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Matrix-Valued Truncated Toeplitz
Operators: Unbounded Symbols, Kernels
and Equivalence After Extension

Ryan O’Loughlin

Abstract. This paper studies matrix-valued truncated Toeplitz opera-
tors, which are a vectorial generalisation of truncated Toeplitz operators.
It is demonstrated that, although there exist matrix-valued truncated
Toeplitz operators without a matrix symbol in Lp for any p ∈ (2,∞],
there is a wide class of matrix-valued truncated Toeplitz operators which
possess a matrix symbol in Lp for some p ∈ (2,∞]. In the case when
the matrix-valued truncated Toeplitz operator has a symbol in Lp for
some p ∈ (2,∞], an approach is developed which bypasses some of the
technical difficulties which arise when dealing with problems concerning
matrix-valued truncated Toeplitz operators with unbounded symbols.
Using this new approach, two new notable results are obtained. The
kernel of the matrix-valued truncated Toeplitz operator is expressed as
an isometric image of an S∗-invariant subspace. Also, a Toeplitz operator
is constructed which is equivalent after extension to the matrix-valued
truncated Toeplitz operator. In a different yet overlapping vein, it is also
shown that multidimensional analogues of the truncated Wiener–Hopf
operators are unitarily equivalent to certain matrix-valued truncated
Toeplitz operators.

Mathematics Subject Classification. 30H10, 47B35, 47A56, 46E20.
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1. Introduction

The purpose of this paper is to study the matrix-valued truncated Toeplitz
operator (abbreviated to MTTO). The MTTO is a vectorial generalisation
of the truncated Toeplitz operator. We make a powerful observation, that
when studying a given property of a MTTO it is often convenient to initially
modify the MTTO by changing its codomain (in a natural way), then one can
deduce results about the MTTO from the modified MTTO. This approach
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allows us to tackle problems which were previously out of reach concerning
MTTOs with unbounded symbols. In particular for a MTTO which has a
matrix symbol with each entry lying in Lp for p ∈ (2,∞], we describe the
kernel of the MTTO as an isometric image of a S∗-invariant subspace and we
also find a new form of Toeplitz operator which is equivalent after extension
to the MTTO. We emphasise that although the results in this paper are
for MTTOs, all the results are new even in the scalar case of the truncated
Toeplitz operator. As the study of MTTOs is a recent endeavour, we devote
the final section of this paper to discuss some applications of MTTOs to
integral equations.

The spaces Hp and Lp will be defined on the unit circle, T, where
1 � p � ∞. We write (Hp)n (respectively (Lp)n) to mean the column vector
of length n with each entry taking values in Hp (respectively Lp). Background
theory on the classical Hardy space Hp can be found in [14,22]. For 1 < p �
∞, we denote L(p,n×n) to be the space of n-by-n matrices with each entry
taking values in Lp. We make an analogous definition for H(p,n×n). For a
matrix M ∈ L(∞,n×n) the adjoint of M ∈ L(∞,n×n) is denoted M∗. A n-by-n
matrix inner function Θ is an element of H(∞,n×n) such that for almost every
z ∈ T, we have Θ(z) is a unitary matrix. Throughout we use Θ to denote an
n-by-n inner function.

For f ∈ (H2)n, the backward shift, S∗, is defined by S∗(f) = f−f(0)
z . We

know from the Beurling-Lax Theorem that Θ(H2)n is a shift invariant sub-
space. Therefore using orthogonality one can see that the (matricial) model
space, KΘ := Θ(H2

0 )n ∩ (H2)n is S∗-invariant. If we define

(H2
0 )n := {f : f ∈ (H2)n and f(0) is the zero vector},

then we have the orthogonal decompositions

(H2)n = KΘ ⊕ Θ(H2)n,

and

(L2)n = (H2
0 )n ⊕ (H2)n.

This in turn gives us orthogonal projections P+ : (L2)n → (H2)n, PΘ :
(L2)n → KΘ and QΘ : (L2)n → Θ(H2)n. For k > n we write Pn : (H2)k →
(H2)n to mean the projection onto the first n coordinates.

Matrix-valued truncated Toeplitz operators were first defined in [21] as
a natural generalisation of truncated Toeplitz operators. They have further
been studied in [19,20]. We define the MTTO as follows. Let G ∈ L(2,n×n),
consider the map

f �→ PΘ(Gf), (1.1)

defined on KΘ ∩ (H∞)n. It is shown in Section 4 of [21] that KΘ ∩ (H∞)n is
dense in KΘ, so in the case when (1.1) is bounded this uniquely defines an
operator KΘ → KΘ, which we denote AΘ

G and call a matrix-valued truncated
Toeplitz operator (MTTO). We note that with this definition, all MTTOs are
implicitly bounded. We call G the symbol of the MTTO, and we note that if
we have the additional assumption that G ∈ L(∞,n×n) then (1.1) can always
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be extended to a bounded operator. In the case when n = 1, we recover the
well known bounded truncated Toeplitz operator.

We say Θ is pure if ||Θ(0)|| < 1. Matrix valued truncated Toeplitz oper-
ators with a pure inner function appear naturally in the Sz.-Nagy and Foias
model theory for Hilbert space contractions. In particular, every bounded
linear operator between two Hilbert spaces T : H1 → H2 with defect indices
(n, n) and with the property that for all h ∈ H1, T ∗n(h) → 0 (S.O.T) is uni-
tarily equivalent to AΘ

z for some n-by-n inner function Θ. See Section 2, page
33, of [18] for a more detailed discussion. Although this is one of the main
motivations for interest in the truncated Toeplitz operator (which is relevant
when the defect indices are (1, 1)), there has been very little research done
in to the general case of the MTTO.

MTTOs also appear naturally in [6], where a dual band Toeplitz op-
erator (defined in [6]) is unitarily equivalent to a MTTO with a diagonal
inner function Θ. Dual band Toeplitz operators have applications in speech
processing and signal transmission. We refer the reader to [6] and further
references thereafter for a detailed discussion.

