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Morpho-evolution with learning using a controller

archive as an inheritance mechanism
Léni K. Le Goff, Edgar Buchanan, Emma Hart, Agoston E. Eiben, Wei Li, Matteo De Carlo, Alan F. Winfield,

Matthew F. Hale, Robert Woolley, Mike Angus, Jon Timmis, Andy M. Tyrrell

Abstract—The joint optimisation of body-plan and control via
evolutionary processes can be challenging in rich morphological
spaces in which offspring can have body-plans that are very
different from either of their parents. This causes a potential mis-
match between the structure of an inherited controller and the
new body. To address this, we propose a framework that combines
an evolutionary algorithm to generate body-plans and a learning
algorithm to optimise the parameters of a neural controller. The
topology of this controller is created once the body-plan of each
offspring body-plan is generated. The key novelty of the approach
is to add an external archive for storing learned controllers that
map to explicit ‘types’ of robots (where this is defined with respect
the features of the body-plan). By learning from a controller with
an appropriate structure inherited from the archive, rather than
from a randomly initialised one, we show that both the speed
and magnitude of learning increases over time when compared
to an approach that starts from scratch, using three different
test-beds. The framework also provides new insights into the
complex interactions between evolution and learning, and the
role of morphological intelligence in robot design.

Index Terms—Evolutionary robotics, Embodied Intelligence

I. INTRODUCTION

The idea of embodied intelligence — describing the design

and behaviours of physical objects situated in the real-world

— was first introduced by Brooks in 1991 [1]. Pfiefer and

Bongard’s seminal text ‘How the body shapes the way we

think” [2] expanded on the idea that intelligent control is not

only dependent on brain, but at the same time both constrained

and enabled by the body. Increasingly, artificial evolution

approaches have been used in robotics to jointly optimise both

the body-plan and controller of a robot to accomplish a desired

task. This has the potential advantage of allowing evolution to

discover the appropriate balance between morphological and

brain complexity and functionality.

However, much of this work has taken place in restricted

morphological spaces, for example using regular shaped mod-

ules to construct body-plans, in which each module can be

individually actuated [3], [4]. If we consider richer spaces

which can give rise to complex, irregular robot skeletons with

multiple forms of sensing and actuation (e.g. joints and/or
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wheels) then not only are more complex, centralised con-

trollers required that link multiple sensors and actuators but in

addition, the evolutionary process becomes more challenging:

reproduction between two morphologically distinct parents

might result in a viable body-plan, but a directly inherited

controller is at best unlikely to provide adequate control and,

at worst, will not work at all because inputs and outputs do

not correspond to the new body-plan.

One approach to address this is to evolve a morphology-

independent control mechanism, for example using a compo-

sitional pattern producing network (CPPN)[5] to generate a

controller, thereby enabling direct inheritance of the generator

[6]. However, generative methods tend to be computationally

expensive. An alternative is to add a learning cycle into

the evolutionary loop [7], [8]. This can either improve an

inherited controller over an individual’s lifetime – when the

inherited controller has an appropriate structure – or learn a

new controller from scratch if necessary. Here, we follow the

latter approach and propose a novel framework for combining

evolution and learning that is capable of the joint optimisation

of body and control of robots in a complex morphological

space when using controller encodings that do not permit

directly inheritence, i.e. when the topology of a child controller

does not match the inherited body.

The framework contains a morpho-evolutionary algorithm

(MEA) to optimise the body-plan and a learning algorithm to

optimise the parameters of the controller. The two optimisation

processes are nested: for each body-plan produced with the

MEA, the learning process is invoked to optimise its controller.

The key novelty of the approach is the addition of an external

controller archive: this multi-dimensional archive stores the

best found controller for a given ’type’ of robot, where type

is defined by a vector describing the robot’s morphological

features (e.g. number of wheels, number of sensors of Type A,

number of sensors of Type B, etc.). If a body-plan is produced

that is of the same type as a controller already stored in the

archive, the learning process is initiated with this controller,

otherwise it starts from scratch. The archive is updated over

the generations as better controllers are found. Essentially

the archive can be viewed as a form of inheritance, storing

successful controllers per robot that can be used to bootstrap

learning in future generations. Hence the framework is named

MELAI: morpho-evolution with learning using archive inher-

itance. Specifically, for the MEA, we use the matrix-based

CPPN morpho-evolution (MCME) introduced in our previous

work [9] to evolve body-plans. The learning algorithm used

is a novelty-driven evolution-strategy, that uses an increasing
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population size (NIP-ES), and was also introduced in our

previous work [10]. It learns the weights of an controller

specified by an Elman network that has a topology matching

the generated child body-plan.

The contributions of the method are two-fold: (1) it offers

a novel algorithm for optimisation of both body-plan and

controller of robots, that integrates evolution and learning:

uniquely using a morpho-evolutionary algorithm for the former

and an evolution-strategy for the latter; (2) it proposes the

use of an external archive as an efficient mechanism for

transferring control knowledge from parents to offspring in

situations where offspring are morphologically distinct from

their parents. Crucially, this is not direct transfer through

regular genetic inheritance from parents to offspring but acts

a bootstrap mechanism to initiate learning.

We show the benefits of using an archive as a form

of inheritance in terms of increasing the efficiency of the

approach (compared to methods that learn from scratch)and

provide new insights into the interplay of evolutionary and

learning processes. Moreover, as an additional contribution,

our results show the emergence of different kind of robots for

different tasks.

