherent Gaussian beams, which in the plane of

the exit aperture of the transmitter are described by

D(A, 0) = 4
− A2

F2
0

− −8:A2

2'0 , (45)

where F0 is the beam spot radius and '0 is its phase front

radius of curvature. For simplicity, we assume a collimated

beam with '0 → ∞, such that

D(A, 0) = 4
− A2

F2
0 . (46)

At distance I a Gaussian beam may or may not keep its Gaus-

sian form. If it does, the beam width F0 will be replaced

with , (I)—short- or long-term beam size according to the

turbulence regime. However, in general, D(A, I) can be dis-

torted, or even completely destroyed, during a turbulent path.

In that case, proper functions D(A, I) should be used that re-

flect the effects of turbulence. We assume far-field conditions

where Gaussian beams can be approximated by plane waves

[16]. Therefore, in the case of TLO, the signal and the LO

can be taken as pane waves that reduces the problem to previ-

ous (usual) coherent detection scenarios [21, 51–53], with the

expectation value of photocurrent from Eq. (42) as follows

〈=−〉TLO ∝ [eff |U( (I) | |U! (I) | cos(Δq). (47)

When it comes to LLO, we should consider the Gaussian

shape of the fresh LO generated locally at the receiver, while

we assume the signal has the form of a plane wave. By re-

placing Eq. (46) for the LO into Eq. (42), and assuming that

signal and the LO are frequency matched, it is straightforward

to find

〈=−〉LLO ∝ [eff |U( (I) | |U! (0) | cos(Δq) 1

N0

∫

A
3A A4

− A2

, 2
!
(0) ,

(48)

which is also normalized by N0 =

∫
A→∞ 3A A4

− A2

, 2
!
(0) (the

receiver does not collect all the light). It is evident that the

expression

[LLO :=
1

N0

∫

A
3A A4

− A2

, 2
!
(0) (49)

has the same nature as the quantum efficiency of the detectors

[eff; hence, can be considered as extra loss. One can implicitly

find that

[LLO = 1 − 4
−

02
'

, 2
!
(0) . (50)

For the special case where the aperture size (or equivalently

the lenses that collect and focus the beam on the detection’s

beam splitter) is equal to the LO’s initial size, we have [LLO =

1 − 4−1
= 0.63.

The overall transmissivity can then be written as follows

[ = [lt[eff[cd[atm, (51)
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where [cd represents [TLO or [LLO. In our estimation of com-

posable CV-QKD rates, we use [cd = 0.63.

We remark that a more precise evaluation involves work-

ing out a more precise shape of the beam after propagating

through a turbulent medium, where D(/!$ (A, I) functions that

include the effects of turbulent are known. One possible pro-

cedure is as follows: due to the extended Huygens-Fresnel

principle the optical wave field after propagating a distance I

through a turbulent space is given by solving [16, Eq. (21),

Chapt. 7], where the most complex function seems to be the

complex phase perturbation of the field [54, 55]. One can then

compute a more accurate loss coherent detection [cd from the

above methodology.

Details of key rate analysis and parameter estima-

tion. For the secret key rate analysis we use consider the

entanglement-based representation of the coherent-state QKD

protocol. We assume a collective Gaussian entangling-cloner

attack [56]. At each run of the protocol Alice shares one leg

of a two-mode squeezed vacuum (TMSV) state, with variance

`, through a communications link with Bob. This is equiva-

lent to the prepare and measure version of the protocol, where

Alice prepares coherent states by a bivariate Gaussian mod-

ulation with variance f2
G = ` − 1. Assuming that the link

is a thermal-loss channel, characterized by the transmissivity

[ and thermal noise =̄, the end-to-end covariance matrix be-

tween Alice and Bob has the form

V�� =

(
01 2Z

2Z 11

)
, (52)

where 0 = `, 1 = [(` − 1) + 2=̄ + 1, 2 =

√
[(`2 − 1) , 1 =

diag(1, 1) and Z = diag(1,−1).
Having the triplet (0, 1, 2), and assuming a homodyne mea-

surement at Bob’s side, the asymptotic key rate in the reverse

reconciliation case is given by

'asy([, =̄) = V��� ([, =̄) − j�� ([, =̄) (53)

where

��� ([, =̄) =
1

2
log2

(
1 + [(` − 1)

2=̄ + 1

)
, (54)

Also, assuming that the eavesdropper purifies the entangled

state between Alice and Bob, one finds

j�� ([, =̄) = ℎ
( a+ − 1

2

)
+ ℎ

( a− − 1

2

)
− ℎ

( ac − 1

2

)
. (55)

with ℎ(G) given in the main text, a± =
(√

(0 + 1)2 − 422 ±
(1 − 0)

)
/2, and ac =

√
0(01 − 22)/1 .

In a realistic setting, Alice and Bob should compute the

values of [ and =̄ in order to estimate the key rate in Eq. (53).

This computation is carried out by using only a finite number

of runs, which inevitably reduces the rate to 'pe([wc, =̄wc), for

the worst-case values are [wc ≤ [ and =̄wc ≥ =̄ [57, 58].

Before discussing the worst-case scenario parameters, let

us point out a matter that eases the parameter estimation in

the case of moderate-to-strong turbulence. Unlike the case of

a weak turbulence medium [23], where the link transmissivity

varies instantaneously, we can assume a fixed loss and a fixed

number of thermal photons in the moderate-to-strong turbu-

lence regime due to the fact that beam wandering is negligible

here; see Fig. 1. Therefore, we assume a thermal-loss channel

that is characterised by transmissivity [ and mean number of

thermal photons =̄. This channel induces an input-output rela-

tion H =
√
[ G + I between the input Gaussian variable G and

the output variable H, with I being a Gaussian noise variable;

the variables G and I have zero mean with variances ` − 1 and

f2
I = 2=̄ + 1, respectively.

Back to the estimation of the worst-case parameters, by re-

vealing < pairs of corresponding data, i.e., [G]8 and [H]8 , Al-

ice and Bob can build an estimator )̂ of the square root of

transmissivity ) =
√
[ , that is )̂ := <−1f−2

G

∑<
8=1 G8H8 , with

variance Var()̂ ) = <−1(2[ + f−2
G f2

I ), where f2
G =

∑<
8=1 G

2
8
≃

` − 1. Then, the estimator for transmissivity is [̂ = ()̂)2, with

variance Var([̂) = 4<−1[2
(
2 + [−1f−2

G f2
I

)
+ O(<−2). Sim-

ilarly, Alice and Bob can construct the estimator for =̄, that

is, ̂̄= := (f̂2
I − 1)/2, with variance Var(̂̄=) = f4

I /(2<). Here,

f̂2
I = <−1

∑<
8=1 I

2
8

is the the estimator for the variance of the

thermal noise f2
I .

Next, by assuming a certain number F of confidence of in-

tervals, Alice and Bob compute the worst-case estimators up

to some probability of error Ype =
[
1 − erf(F/

√
2 )

]
/2, i.e.,

[wc = [ − 2F

√
2[2 + [f−2

G f2
I

<
, =̄wc = =̄ + F

f2
I√

2<
. (56)

Data availability. All data in this paper can be reproduced by

using the methodology described.

Code availability. Code is available upon reasonable request

to the authors.
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