Let θ ∈ H2 be a scalar inner function and let φ ∈ H∞. We denote the
Hankel operator with symbol g ∈ L∞, by Hg : H2 → H2

0 . This is defined by
Hψ(p) = P−(ψp), where P− : L2 → H2

0 is the orthogonal projection. It is
well known that many questions about Hankel operators can be phrased in
terms of truncated Toeplitz operators with an analytic symbol. In particular
the relation

Aθ
φ = θHθφ|Kθ

has long been exploited. Making natural generalisations so that Ψ ∈ H(∞,n×n)

and H : (H2)n → (H2
0 )n is a Hankel operator on the vector-valued Hardy

space, we can also write the relation

AΘ
Ψ = ΘHΘ∗Ψ|KΘ .

So, just as is true in the scalar case, the matricial Hankel operator and MTTO
are fundamentally linked. This has applications in minimisation problems and
Nehari’s Theorem, see Section 2.2 of [25].

MTTOs also have a link to complex symmetric operators. Direct sums
of truncated Toeplitz operators seem to play a role in some sort of model
theory for complex symmetric operators (see Section 9 of [16]). However,
direct sums of truncated Toeplitz operators are in fact special cases of MTTOs
with diagonal symbols and diagonal inner functions. So instead of considering
what role direct sums of truncated Toeplitz operators play in the theory of
complex symmetric operators, it may be more natural to consider what role
MTTOs play in the theory of complex symmetric operators.

In Sect. 2 we make some key observations which allow us to define the
modified MTTO. The modified MTTO turns out to be a crucial tool in later
sections, particularly when we are trying to understand properties of MTTOs
which do not possess a bounded symbol.
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The kernel of a Toeplitz operator is easily checked to be nearly S∗-
invariant, and this has long been exploited to study the kernels of vector-
valued and scalar-valued Toeplitz operators [10,17]. The kernel of a (scalar)
truncated Toeplitz operator with a bounded symbol was shown to be nearly
S∗-invariant with defect 1 in [23]. Then consequently, this property was used
to give a decomposition theorem for the kernel of a truncated Toeplitz opera-
tor with a bounded symbol. In Sect. 3 we use the modified MTTO to expand
on previous studies to include the case where the symbol of the operator
is not bounded. In particular, we decompose the kernel of a MTTO which
possesses a symbol in L(p,n×n) for p ∈ (2,∞) in to an isometric image of an
S∗-invariant subspace.

In Sect. 4 we use the modified MTTO as a transitional device, which
allows us to find an operator which is equivalent after extension to a MTTO
which has a symbol in L(p,n×n) for p ∈ (2,∞). Specifically, we first find a
Toeplitz operator which is equivalent after extension to the modified MTTO,
and then we change the codomain of this Toeplitz operator (as we have
done when defining the modified MTTO) to produce an operator which is
equivalent after extension to a MTTO which has a symbol in L(p,n×n) for
p ∈ (2,∞). This is a generalisation of the results in Section 6 of [8], where
the authors construct a Toeplitz operator which is equivalent after extension
to a truncated Toeplitz operator with a symbol in L∞.

In Sect. 5 we show there is a unitary equivalence between certain MT-
TOs and matricial truncated Wiener–Hopf operators (which may also be
called matricial convolution operators on finite intervals). We show that we
can use the theory developed around the modified MTTO to test the continu-
ity of matricial truncated Wiener–Hopf operators. Finally, we show how the
matricial truncated Wiener–Hopf operators are naturally encountered when
finding the solution to multi input, multi output linear systems.

2. The Modified Matrix-Valued Truncated Toeplitz Operator

The Riesz projections Pq+ : (Lq)n → (Hq)n and Pq− := I − Pq+ : (Lq)n →
(Hq

0 )n are bounded when q ∈ (1,∞). Furthermore for n = 1, Pq+ can be
expressed by

Pq+(f)(z) =
∫
T

f(ζ)
1 − ζz

dm(ζ),

which is independent of q ∈ (1,∞). Which means we can deduce the following;

Lemma 2.1. For q ∈ (1, 2) and f ∈ (L2)n, we have Pq+(f) = P2+(f) and
Pq−(f) = P2−(f).

Using the projection PΘ,q := Pq+ΘPq−Θ∗ we can decompose, as we have
done in the case of q = 2, (Hq)n as

(Hq)n = Kq
Θ ⊕ Θ(Hq)n,
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where Kq
Θ = Θ(Hq

0 )n ∩ (Hq)n and

(Lq)n = (Hq
0 )n ⊕ Kq

Θ ⊕ Θ(Hq)n.

As the orthogonal projection PΘ = PΘ,2 : L2 → K2
Θ can also be written

PΘ,2 = P2+ΘP2−Θ∗ we can conclude the following;

Lemma 2.2. For q ∈ (1, 2) and f ∈ (L2)n, we have

PΘ,2(f) = PΘ,q(f).

We can also deduce that for QΘ,q := ΘPq+Θ∗ = Pq+ − PΘ,q : (Lq)n →
Θ(Hq)n we have the following;

Lemma 2.3. For q ∈ (1, 2) and f ∈ (L2)n, we have

QΘ,2(f) = QΘ,q(f).

We will use Lemmas 2.1, 2.2 and 2.3 freely throughout. When we are clearly
working in the context of (L2)n, we will just write PΘ, respectively QΘ, as
opposed to PΘ,2, respectively QΘ,2.

Definition 2.4. Let p ∈ (2,∞], let G ∈ L(p,n×n) and let 1
2 + 1

p = 1
q . Then the

bounded operator ÃΘ
G : K2

Θ → Kq
Θ is defined by ÃΘ

G(f) = PΘ,q(Gf). We call
the operator ÃΘ

G the modified matrix-valued truncated Toeplitz operator.