The rest of the paper is organized as follows: section II

analyses the studies related to joint optimisation of the body-

plan and controller of robots, then in section III MELAI is

explained in detail; the experimental protocol is described in

section IV and the results are presented in section V. Finally,

sections VI and VII discuss the results and conclude the paper.

II. RELATED WORK

Among the numerous studies in the field of evolutionary

robotics, the majority address either the evolution of the body-

plan or the evolution of the controller. This section focuses on

literature which describes methods for the joint optimisation of

body-plans and controllers. We focus attention on approaches

that permit the evolution of offspring that require a controller

topology that is different to either parent. That is, methods

which evolve changes to morphology that do not impact the

topology of controller (i.e. the number of inputs and outputs

of a neural controller) are out of scope. For example, this

excludes work in which morphological change is restricted to

repositioning sensors [11] or altering the length, weight and

size of leg-joints, e.g. [12], [13], [14], [15]. We first discuss

methods that create controllers that are directly correlated

to a specific type of body-plan, followed by morphology-

independent methods, i.e. those that are capable of generating

a controller for any given body-plan.

A naïve approach to avoiding a potential mis-match between

a controller and body-plan is to evolve only the body-plan and

then learn a new controller with the correct topology from

scratch for each child body-plan. The work of Gupta et al

[16] follows this approach by using evolution for the body-

plans and reinforcement learning to optimize the controllers

for simulated robots composed from articulated 3D rigid parts

connected via motor actuated hinge joints. Learning starts

from a randomly initialised controller for each body-plan,

and uses a distributed implementation across multiple CPU

to minimise computational cost. Lia et al. [17] also propose a

nested optimisation process, with the aim of finding the best

morphology for a walker micro-robot. Bayesian optimisation

is used to learn the controller. Despite Bayesian optimisation

being a well known method to be sample efficient, it only

works well for a small parameter space.

Instead of learning from scratch, an alternative approach

is to use a morphology-independent control generation mech-

anism that can generate a control parameters for any given

body-plan. For example, Cheney et al [18], [19] evolve soft-

robots built from voxels, in which each voxel has a pa-

rameterised local controller. Both body-plans and controller

parameters are outputs of two separate compositional pattern

producing networks (CPPN) [5], both of which are evolved

via the well known neuro-evolution with augmenting topology

(NEAT) algorithm[20]. However, due the distributed nature

of the controller, the variety of possible behaviours for the

same body-plan is limited. Sims [21] also use a decentralised

form of control in which a genotype is represented as nested

graph: the graph specifies morphological nodes, each of which

contains another graph specifying the neural circuitry for that

node. More recent work has achieved a similar effect with

the use of Lindenmayer-Systems (L-systems) decoding, for

example in [22] and [23], [24].

In the latter work, an additional learning mechanism is

applied to improve the inherited brains of newborn robots: the

authors show that learning not only influences the morphology

of the resulting robots but that also, the capacity to learn

increases over generations. Jelisavcic et al. [25] also employ

a learning mechanism. Their genome carries a pool of CPPNs

which can be used to specify the weights of a controller

generated to match the child body-plan. Differently to the work

of Cheney et al which encodes a single CPPN that undergoes

evolution, here a child inherits a subset of CPPNs from each

parent, then a learning algorithm (HyperNEAT) is applied to

the inherited pool to evolve a new pool. The process is thus

Lamarkian.

To summarise, in the context of combined optimisation of

body and control, on the one hand the literature has shown

that using generative encodings (with and without additional

learning) can mitigate the issues arising regarding inheritance

of controllers that might not be applicable to a new child body-

plan. However, these methods often require many evaluations

to converge [6] and add additional hyper-parameters which

may be difficult to optimise. On the other hand, neural con-

troller encodings which are explicitly tied to a body-plan can

be rapidly optimised as they only require weight optimisation

rather than topology. Although they often cannot be inherited,

this can be addressed by learning a controller from scratch, e.g.

as in [16], although at the expense of ignoring any previously

learned knowledge.

In this paper, we choose to use a fixed structure neural

network for reasons of efficiency, motivated by the goal

of eventually evolving directly in hardware. As in previous

works, we use a learning algorithm to optimise a controller

that has a fixed structure that matches the new body-plan [10].

However, in order to avoid starting from scratch for each body-

plan as in previous work, we introduce a novel method for
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storing past solutions that can be accessed by the learning

algorithm to bootstrap learning. This takes the form of an

archive that stores the weights of a controller for each ‘type’ of

robot that has previously been encountered as described in the

previous section. This archive or ‘brain pool’ is dynamically

composed and adapted during the evolutionary process.

Note that the term archive should not be confused with

other uses of the word in the wider evolutionary literature.

For example, archives are commonly used in multi-objective

optimisation to either drive the population toward the Pareto

front or to maintain the population diversity, that is, they

directly interact with an evolving population. Our approach

has more in common with methods which try and enhance

a search process by re-using past experience gained when

solving related problems. For example, Louis and McDonnell

[26] maintain a store of past solutions from similar instances

which are periodically injected into an evolving population.

However the approach is only applicable if instances share

structural properties, hence cannot be applied to controllers

with different topologies. Feng et al [27] attempted to reuse

structured common knowledge captured in the optimized so-

lutions of past search experiences in a form independent of

solution representation, however their specific implementation

is tailored to combinatorial optimisation. Here, we draw inspi-

ration from [26] in maintaining an archive of past solutions,

but store solutions with different types, corresponding to

different controller topologies. In addition, the archive does not

interact directly with the EA controlling body-plan evolution,

but is used to initialise a learning algorithm which searches

for an improved controller.

III. METHODS

A. Algorithm Description

Morpho-evolution with learning using an archive inheritance

(MELAI) is an algorithm with an optimisation algorithm

nested inside a second optimisation algorithm. As illustrated

in figure 1, the body-plans are optimised with an evolutionary

algorithm, then for each body-plan, a learning process is used

to optimise their controller.

The first optimisation algorithm or morpho-evolution algo-

rithm (MEA) uses a generative encoding to produce the robot’s

body-plan, based on our previously work described in [9]. This

is a matrix-based CPPN morpho-evolution denoted MCME.

The second optimization algorithm (learning) optimises the

parameters of a controller with a fixed size neural network

structure. Therefore, the number of parameters is fixed. The

novelty-driven increasing population evolutionary strategies

(NIP-ES) algorithm [10] is used for learning.

A detailed description of both MCME and NIP-ES is

given in supplementary materials. Although the instantiation

of MELAI described in this paper uses MCME and NIP-ES,

the framework itself is general in that any kind of MEA or

learning algorithm could be used.

In the rest of the paper, the fitness indicates the value used

by the MEA for selection and task-performance for the value

assessing the quality of a behaviour.

Inheritance of controllers from parents to children is chal-

lenging for MELAI as previously noted, since children might

Fig. 1. Diagram illustrating the MELAI algorithm. MELAI has two nested
optimisation processes. As main process, a morpho-evolution algorithm,
shown in black, divided in four main steps: computation of the fitness values,
update the controller archive with the best ones from the current population,
Selection, mutation, and recombination, and finally send the new population
of new body-plans to the learning process. For each body-plans, a controller
is learned, shown in blue. The learning process can either start from a random
controller, a inherited controller, or a controller from the archive. Then, the
learning process run until reaching an ending condition.

have different body-plan configurations than their parents. One

way to address this issue is to learn the controller for each

robot from scratch as in [16]. However, this has a number

of disadvantages, including the fact that previously learned

information from past learning cycles is wasted. In order

to address this issue MELAI introduces three initialisation

options:

1) Select a controller from the archive with the same

number of sensors and actuators if one exists.

2) Start from a randomly initialised controller.

3) Direct controller inheritance if the parent and child share

the same number and type of actuators and sensors.

In this paper, the third option of direct inheritance is not

considered because the encoding and the morphological space

used in MCME make it unlikely that a parent and child will

share the same number and type of actuators and sensors.

Thus, the benefit of direct inheritance will be negligible. This

enables the experiments to focus directly on determining the

benefit of the archive.

As noted, the learning algorithm used is NIP-ES, first

described in [10]. The core of this method is a co-variance

matrix adaptation evolutionary strategy (CMA-ES) algorithm

in which a normal multivariate distribution (MVND) is used

to sample a new population at each iteration. When using a

controller from the archive, it is used to provide the starting

mean of the MVND and thus the starting population is sampled

in the surrounding of the parameters of this controller. When
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starting from scratch, CMA-ES starts from a random mean.

The learning process stops when one of the ending condi-

tions is reached:

• A satisfactory solution is reached: the learning algorithm

finds a controller with a task-performance value above a

certain threshold.

• The maximum number of evaluations is reached: each

optimisation process has a maximum number of updates.

For the MEA, this parameter is the number of generations

and for the learning process is the number of evaluations.

The values of these parameters have to be chosen accord-

ing to the difficulty of the task and environment but also

according to the constraints of the system on which the

algorithm is running. In this study, a constraint of 100000

maximum evaluations is used. Given this overall budget,

an additional choice that must be made is to decide how

to divide it between the MEA and the learning process.

• The performance of the robot stays very low during a trial

period. The trial period is defined by a fixed number of

evaluations (50 in all experiments). If a robot has not

moved (i.e. very low performance) by the end of this

period then the learning process stops.

Finally, several fitness functions can be used for the MEA.

The most natural fitness function to use will be the best task-

performance value found during the learning. This is the one

used in this paper. However, the learning process produces

additional data, such as for instance the task-performance of

every evaluations, behavioural descriptors, and in the case of

NIP-ES, novelty scores, which could also be exploited by the

MEA.

Fig. 2. Diagram illustrating the update of the controller archive. A body-plan
with 2 actuators of type x and 3 sensors of type y has a new controller output
of the learning process. If the cell corresponding to 2 actuators of type x and
3 sensors of type y is not empty, the new controller is compared with the
stored one. The new controller replace the stored one if its task-performance
is greater.

B. Controller Archive

The controller archive stores the best controller found for

different ‘types’ of robot. The archive is ordered by the number

of actuators and sensors. Each type of actuator and sensor

constitutes a dimension of a grid cell. A cell contains the

best controller found for a body-plan with the corresponding

number of actuators and sensors of each type. The cell stays

empty until a body-plan of its category is generated by the

MEA. For instance, let us consider a morphological space

with one type of actuator and sensor as shown in figure 2.

After, the learning process has ended for a body-plan with 2

actuators and 3 sensors, its controller’s task-performance value

is compared with the stored one in the corresponding cell and

replaces it if its task-performance value is greater. If the cell

is empty the new controller is added to the cell.