Remark 2.5. Although ÃΘ
G does have a specific p dependence depending on

which space G lies in, we will omit this from our notation.

The following proposition shows that when AΘ
G : K2

Θ → K2
Θ is a MTTO, up

to a change in codomain, AΘ
G and ÃΘ

G are actually the same operator. In the
next section we will exploit this link to study the kernel of AΘ

G.

Proposition 2.6. Let the assumptions of Definition 2.4 hold and let AΘ
G :

K2
Θ → K2

Θ be a MTTO. Then for each f ∈ K2
Θ we have ÃΘ

G(f) = AΘ
G(f).

Proof. For a given f ∈ K2
Θ, let fn ∈ K2

Θ∩(H∞)n be such that fn
(L2)n

→ f . It is

easily checked that ÃΘ
G is bounded and so we have PΘ,q(Gfn)

(Lq)n

→ PΘ,q(Gf).
By Lemma 2.2 this means

PΘ,2(Gfn)
(Lq)n

→ PΘ,q(Gf) = ÃΘ
G(f). (2.1)

Because PΘ,2(Gfn)
(L2)n

→ PΘ,2(Gf) = AΘ
G(f) and convergence in (L2)n is

stronger than (Lq)n we must have

PΘ,2(Gfn)
(Lq)n

→ PΘ,2(Gf) = AΘ
G(f). (2.2)

Now comparing (2.1) and (2.2) uniqueness of limits implies that ÃΘ
G(f) =

AΘ
G(f). �

Corollary 2.7. Let the assumptions of Definition 2.4 hold and let AΘ
G : K2

Θ →
K2

Θ be a MTTO. Then ImÃΘ
G ⊆ K2

Θ.
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In fact we have the following;

Proposition 2.8. Let the assumptions of Definition 2.4 hold. Then ImÃΘ
G ⊆

K2
Θ if and only if AΘ

G is a MTTO (i.e the map (1.1) is bounded).

Proof. The above corollary shows that when AΘ
G : K2

Θ → K2
Θ is a MTTO,

then ImÃΘ
G ⊆ K2

Θ. To show the other implication, we first change the codomain
of ÃΘ

G, to view the map ÃΘ
G : K2

Θ → K2
Θ, which is well defined by the

assumption ImÃΘ
G ⊆ K2

Θ. We now use the closed graph theorem to show
ÃΘ

G : K2
Θ → K2

Θ is continuous. Let (fn)n∈N ∈ K2
Θ and let

(fn, ÃΘ
G(fn))

K2
Θ×K2

Θ→ (y1, y2),

then clearly fn
K2

Θ→ y1 and ÃΘ
G(fn)

K2
Θ→ y2. We also know that ÃΘ

G(fn)
Kq

Θ→
ÃΘ

G(y1), and as L2 convergence is stronger than Lq convergence we can say

that ÃΘ
G(fn)

Kq
Θ→ y2. Uniqueness of limits now shows (fn, ÃΘ

G(fn))
K2

Θ×K2
Θ→

(y1, ÃΘ
G(y1)), and hence the graph is closed. Now, again viewing ÃΘ

G : K2
Θ →

K2
Θ, we have

ÃΘ
G(f) = AΘ

G(f)

for all f ∈ K2
Θ ∩ (H∞)n. Thus boundedness of ÃΘ

G : K2
Θ → K2

Θ ensures
boundedness of (1.1). �

In [2] the authors give an equivalent condition for a bounded truncated
Toeplitz operator to have a bounded symbol. They then go on to describe
the (scalar) inner functions, θ, such that every bounded truncated Toeplitz
operator on K2

θ has a bounded symbol. If we consider MTTOs with symbols
in L(p,n×n) where p ∈ (2,∞], the above proposition allows one to describe the
set of all symbols of MTTOs (or when specialised to the scalar case, symbols
of all bounded truncated Toeplitz operators). This is given by

{G : PΘ,q(GK2
Θ) ⊆ (L2)n}.

In a similar fashion to how we have changed the codomain of the MTTO
to obtain the modified MTTO, we can also change the codomain of the
matricial Toeplitz operator. Let p ∈ (2,∞] and let G ∈ L(p,n×n). Define

G =
(

Θ∗ 0
G Θ

)
, (2.3)

where 0 denotes the n-by-n matrix with each entry being 0. Throughout all
sections, given two Banach spaces X1,X2 we will equip the space(

X1

X2

)
=

{(
f1

f2

)
: f1 ∈ X1, f2 ∈ X2

}

with the norm given by∣∣∣∣
∣∣∣∣
(

f1

f2

)∣∣∣∣
∣∣∣∣ = ||f1||X1 + ||f2||X2 .
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With this convention we can define TG :
(

(H2)n

(Hq)n

)
→

(
(H2)n

(Hq)n

)
, where if

f1 ∈ (H2)n and f2 ∈ (Hq)n (where 1
2 + 1

p = 1
q ),(

f1

f2

)
�→

(
P2+(Θ∗f1)

Pq+(Gf1 + Θf2)

)
. (2.4)

An application of Hölder’s inequality shows TG is bounded.

Proposition 2.9. For the matrix G defined as (2.3) we have Pn(ker TG) =
ker ÃΘ

G.

Proof. Clearly, for f1 ∈ (H2)n and f2 ∈ (Hq)n, we have (f1, f2) ∈ ker TG if
and only if f1 ∈ ker TΘ∗ = KΘ and Gf1 + Θf2 ∈ (Hq

0 )n. So f1 ∈ ker AΘ
G, and

likewise given f1 ∈ ker AΘ
G there exist f2 ∈ (Hq)n with (f1, f2) ∈ ker TG . �

Although the above results are interesting in their own right, our main
motivation for introducing the modified MTTO is to study the properties of
the MTTOs which do not posses a bounded symbol.