We consider two types of actuator (wheel and joint), and one

type of sensor. So, a ’type’ of robot in this case is defined by a

tuple (num_sensors, num_wheels, num_joints). The controller

archive can be considered as a new form of inheritance. All

the behavioural knowledge from past generations is stored in

a common archive to be used by future generations. In this

way, new child robots can leverage the learned behaviours of

their ancestors.

IV. EXPERIMENTS

A. Experimental protocol

The experiments presented in this article aim to answer the

following questions:

1. To what extent does using a controller-archive for inher-

itance improve effectiveness and efficiency when com-

pared to learning from scratch?

2. How much the learning process is imprtant and How

much should the total evaluation budget be most effec-

tively shared between the MEA and the learning process?

Experiments are conducted with and without the controller

archive to answer question 1. In this way, the benefit of the

controller archive in MELAI can be isolated. In the results

section, the variant of MELAI without controller archive is

called morpho-evolution with learning (MEL).

For all experiments, a fixed budget of 100000 evaluations

is shared between the two optimisation processes. This has

the objective of studying any trade-offs in resource allocation

between the two components of the framework to answer ques-

tion 2. Parameter values tested are the following : [100,40],

[150,30], [200,20], [400,10], [800,5], where the first value

corresponds to the number of evaluations for each body-

plan during the learning phase and the second to the number

of generations of the MEA. Also, these variants of MELAI

are compared with a ground-truth algorithm in which the

learning process is replaced by random sampling using latin

hypercube sampling. This variant is called Morpho-Evolution

with Latin Hypercube Sampling (MELHS). MELHS runs for

40 generations and for each body-plans 100 random controllers

are sampled. These experiments are conducted only with the

controller archive.

All experiments feature a population of 25 body-plans for

the MEA. The hyper-parameters used for the experiments are

given in the supplementary materials. All experiments are

conducted in the three environments described in section IV-D

and shown in figure 4. Twenty replicates are performed for

each experiment. The source code to run these experiments

and their data are available here : the code and data will be

provided if the paper is accepted.
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Fig. 3. Active and passive components used for the experiments shown in
this paper. The active components are the wheel, joint and sensor. The passive
component is the caster wheel.

B. Body-plans

The body-plans evolved using the MEA described have

two main features: the skeletons of the body-plans can have

complex and widely differing shapes and the body-plans can

have different numbers of components. The components can

be active or passive where the active ones interact with

the controller. The different component types are shown in

Figure 3. Each body-plan in this paper is generated by an

encoded CPPN [5]. For more information on the body-plan

decoding refer to the supplementary materials.

The controller has a different interaction with each active

component:

• Each wheel takes one output from the controller which

translates to the speed of the rotational movement of the

wheel.

• Each joint takes one output from the controller which

translates to frequency of the oscillatory movement of the

joint. Oscillatory control for a joint tends to show better

results for locomotion. Previous works using central pat-

tern generator networks (CPG), which output oscillatory

signals, shows good results for locomotion [ref

• Each sensor gives two inputs to the controller where the

first input is binary for the detection of a beacon and the

second input is the distance from the closest obstacle. The

detection of a beacon uses a simulated IR sensor and the

distance measure uses a simulated time-of-flight sensor.

All of these components have been designed to match the

physical ones which are used in the ARE project [28].

To have an accurate simulation, the weight of the body-

plan has to be estimated. The weight of a robot is the sum of

its components weights and of his skeleton. To estimate the

weight of the skeleton, which has various shapes, the density

of the plastic used in reality is used to estimate the weight

of a voxel. Then to obtain the skeleton weight it is enough

to multiple the voxels weight by its number of voxels. The

robots have weights between 500g and 2kg depending on the

size of the skeleton.

C. Controllers

The controller used in this study is a modified version of an

Elman network [29]. An Elman network is a recurrent neural

network with two hidden layers (see the figure in section C in

Appendix II of the supplementary materials). The first hidden

layer is fully connected to the input and output layers. Then,

each neuron is forward connected to one neuron of the second

hidden layer, called the context layer. Neurons in the context

layer (context units) are recursively connected to themselves,

and the context units are also fully backward connected to

the hidden layer. Each neuron has a sigmoid function as their

activation function.

The context layer act like a short term memory and allow

the network to provess real numbers sequences such as time

series [29]. Therefore an Elman network are more efficient as

a controllers for a navigation task then a simple feed forward

network[6].

The input and output layers is the only part of the network

changing. For each body-plan, each Elman network have a

number of inputs and outputs corresponding to its body-plans

number of sensors and actuators. The hidden and context

layers have a fixed structure for all the body-plans. Thus,

transfering directly a trained network from its body-plan to

another is not possible, unless they have the same number of

sensors and actuators.

D. Task and environments

Two tasks are used in the experiments presented in this

paper: exploration and photo-taxis.

a) Exploration task: In the exploration task, the robot

has to visit the most zones in a limited time. The zones are

squares of same size composing a grid. The task-performance

is computed by counting the number of zones visited and

dividing the count by the total number of zones. The grid

is 8 by 8 with cells of 25 cm sides, so the total number of

zones is 64. The evaluation lasts 30 seconds and takes place

in the obstacles environment (see figure 4). In this task, there

is not any target performance value.

b) Photo-taxis task: In the photo-taxis task, the robot

starts at one point and has to reach a target where a beacon is

placed. The robot has first to find the beacon in the arena and

then go toward it. As the beacon is detected using a simulated

IR sensor, the robot can not see it when it is occluded by an

obstacle. The robot is evaluated three times with the target at

a different positions. The task performance is then the average

of the task performance obtained in each evaluation.