The condition that we no longer require a bounded symbol to study
AΘ

G is a significant extension to previous studies. This is because there are
MTTOs which do not have a bounded symbol but do have a symbol in
L(p,n×n), where p ∈ (2,∞). This can be shown in the case where n = 1 by
using Theorem 5.3 in [3], which is the following;

Theorem 2.10. Suppose θ is a (scalar) inner function which has an angular
derivative (or ADC for short) at ζ ∈ T. Let p ∈ (2,∞). Then the following
are equivalent:

1. The bounded truncated Toeplitz operator kθ
ζ ⊗ kθ

ζ has a symbol φ ∈ Lp ;
2. kθ

ζ ∈ Lp.

In the above Theorem kθ
ζ = 1−θ(ζ)θ(z)

1−ζz
∈ Kθ is the reproducing kernel at ζ. In

particular, the above theorem shows that if 2 < p1 < p2 < ∞ and kθ
ζ ∈ Lp1

but kθ
ζ /∈ Lp2 , then kθ

ζ ⊗ kθ
ζ does not have a bounded symbol but does have a

symbol in Lp1 .
The precise conditions for kθ

ζ to lie in Lp for p ∈ (1,∞) are given in
[1,12]. In particular, for a Blaschke product with zeros (ak) we have kθ

ζ ∈ Lp

if and only if
∑

k

1 − |ak|2
|ζ − ak|p < ∞. (2.5)

To obtain a bounded truncated Toeplitz operator which does not have
a bounded symbol but does have a symbol in Lp1 , for some p1 ∈ (2,∞), it is
sufficient to have a point ζ ∈ T, and a Blaschke product which has an ADC
at ζ such that (2.5) is true for some p = p1 ∈ (2,∞) but not for some strictly
larger value of p. An explicit example of this is a Blaschke product with zeros
(ak) accumulating to the point 1 such that

∑
k

1 − |ak|2
|1 − ak|p1

< ∞ for some 2 < p1 < ∞,
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but
∑

k

1 − |ak|2
|1 − ak|p2

= ∞ for some p1 < p2 < ∞.

Theorem 5.1(b) in [26] states that if θ has an ADC at ζ ∈ T, then kθ
ζ ⊗kθ

ζ

is a bounded truncated Toeplitz operator. Therefore by Theorem 5.1(b) in [26]
and the above theorem, we can construct an example of a bounded truncated
Toeplitz operator which has a symbol in L2, but does not have a symbol in
Lp for any p ∈ (2,∞). Similar to our previous example, in order to do this it
is sufficient to have a point ζ ∈ T and a Blaschke product with an ADC at
ζ such that (2.5) is true for p = 2 but not for any p ∈ (2,∞). A numerical
example of such a point ζ ∈ T and Blaschke product is the Blaschke product
with zeros (accumulating to 1) given by ak = (1 − εk)eiδk where εk = 1

k2

and δk = log(k)
k1/2 . This observation shows that not every bounded truncated

Toeplitz operator has a symbol in Lp for some p ∈ (2,∞).

3. The Kernel

A closed subspace M ⊆ (H2)n is said to be nearly S∗-invariant with defect m
if and only if there exists a m-dimensional subspace D (which may be taken
to be orthogonal to M) such that if f ∈ M and f(0) is the zero vector then
S∗f ∈ M ⊕ D. We call D the defect space. If M is nearly S∗-invariant with
defect 0 then it is said to be nearly S∗-invariant. Similarly, we say a closed

subspace N ⊆
(

(H2)n

(Hq)n

)
is nearly S∗-invariant if and only if all functions

f ∈ N with the property f(0) is the zero vector satisfy S∗(f) = f
z ∈ N .

In this section we decompose the kernel of a MTTO into an isometric
image of an S∗-invariant subspace.
Define W := ker TG(0) = {F (0) : F ∈ ker TG} ⊆ C

2n. Let dim W = r, and
pick W1, . . . ,Wr ∈ ker TG such that W1(0), . . . ,Wr(0) are a basis for W.

Proposition 3.1. The space Pn(ker TG) is nearly S∗-invariant with a defect
space (

span{Pn(W1), . . . Pn(Wr)}
z

∩ (H2)n

)
. (3.1)

Remark 3.2. This may be viewed as a generalisation of Corollary 3.2 in [23],
but the delicate issue here is that we are no longer working with a Hilbert
space and so we can not use orthogonality.

Proof. Let f1 ∈ Pn(ker TG) with f1(0) equal to the zero vector. Pick f2 ∈
(Hq)n such that

(
f1

f2

)
∈ ker TG and pick constants λ1 . . . λr such that

(
f1

f2

)
−

λ1W1 − . . . λrWr evaluated at 0 is the zero vector, then(
f1

f2

)
− λ1W1 − . . . λrWr ∈ ker TG ∩ z

(
(H2)n

(Hq)n

)
.
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Near invariance of kerTG now ensures

f1

z
− λ1Pn(W1) − . . . λrPn(Wr)

z
∈ Pn(ker TG),

and therefore

f1

z
∈ Pn(ker TG) +

(
span{Pn(W1), . . . Pn(Wr)}

z
∩ (H2)n

)
.

�

Previous results on the kernel of the truncated Toeplitz operator (see
[8,9,23]) have been under the assumption that the symbol for the operator is
bounded. Now using the operator ÃΘ

G as an intermediate tool, this allows us
to obtain a Hitt-style characterisation for the kernel of a MTTO and, unlike
previous results, we do not require that the symbol of the MTTO is bounded
for this characterisation to hold.

Theorem 3.3. Let p ∈ (2,∞], and let G ∈ L(p,n×n) be such that AΘ
G is a

MTTO. Then ker AΘ
G is nearly S∗-invariant with defect m, where m � n.