The task-performance function is the normalised distance

between the final position (? 5 ) of the robot (at the end

of the evaluation) and the position of the beacon (?1) (see

equation 1). This distance is subtracted to one to have a

function to maximise. The distance is normalized by the length

of the diagonal of the arena. As the arenas are squares of two

by two metres the diagonal measures � =

√
23 ≃ 2.83

� = 1 −
‖? 5 − ?1 ‖

�
(1)

The success threshold used to stop the learning process is

equal to 0.95 for this task. This value correspond to a circle

with a radius of 14 cm around the target.

c) Environments: Three different environments (figure 4)

are used in the experiments. They are all square of 2 metres

sides and have tiled floor.
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The environments have been designed to be reproducible in

reality. The tiles are spaced with a small gap of 1 millimetre

which corresponds to the floor of our real arenas and the walls

in the obstacles environments have feet to hold them standing.

These constraints in design introduce small irregularities.

Fig. 4. The three environments used for the experiments in this paper:
obstacles, escape room and arena.

V. RESULTS

This section is split in four parts: experiments related to the

efficiency and effectiveness of the algorithm, the controller

archive dynamics, the influence of learning, and the robots

diversity. The first part focuses on comparing the algorithm

with and without archives by measuring the quality of the

solutions produced and the efficiency of both variants. The

second part looks into the controller stored in the archive,

their number and quality. The third part studies the influence of

learning by comparing MELAI with different learning budget

and a variant without learning. Finally, the last part looks into

the influence of the task and environment over the type of

robots generated.

Where it is relevant a statistical test is conducted. The test

used is the Mann-Whitney U under the null hypothesis. For

the series over the generations or the number of evaluations

the distributions of the last generations is tested. All the

experiments have been replicated 20 times.

A. Efficiency and effectiveness

Three measures are used to assess the efficiency and effec-

tiveness of MELAI: (a) the best fitness for each population, (b)

the best and average initial task-performance of the learning

process of the population (c) total number of evaluations. The

best fitness (a) is calculated for each population after the

learning has finished. The initial task-performance (b) is the

lowest task-performance from the first iteration of NIP-ES.

The number of evaluations (c) used during one generation is

the sum of the number of evaluations used by the learning

process for each body-plan in the population.

The best fitness and the initial task-performance is a

measure of the performance (effectiveness) of the complete

MELAI algorithm while the number of evaluations measures

the efficiency of the algorithm.

Figure 5 shows the plots of the best fitness (first row) and the

best and average initial task-performance (second row) over

the generations. For the exploration task and the arena with

three targets, MELAI achieves better performances than MEL,

which corresponds to more zones visited for the exploration

and smaller distance from the target for the photo-taxis. With

the exploration task, MELAI generates robots able to visit

between 26 and 28 zones over 64 where with MEL, the best

robots visits only 22 and 24 zones. In the arena, MELAI find

solution which reaches the success threshold (about 0.14 meter

from the target) in a fewer generation (about 4 generations)

than MEL (about 6 generations). Also the variance over the

replicates is very low with MELAI while MEL still have some

replicates over the success threshold after the 12th generation.

However both MELAI and MEL produce similar results on

the escape room.

More interestingly, on the three environments, the best and

average initial task-performance (see second row of figure 5)

of MELAI is above the one obtained by MEL. This shows that

starting from a controller from the archive provides a better

start for the learning algorithm.

Another benefit of the controller archive is with respect to

efficiency (figure 6). On the photo-taxis task, the total number

of evaluations used per generation decreases over time for both

algorithms (MEL and MELAI). The number of evalutions used

by MELAI decrease faster and lower than MEL (see first row

of figure 6). This dynamic does not appear on the exploration

task because the learning algorithm does not have a target

performance value for this task. So, when possible, transfering

the controllers through the generation speed up the learning.

In other words, the learning process increases its efficiency

over generations when the archive is used.

Moreover the difference between the initial and best per-

formance values (learning delta) stays constant over the gen-

eration for both MELAI and MEL. As the archive allows the

learning to start from better solution, MELAI can reach better

solution after learning and in a shorter time for the photo-taxis

task. But starting from a better solution does not allow a wider

learning delta. In the supplementary material, readers can find

additional figures plotting the learning delta over the initial

task-performance and the learning delta over the generations,

which support the above interpretation.

B. Controller archive dynamics

To analyse the dynamics associated with using the controller

archive, two metrics related to the controllers stored in the

archive are monitored: their average and best task-performance

value (first row of figure 7) and their number (second row of

figure 7). The number of controllers in the archive corresponds

to the number of ‘types’ of body-plan generated by the MEA

(according to the 3-dimensional descriptor used).

The average and best task-performance values of the con-

trollers stored in the archive shown in figure 7 follow the

expected dynamic. It reaches quickly a plateau. The average

task-performance value reached is as expected an average of
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Fig. 5. Measures of effectiveness of the algorithms. In the first row, the best fitness values over the generations and in the second row the best and average of
the initial task-performance values over the generations. The values are plotted for MEL and MELAI. These experiments have been conducted with a budget
of 200 evaluations per body-plans and 20 generations. The coloured areas correspond to the confidence interval around the mean. Difference between the
distributions of the last generation is significant when a p-value and its critical value is indicated. The significant test is the Mann-Whitney U test.