Proof. From Proposition 2.6 it is clear that ker AΘ
G = ker ÃΘ

G, and Propo-
sition 2.9 shows that ker ÃΘ

G = Pn(ker TG), so from Proposition 3.1 we can
deduce that kerAΘ

G is a nearly invariant subspace with a defect space given
by (3.1). If r � n it is clear that the dimension of (3.1) is less than or equal
to n, so it remains to prove that if r = n + i for i > 0 then the dimension of
(3.1) is at most n. Suppose r = n + i for i > 0. We form a matrix

[W1(0), . . . , Wn+i(0)],

then for

⎛
⎜⎝

s1

...
sn+i

⎞
⎟⎠ ∈ C

n+i we have that s1Pn(W1) + . . . sn+iPn(Wn+i) ∈

z(H2)n if and only if

Pn

⎛
⎜⎝[W1(0), . . . , Wn+i(0)]

⎛
⎜⎝

s1

...
sn+i

⎞
⎟⎠

⎞
⎟⎠

is the zero vector. Hence the dimension of (3.1) is given by the dimension of

S =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

s1

...
sn+i

⎞
⎟⎠ ∈ C

n+i : Pn

⎛
⎜⎝[W1(0), . . . , Wn+i(0)]

⎛
⎜⎝

s1

...
sn+i

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎝

0
...
0

⎞
⎟⎠

⎫⎪⎬
⎪⎭ .

As W1(0), ...Wn+i(0) ∈ C
2n are linearly independent, we may pick vec-

tors

X1, . . . Xn−i ∈ C
2n
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such that the vectors W1(0), . . . Wn+i(0),X1, . . . , Xn−i are linearly indepen-
dent. We then define S

′
as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
...

sn+i

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
2n : Pn

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[W1(0), . . . ,Wn+i(0), X1, . . . , Xn−i]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1
...

sn+i

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
...
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

It is clear dim S = dim S
′
, and moreover S

′
is contained in{

[W1(0), . . . , Wn+i(0),X1, . . . , Xn−i]−1V : V ∈ C
2nand Pn(V ) = 0

}
,

which has dimension n. Thus we can conclude that the dimension of (3.1) is
equal to dimS = dimS

′ � n. �

Theorem 3.4 in [23] (which was also independently proved in [11]) gives a
decomposition for vector-valued nearly S∗-invariant subspaces with a defect.
So combining the above theorem and Theorem 3.4 in [23] we obtain the
following decomposition for the kernels of MTTOs in terms of S∗-invariant
subspaces.

Theorem 3.4. Let p ∈ (2,∞], and let G ∈ L(p,n×n) be such that AΘ
G is a

MTTO. Let {e1, . . . em} be an orthonormal basis for the m-dimensional defect
space (where m � n) for ker AΘ

G given by (3.1) and set r = dim ker AΘ
G 


(ker AΘ
G ∩ z(H2)n). Then

1. In the case where there are functions in ker AΘ
G that do not vanish at 0,

ker AΘ
G = {F : F (z) = F0(z)k0(z) + z

m∑
j=1

kj(z)ej(z) : (k0, . . . , km) ∈ K},

where F0 is the matrix with each column being an element of an or-
thonormal basis for ker AΘ

G
(ker AΘ
G∩z(H2)n), k0 ∈ (H2)r, k1, . . . km ∈

H2, and K ⊆ (H2)(r+m) is a closed S∗-invariant subspace. Furthermore
||F ||2 =

∑m
j=0 ||kj ||2.

2. In the case where all functions in ker AΘ
G vanish at 0,

ker AΘ
G = {F : F (z) = z

m∑
j=1

kj(z)ej(z) : (k1, . . . , km) ∈ K},

with the same notation as in 1, except that K is now a closed S∗-
invariant subspace of (H2)m, and ||F ||2 =

∑m
j=1 ||kj ||2.

Remark 3.5. We remark that the above theorem is a generalisation of the
results of Section 3 of [23] in two ways. We are now considering the MTTO
instead of the scalar truncated Toeplitz operator. We are also now allowing for
the MTTO to have a unbounded symbol whereas [23] only considers bounded
symbols.
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We now give an example to show that under the conditions of Theo-
rem 3.3, n is the smallest dimension of defect space for ker AΘ

G, i.e. it is not
true that for all inner functions Θ and symbols G ∈ L(p,n×n), that kerAΘ

G

has a j-dimensional defect where j < n.

Example 3.6. Let Θ =
(

z2 0
0 z2

)
, and G =

(
z 0
0 z

)
then

ker AΘ
G =

{(
λz
μz

)
: λ, μ ∈ C

}
,

which is clearly nearly S∗-invariant with defect 2.

4. Equivalence After Extension

For Banach spaces X, X̃, Y, Ỹ the operators T : X → X̃ and S : Y →
Ỹ are said to be (algebraically and topologically) equivalent if and only if
T = ESF , where E and F are invertible operators. More generally T and S
are equivalent after extension (abbreviated to EAE) if and only if there exist
(possibly trivial) Banach spaces X0, Y0, called extension spaces and invertible
linear operators E : Ỹ ⊕ Y0 → X̃ ⊕ X0 and F : X ⊕ X0 → Y ⊕ Y0, such that(

T 0
0 IX0

)
= E

(
S 0
0 IY0

)
F.

In this case we write that T
∗� S.

The relation ∗� is an equivalence relation. Operators that are equivalent
after extension have many features in common. In particular, using the no-
tation X � Y to say that two Banach spaces X and Y are isomorphic, i.e.,
that there exists an invertible operator from X onto Y , and the notation
ImA to denote the range of an operator A, we have the following.

Theorem 4.1. [4] Let T : X → X̃, S : Y → Ỹ be operators and assume that
T

∗� S. Then
1. ker T � ker S;
2. Im T is closed if and only if Im S is closed and, in that case, X̃/Im T �

Ỹ /Im S;
3. If one of the operators T, S is generalised (left, right) invertible, then

the other is generalised (left, right) invertible too;
4. T is Fredholm if and only if S is Fredholm and in that case dim ker T =

dim kerS and codim Im T = codim Im S.

The above theorem highlights that when one wants to consider invert-
ibility, Fredholmness and spectral properties, EAE extension results are very
useful. Section 6 of [8] shows that a truncated Toeplitz operator with a
bounded symbol is EAE to a matricial Toeplitz operator, and then conse-
quently the spectral properties of the truncated Toeplitz operator were stud-
ied in [7]. For θ a scalar inner function and g ∈ L∞, the dual truncated
Toeplitz operator Dθ

g : (Kθ)⊥ → (Kθ)⊥ is defined by f �→ (Qθ + P−)(gf),
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where P− = I − P+. Section 5 of [5] shows the dual truncated Toeplitz oper-
ator is EAE to a paired operator on (L2)2.
Throughout this section, unless otherwise stated, we assume that G ∈ L(p,n×n)

where p ∈ (2,∞]. We let q ∈ (1, 2] be such that 1
2 + 1

p = 1
q . In this context,

we write TG : (H2)n → (Hq)n to mean the map f �→ Pq+(Gf).
In the first part of this section we initially adapt the results in Section 6 of
[8] to show that TG is EAE to ÃΘ

G. We then build on this result to construct
a Toeplitz operator which is EAE to AΘ

G. Unlike the works of [8] we con-
sider MTTOs which only have unbounded symbols, and in order to overcome
the problem of G not being bounded (and then necessarily the domain and
codomain of ÃΘ

G being different spaces) one must define a new normed space
which mixes Hp and Hq spaces.

Consider the operator

PΘ,qGPΘ,2 + QΘ,2 : (H2)n → Kq
Θ + Θ(H2)n,

where here the norm of k + Θf ∈ Kq
Θ + Θ(H2)n is given by ||k||(Lq)n +

||Θf ||(L2)n . We first show that

ÃΘ
G

∗� PΘ,qGPΘ,2 + QΘ,2. (4.1)

We have (
ÃΘ

G 0
0 IΘ(H2)n

)
= E1

(
PΘ,qGPΘ,2 + QΘ,2 0

0 I0

)
F1,

where

F1 : K2
Θ ⊕ Θ(H2)n → (H2)n ⊕ {0}

is such that (
k

Θf

)
�→

(
k + Θf

0

)
,

and

E1 : Kq
Θ + Θ(H2)n ⊕ {0} → Kq

Θ ⊕ Θ(H2)n

is such that (
k + Θf

0

)
�→

(
k

Θf

)
.

On the other hand it is clear that

PΘ,qGPΘ,2 + QΘ,2
∗�

(
PΘ,qGPΘ,2 + QΘ,2 0

0 Pq+

)
. (4.2)

If we denote I to be the identity operator on Kq
Θ + Θ(H2)n, we also have

PΘ,qGPΘ,2 + QΘ,2 = (I − PΘ,qTGQΘ,q)(PΘ,qTG + QΘ,2).

Furthermore adapting Lemma 6.3 in [8] we can deduce:

Lemma 4.2. The operator I − PΘ,qTGQΘ,q : Kq
Θ + Θ(H2)n → Kq

Θ + Θ(H2)n

is invertible with inverse I + PΘ,qTGQΘ,q.
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We now mimic the factorisations given in Section 6 of [8], however as we
are working with a mixed Hp-Hq space we must also manage our factorisation
in such a way that the domain and codomain in our consecutive factors match
up. As the results of [8] purely deal with operators on H2, this did not have
to be considered.

In the following argument for ease of notation we write the domain and
co-domain above the operator. For example, if the operator A : X → Y , we

will label this as

X→Y︷︸︸︷
A . In the case when A : X → X we will denote this by

X︷︸︸︷
A . With this notation we will omit the specific q or 2 notation from the

projections in the following matrices.
Thus with

T =

⎛
⎜⎜⎜⎝

Kq
Θ+Θ(H2)n︷ ︸︸ ︷

I − PΘTGQΘ

(Hq)n→{0}︷︸︸︷
0

Kq
Θ+Θ(H2)n→{0}︷︸︸︷

0

(Hq)n︷︸︸︷
P+

⎞
⎟⎟⎟⎠ , (4.3)

we can write
⎛
⎜⎜⎜⎝

(H2)n→Kq
Θ+Θ(H2)n︷ ︸︸ ︷

PΘGPΘ + QΘ

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
P+

⎞
⎟⎟⎟⎠

= T

⎛
⎜⎜⎜⎝

(H2)n→Kq
Θ+Θ(H2)n︷ ︸︸ ︷

PΘTG + QΘ

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
P+

⎞
⎟⎟⎟⎠

= T

⎛
⎜⎜⎜⎝

(H2)n→Θ(H2)n︷︸︸︷
TΘ

(Hq)n→Kq
Θ︷︸︸︷

PΘ

(H2)n︷ ︸︸ ︷
−P+

(Hq)n︷︸︸︷
TΘ∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

(H2)n︷︸︸︷
TΘ∗

(Hq)n→(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷ ︸︸ ︷
TG − QΘTG + QΘP+

(Hq)n︷︸︸︷
TΘ

⎞
⎟⎟⎟⎠ ,

where the last line follows by using the identity P+ −QΘ = PΘ and TΘ∗PΘ =
0. This can be factorised further to equal

T

⎛
⎜⎜⎜⎝

(H2)n→Θ(H2)n︷︸︸︷
TΘ

(Hq)n→Kq
Θ︷︸︸︷

PΘ

(H2)n︷ ︸︸ ︷
−P+

(Hq)n︷︸︸︷
TΘ∗

⎞
⎟⎟⎟⎠TG

⎛
⎜⎜⎜⎝

(H2)n︷︸︸︷
P+

(Hq)n→(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷ ︸︸ ︷
−TΘ∗TG + TΘ∗P+

(Hq)n︷︸︸︷
P+

⎞
⎟⎟⎟⎠ , (4.4)

where TG is defined as in (2.4). In the above, we label the second factor as
T1 and the final factor as T2.
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1. The first factor, T , is invertible with inverse given by⎛
⎜⎜⎜⎝

Kq
Θ+Θ(H2)n︷ ︸︸ ︷

I + PΘTGQΘ

(Hq)n→{0}︷︸︸︷
0

Kq
Θ+Θ(H2)n→{0}︷︸︸︷

0

(Hq)n︷︸︸︷
P+

⎞
⎟⎟⎟⎠ .