Fig. 6. The number of evaluations per generation. The values are plotted for MEL and MELAI. The coloured areas correspond to the confidence interval
around the mean. Difference between the distributions of the last generation is significant when a p-value and its critical value is indicated. The significant
test is the Mann-Whitney U test.

the worst possible task-performance value and the best task-

performance value reachable. Of course, the worst possible

task-performance value is different for each environment and

task. The controller archive accumulates controllers through

the generations: some controllers are replaced over time by

higher performing versions, while others may never be updated

if the type of body-plan they belong to is not selected.

On the other hand the best task-performance in the archive

corresponds to the best task-performance in the population

(see figure 5).

The accumulation of controllers is shown in the second row

of figure 7. The number keep increasing and never reach a

plateau but slows down. This means that the MEA is capable

of continuing to produce body-plans with new combinations

of sensors and actuators. This is not surprising as the number

of different possible combination of sensors, joints and wheels

using MCME is 1024.

C. Influence of learning

Besides the controller archive, MELAI has a complexity

as it combined evolution of morphology and learning of

behaviours. To have some insights on the interaction between

these two optimisation processes, MELAI have been run with

five different budgets: [800,5],[400,10],[200,20], [150,30], and

[100,40] which correspond respectively to [learning budget,

number of generation]. All the variants has a population of 25

body-plans. Thus each variant tests a different totall number

of body-plans, for instance, the variant [400,10] tests 2500

body-plans. However, all the variants have the same total

number of evaluations of 100000. These variants are com-

pared with MELHS as ground-truth. All these complemantary

experiments have been conducted on the exploration task.

Figure 8 shows the best task-performances (number of zones

visited) over the number of evaluations. As expected, the

advantage of using learning is clear. The best individuals

produced by MELHS are visiting in average between 8 and 9

zones while all the variants of MELAI reaches between 23 and

28 in average. Also the quality of the solutions is increasing

very slowly starting from 8 and reaching barely 9 at the end.

With MELAI all the variants displays a neat learning curve.

On the other hand, the difference between the different

budget on MELAI is small. The variant [800,5] is suboptimal

comparing with the others. The variant [100,40] is the fastest

to reach a satisfactory solution with in average 25 zones

visited after around 15000 evaluations. Generally, reducing

the learning budget speed up the process. This is due to the

generational aspect of MELAI, smaller the learning budget

faster the generations. Ultimately, apart from [800,5] all the
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Fig. 7. Plots of three metrics over the generations related to the controllers in the archive. First row: the average and best task-performance. Second row: the
number of controllers in the archive. The coloured areas correspond to the confidence interval around the mean.

Fig. 8. Best fitness over the number of evaluations on the exploration task for six variants: [evaluations, generations] of [800,5],[400,10],[200,20], [150,30],
and [100,40] and MELHS. The coloured areas correspond to the confidence interval around the mean.

variants converges to similar task-performances.

D. Robot diversity

Finally, figure 9 shows the distribution of number of

wheels, joints and sensors of the robots with the highest

task-performance over the generations. These show that the

majority of successful robots have between three and five

wheels for all the environments and both tasks. While, the

majority of successful robots have no joints. This was expected

as the three environments have a flat floor. Interestingly, for

the photo-taxis task the best type of robot features at least one

sensor, while for the exploration task the majority of the best

solutions does not feature sensors. Indeed, to reach the target

three time at different location, the robot needs a sensor. On

the contrary, blind robots can easily visits a lot of zones.

This result is not surprising given that the main optimisation

process in MELAI is an MEA. Evolution is most likely to

proceed along the ‘easiest’ path that enables it to maximise

the fitness function. In this case, this corresponds to robots

with only wheels. This type of robot is easier to control and

therefore it is easier to learn a controller for them than robots

with joints and sensors, even though the latter may be more

efficient. Sensors emerge only if there are necessary like in

the photo-taxis task.

Therefore MELAI is able to produce different ’type’ of

robots depending on the task. In the supplementary material,

the reader can find a bar plot of the ’type’ of robots produced

over the whole population and all the generations. It shows

that the algorithm generate more robot with sensors on the

photo-taxis tasks.

Pictures of successful robots are shown in figure 10 as

examples.

VI. DISCUSSION

Advancing previous work in the domain of body-brain

evolution, we proposed a method to evolve robots in a rich

morphological space that includes a variety of sensors and

actuators and can realise skeletons with diverse forms and
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Fig. 9. For each of the three environments, distribution of the number
of wheels, joints and sensors over the best robots of each generation. The
coloured areas correspond to the confidence interval and the solid curves to
the central tendency.

Fig. 10. Examples of successful robots in each of the three environments

sizes. Hence, a considerably more diverse range of body-

plans can be produced in this space than in previous work

that either uses modular systems [24] or spaces in which

the components have common control mechanisms [16]. The

richer space increases the likelihood that a controller produced

via evolutionary operators will not match a new body-plan.

Additionally, the diversity of actuators in particular increases

the difficulty of learning a useful controller. Although using

a generative (morphology-independent) encoding can address

the inheritance issue, the time-complexity associated with

these methods can be prohibitive when working with physical

robots.