This is verified by Lemma 4.2.
2. Adapting Lemma 6.4 from [8] one can show the second factor, T1, is

invertible as a map
(

(H2)n

(Hq)n

)
→

(
Kq

Θ + Θ(H2)n

(Hq)n

)
.

3. Adapting Lemma 6.5 from [8] one can show the last factor, T2, is in-

vertible in
(

(H2)n

(Hq)n

)
.

We can now conclude the following;

Theorem 4.3. TG is equivalent after extension to ÃΘ
G.

Proof. Using (4.1), (4.2) and the fact that ∗� is an equivalence relation, we
see that

ÃΘ
G

∗�
(

PΘ,qGPΘ,2 + QΘ,2 0
0 Pq+

)
.

Now (4.4) and the reasoning immediately following (4.4) shows(
PΘ,qGPΘ,2 + QΘ,2 0

0 Pq+

)
∗� TG

and so transitivity of ∗� gives us

ÃΘ
G

∗� TG .

�
Remark 4.4. In the case when n = 1 and p = ∞, Theorem 4.3 specialises to
become (the symmetric case of) Theorem 6.6 in [8].

When G is bounded we have ÃΘ
G = AΘ

G, so we may specialise Theorem 4.3 to
find an operator which is EAE to AΘ

G when G is bounded.

Theorem 4.5. Let G ∈ L(∞,n×n). Then TG : (H2)2n → (H2)2n is equivalent
after extension to AΘ

G.

As operators which are EAE have isomorphic kernels and cokernels,
Theorem 4.3 and Proposition 2.6 suggest that restricting the codomain of
TG may provide an operator which is EAE to AΘ

G, where G ∈ L(p,n×n), for
p ∈ (2,∞). We now pursue this idea.
Throughout the remainder of this section we now continue to assume that G ∈
L(p,n×n) where p ∈ (2,∞], but we now we also make the extra assumption
that AΘ

G is a MTTO (and hence bounded).
The image of TG is computed to be(

0
Θ(Hq)n

)
+

(
0

Pq+(GK2
Θ)

)
+

{(
f

Pq+(GΘf)

)
: f ∈ (H2)n

}
,
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where for A ⊆ (Lq)n,
(

0
A

)
is the set of all vectors of length 2n with the last

n coordinates taking a value a ∈ A. We now define the Banach space

Co-d :=
(

0
Θ(Hq)n

)
+

(
0

K2
Θ

)
+

{(
f

Pq+(GΘf)

)
: f ∈ (H2)n

}
, (4.5)

where for p1 ∈ (Hq)n, p2 ∈ K2
Θ, p3 ∈ (H2)n we have the well defined norm∣∣∣∣

∣∣∣∣
(

0
Θp1

)
+

(
0
p2

)
+

(
p3

Pq+(GΘp3)

)∣∣∣∣
∣∣∣∣
Co-d

:= ||Θp1||(Hq)n + ||p2||K2
Θ

+ ||p3||(H2)n .

We note that completeness of each of the spaces (Hq)n,K2
Θ and (H2)n ensures

completeness of Co-d. Corollary 2.7 ensures that Pq+(GK2
Θ) ⊆ K2

Θ +Θ(Hq)n

so this gives us a well defined bounded map

T r
G :

(
(H2)n

(Hq)n

)
→ Co-d,

where for f1 ∈ (H2)n and f2 ∈ (Hq)n

(
f1

f2

)
�→

(
P2+(Θ∗f1)

Pq+(Gf1 + Θf2)

)
= TG

(
f1

f2

)
.

Remark 4.6. In the case when p = ∞ and so q = 2, as sets we have Co-d =(
(H2)n

(H2)n

)
and furthermore the Co-d norm is equivalent to the

(
(H2)n

(H2)n

)
norm.

Similar to the proof of Theorem 4.3, we can show that

AΘ
G

∗�

⎛
⎜⎜⎜⎝

(H2)n→K2
Θ+Θ(H2)n︷ ︸︸ ︷

PΘ,qGPΘ,2 + QΘ,2

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
Pq+

⎞
⎟⎟⎟⎠ ,

where we know by Corollary 2.7 that PΘ,q(GK2
Θ) ⊆ K2

Θ. It is also clear that

for
(

f1

f2

)
∈

(
(H2)n

(Hq)n

)
using (4.4) we still have

TT1T
r
GT2

(
f1

f2

)
=

⎛
⎜⎜⎜⎝

(H2)n→K2
Θ+Θ(H2)n︷ ︸︸ ︷

PΘ,qGPΘ,2 + QΘ,2

(Hq)n→Kq
Θ+Θ(H2)n︷︸︸︷
0

(H2)n→(Hq)n︷︸︸︷
0

(Hq)n︷︸︸︷
Pq+

⎞
⎟⎟⎟⎠

(
f1

f2

)
.

One can also check that the operator TT1 : Co-d →
(

(H2)n

(Hq)n

)
is well defined,

bounded and invertible. We know from an adaptation of Lemma 6.5 in [8]

that T2 :
(

(H2)n

(Hq)n

)
→

(
(H2)n

(Hq)n

)
is invertible. So we can conclude;

Theorem 4.7. AΘ
G

∗� T r
G .
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5. Application to Integral Equations

In this section we concretely relate the theory of MTTOs to integral equa-
tions. We show the matricial truncated Wiener–Hopf operator is unitarily
equivalent to a MTTO and give a neat application of the theory we have
developed around the modified MTTO which allows us to test continuity of
the matricial truncated Wiener–Hopf operator by considering only the image
of a modified MTTO.

We consider H2(C+), the Hardy space of the upper half plane. Section
3 of [8] shows there is an isometric isomorphism between the Hardy space
on the disc and the Hardy space on the half plane, which we denote V :
H2 → H2(C+). It further shows that via the unitary map V , truncated
Toeplitz operators in the two different settings are unitarily equivalent. The
functions θ1(w) = eiaw and θ2(w) = eibw are inner functions in H2(C+) and
it is well known that the inverse Fourier transform of L2(0, a), L2(0, b) is
K2

θ1
, K2

θ2
respectively. We denote F : H2(C+) → L2(0,∞) to be the Fourier

transform. The Fourier transform of a matrix is understood by taking the
Fourier transform of each entry of the matrix.

MTTOs on the model space K2
Θ where Θ =

(
θ1 0
0 θ2

)
, are closely con-

nected with matricial truncated Wiener–Hopf operators. For c ∈ R+ and

f =
(

f1

f2

)
where f1, f2 ∈ L1(R), we denote int1c(f) =

∫ c

0
f1(t)dt and int2c(f) =

∫ c

0
f2(t)dt. Let G =

(
g11 g12

g21 g22

)
∈ L1(R)2×2, let k =

(
k1

k2

)
where k1 ∈ L2(0, a)

and k2 ∈ L2(0, b) for a, b ∈ R+. The matricial truncated Wiener–Hopf opera-

tor is an operator on
(

L2(0, a)
L2(0, b)

)
(equipped with the product norm) densely

defined by (
WG

(
k1

k2

))
(x) =

(
int1a(G(x − t)k(t))
int2b(G(x − t)k(t))

)
, (5.1)

for k1 ∈ L2(0, a)∩L∞(0, a), k2 ∈ L2(0, b)∩L∞(0, b). We mostly only consider
the case when a = b. In this case(

WG

(
k1

k2

))
(x) =

∫ a

0

G(x − t)k(t)dt.

If W extends to a bounded operator and if G = Ĥ, where

HF−1

(
L∞(0, a)
L∞(0, b)

)
⊆ (L2(R))2 (this condition on H is necessary to densely

define a MTTO with symbol H on the domain F−1

(
L∞(0, a)
L∞(0, b)

)
) we have

WG(k) = FPΘ(Hǩ),

for k1 ∈ L2(0, a) ∩ L∞(0, a), k2 ∈ L2(0, b) ∩ L∞(0, b). Thus, in this case WG

is unitarily equivalent to the MTTO on the half plane AΘ
H , where we adopt

the convention that AΘ
H is initially densely defined on F−1

(
L∞(0, a)
L∞(0, b)

)
.
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A computation shows that V −1F−1L∞(0, a) is bounded and lies in the
model space K2

u, where u = eia 1−z
1+z is an inner function on the disc. As

V and F are isomorphic and L∞(0, a) is dense in L2(0, a), we must have
V −1F−1L∞(0, a) is contained in K∞

u and is dense subspace of K2
u. A sim-

ilar reasoning holds for L∞(0, b). If we again assume that G = Ĥ, where

HF−1

(
L∞(0, a)
L∞(0, b)

)
⊆ (L2(R))2 then we can deduce that WG is bounded

if and only if AΘ
H densely defined on F−1

(
L∞(0, a)
L∞(0, b)

)
is bounded if and

only if the corresponding map on the disc, given by AΘ◦m
H◦m where m : D →

C+ is defined by m(z) = i
(

1−z
1+z

)
is bounded, i.e. if AΘ◦m

H◦m is an MTTO.

Now with the above reasoning and Proposition 2.8, whenever G = Ĥ with

HF−1

(
L∞(0, a)
L∞(0, b)

)
⊆ (L2(R))2 and H ◦ m ∈ L(p,n×n) for p ∈ (2,∞], we can

test the continuity of (5.1) by considering only the image of a corresponding
modified MTTO.

In the case when HF−1

(
L∞(0, a)
L∞(0, b)

)
⊆ (L2(R))2 and WG is bounded

we have that WG is unitarily equivalent to AΘ◦m
H◦m via the unitary mapping

F ◦ V .
Although the above demonstration is in the case of the 2-by-2 matrix G,

it is easily generalised to the n-by-n case. Matricial truncated Wiener–Hopf
operators (which may also be called matricial convolution operators on finite
intervals) are studied in detail in Chapter 7 of [15]. They are then shown to
play an important role in Chapter 8 of [15], where a continuous analogue of
Krein’s Theorem for matrix polynomials is given.

Matricial truncated Wiener–Hopf operators are also encountered natu-
rally when finding the solution to MIMO (multi input, multi output) linear
systems. Consider a matrix indicator function 1R− , where 1R−(x) = I2×2

if x � 0 and 1R−(x) = 02×2 if x > 0, and set G
′
(x) = exp(Ax)1R−(x)B,

where A and B are constant 2-by-2 matrices. If we set a = b, then x �→
WG′ (u)(x) + exp(Ax)v0 is the solution found for v when solving the system
of MIMO state space equations given by

v̇ = Av + Bu, v(0) = v0,(5.2)

y = Cv + Du,(5.3)

where u(x), v(x), y(x) ∈ C
2 are defined for all x ∈ (0, a), additionally v is

defined at 0 with the condition v(0) = v0, C and D are constant 2-by-2
matrices and u ∈ (L2(0, a))2. See Chapter 8 of [24], and in particular the
solution of equation 8.1 for a more detailed discussion. The above working is
easily generalised to the n-by-n case. MIMO systems are encountered in con-
trol theory, dynamical systems, electrical engineering (see Chapter 5 of [13])
and find further applications in wireless communication and multi-channel
digital transmission.
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