To address this we proposed the use of an external archive

that stores a learned controller associated with a ‘type’ of

robot. As described in the results section, we have demon-

strated that the archive improves significantly the quality of

the solution and the efficiency in evolving a body-plan capable

of solving a task The role of the archive and the various

components of the framework used in leading to this result

are discussed below.

Each cell of the controller archive stores the best controller

learned during an individual lifetime. The archive thus repre-

sents a history of knowledge that was learned in previous gen-

erations and can be passed to future generations. It therefore

acts as a novel form of inheritance. In the sense that it stores

information learned during an individual lifetime, it shares

characteristics with Lamarkian artificial evolutionary systems

[25]. Note that the tuple defining a ‘type’ is deliberately

simple. However, it should be clear that many different body-

plans can be mapped to each single cell, given that for any

given combination of sensors and actuators, the robot-skeleton

they are attached to can vary enormously in shape and size,

and the configuration of components can also vary. Given this

variation, it might be expected that inheriting a controller of

the correct ‘type’ would not necessarily bring much benefit.

However, it is clear from figure 5 that shows the best and

initial task-performance, that starting from a controller from

the archive brings a significant advantage. Interestingly, this

suggests that there is some generalisation of controllers across

a range of body-plans. The results shown in the second row

of figure 5 show that inheriting from the archive bootstraps

the learning process, and the size of this effect increases in

magnitude as the generations progress.

It would of course be possible to define each cell using a

higher degree of granularity, although there it is reasonable

to assume there is a balance to be struck in not making the

archive too granular (which at the extreme would map every

robot to an individual cell). Another way to approach this

would be to store multiple controllers per cell, and either

try them all, select one at random, or use a clustering or

species system to select the most suitable one. Also, increasing

the granularity of the archive means finding a morphological

descriptor meaningful in term of control. Finding a suitable

morphological descriptor is not an easy task. In one of our

previous works [9], different morphological descriptors have

been studied for novelty search. Among them was a symmetry

descriptor and a simplest one in which each components of the

robot was counted including the sensors and actuators. They
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are both suitable to separate different type of control. The

results shows that the most simple was better for producing

diverse body-plan with novelty search.

Recall that the framework consists of two components: an

MEA that learns body-plans and a learning algorithm based on

an evolutionary strategy that learns controllers. The former is

selected for its ability to explore a diverse space of plans and

based on previous work [9]. The selection of NIP-ES as the

learner is deliberate in that this algorithm demonstrates high

exploration capabilities. This is essential as the learner might

have to start from scratch if no controller is available in the

archive, or a selected controller might not be well adapted to a

new body. In contrast previous work which has used learning

as a mechanism to enhance a controller selected by evolution

(e.g. [24]) can afford to be much more exploitative.

Given the importance of the learning loop just discussed

when jointly optimising body-plans and controllers, it is nat-

ural then to discuss how a computational budget should be

balanced between the outer evolutionary loop and the inner

learning loop. The results shown in figure 8 shed some light

on this by varying the budget assigned to the learning from

100 to 200 evaluations. The smaller learning budget delivers a

faster bootstrap in both environments. It is also clear that using

the archive results in lower variance, particularly noticeable

when using the smallest learning budgets. However, the budget

of 200 evaluations gives more consistent results over the

environments and the two variants. Also, 200 evaluations is the

necessary minimum budget to have NIP-ES to its full potential

[10] (see supplementary materials). So, the choice of budget is

dependant on the learning algorithm used in MELAI. Also, it

is worth remarking that the decision regarding how to split this

budget is influenced by whether one is working in simulation

or on physical robots: in simulation, generating a body-plan

has negligible cost whereas in reality, producing a physical

robot can take weeks [17]. In contrast, evaluations are cheap

in both environments hence this may influence the choice.

Finally, many design choices made in this work are aiming

to match the present method with our physical system [28].

In particular, NIPES and the controller archive reduce the

number of evaluations needed to reach a satisfactory solution.

Of course, the present framework cannot be applied directly

on the real robotic platform. Indeed, on the photo-taxis task

in the arena, MELAI needs about 15000 evaluations shared

among 100 body-plans tested to reach a robots fulfilling the

task. In future work, hybrid methods using both simulated and

real robots will be investigated.

VII. CONCLUSION

This paper proposed a new framework MELAI for the joint

optimisation of body-plans and controllers in a diverse and

complex morphological space. The framework intertwines an

evolutionary algorithm MCME for evolving body-plans and an

evolution strategy NIP-ES for learning individual controllers.

Its key novelty is in the use of an external archive for storing

learned controllers for different ‘types’ of robot. This acts as

a novel form of inheritance and is shown to bring benefits

with respect to efficiency, bootstrapping the learning process

and leading to increased rates and magnitude of learning

over generations. It provides new insights into the complex

interactions between evolution and learning, and the role of

morphological intelligence in robot design. The work provides

a foundation for moving towards applying the framework

to evolve robots completely in hardware: in such a space,

increasing the efficiency of the evolutionary cycle is key for

reasons that include time, cost of materials, and wear and tear

on robotic parts.
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APPENDIX I: ALGORITHMS DESCRIPTION

A. Matrix-based CPPN morpho-evolution

1) Body-plan decoding: The body-plan decoding is a varia-

tion of the one proposed in the work of Buchanan et al.[9]. The

CPPN genome in this paper has four inputs and five outputs.

Three inputs represent the x, y and z coordinates of a cell in a

3D matrix to queried and a fourth input represents the distance

from the cell of the matrix to the centre of the matrix. Each

of the outputs defines the presence or absence of the skeleton

and/or component of each type.

The genome decoding takes place in four steps:

1) All the cells in the 3D matrix are queried to generate

the skeleton of the robot.

2) A repair mechanism makes changes to the skeleton to

meet the printing restrictions. Some of the restrictions

include: make sure there is only one piece of skeleton

and the skeleton is connected to the base of the head

organ.

3) All the cells on the surface of the skeleton are queried

to generate the organs. For this, the four outputs of

the organs are taken. The output with the highest value

defines the organ to be place on the cell.

4) A second repair mechanism removes colliding organs.

The decoding used in this paper has the additional feature

of generating multi-segmented robots and it works as follows.

The position of each skeleton voxel is queried in CPPN (Fig-

ure 11.1). If the component generated is a joint (Figure 11.2)

then a cuboid skeleton is generated at the other end of the joint

(Figure 11.3), The position of each face of cuboid is queried to

the same CPPN and components are generated (Figure 11.4).

The work of Hale et al.[28] described how the physical multi-

segmented robot are assembled in the robot fabricator.

Fig. 11. Generation of multi-segmented robots. (1) The main skeleton is
generated first. (2) A joint is place on the surface of one of the voxels. (3) a
cuboid skeleton with 4 cm side is generated at the other end of the joint. (4)
The CPPN is queried to generate components at each side of the cuboid.

The algorithm evolving the CPPN is the neuro-evolution

of augmenting topology (NEAT) [20] which is a generational

EA using a generative encoding to evolve both the topology

and the weights of the network. In this work, we use the

implementation of NEAT from the MultiNEAT library1.

2) Manufacturability restrictions: Each component in the

body-plan has to meet the same manufacturability criteria

introduced in the work of Buchanan et al.[9]. If an component

1http://www.multineat.com/

fails any of the manufacturability tests then the component is

removed from the final body-plan phenotype.

The physical head organ has 8 electrical connections for

components, therefore only up to 8 active components can be

connected to head skeleton at any time. The joints offer the

option to electrically daisy chain one more active component.

In total, a body-plan can have up to 16 active components.

The size of the skeleton connected to the head component

can be as big as 23cm x 23 cm 23 cm.

Fig. 12. Diagram describing NIP-ES algorithm

B. NIP-ES

The novelty-driven increasing population evolutionary

strategies (NIP-ES) is a learning algorithm introduced in one

of our previous works [10]. Primarily, this algorithm was

designed to find a solution using as few evaluations as possible.

NIP-ES is a custom version of the increasing population

co-variance matrix adaptation evolutionary strategies (IPOP-

CMA-ES) proposed by Auger and Hansen [30]. NIP-ES is

an algorithm of the CMA-ES family [31], [32] in which a

multivariate normal distribution (MVND) is used to sample

a set of solutions to be evaluated. This set of solutions is

equivalent to the population of an EA.

An iteration of a CMA-ES consists in three steps (see

figure 12):

(1) update the co-variance matrix and mean of the MVND;

(2) sample a new population;

(3) evaluate the population.

The magnitude of change of the co-variance matrix is

controlled by a parameter called sigma step. This parameter

is similar to the learning rate in reinforcement learning. From

an initial value (f0), the sigma step decreases at each iteration

and so, the adaptation of co-variance matrix slows down.

Among, the different updates function of the co-variance

matrix existing in the CMA-ES family, naturally, NIP-ES uses

the one of IPOP-CMA-ES implemented in libcmaes2 and used

in the benchmark of CMA-ES by Hansen [33].

In IPOP-CMA-ES can restart under certain conditions. After

a restart, the MVND’s parameters along with the sigma step

2https://github.com/CMA-ES/libcmaes
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are reinitialised and the population size is increased by a

factor two. As shown in figure 12, NIP-ES features the same

restart mechanism but differs in the stopping conditions. Two

conditions can trigger the restart of NIP-ES:

• Best task-performance stagnation : Over a window of

20 iterations if the standard deviation of the best task-

performance values are below a threshold (g1);

• Low behavioural diversity : If the standard deviation

of the populations behavioural descriptors are below a

threshold (g2). In this paper, the behavioural descriptor

of an individual is its final position in the arena.

These two conditions aim at detecting when the algorithm

get stuck in a local optimum.

Finally, NIP-ES’ fitness function is a weighted sum of two

objectives: the task-performance value and the behavioural

novelty score (see equation 2). The novelty score measures

how much the behaviour of an individual is new in comparison

with the other individual in the population and past individuals

stored in an archive [34]. The novelty score is computed by

averaging the distances between the individual and its 15

nearest neighbours in the population and the archive. The

archive of past individuals is updated at each iteration by

adding randomly a part of the population and individuals with

a novelty score above a threshold.

� = [ ∗ ( + (1 − [) ∗ A (2)

The objectives are weighted with a novelty ratio ([), the

novelty score (() is multiplied by the novelty ratio ([) and the

task-performance value (A) by the opposite novelty ratio (see

equation 2). The novelty ratio starts at one and then decreases

by a fix decrements ([3). When the algorithm restart the

novelty ratio is reinitialized at one. NIP-ES starts with a pure

exploratory behaviour to slowly transitions to a exploitative

behaviours.

In the context of this work, NIP-ES has three stopping

conditions:

• if an individual get a task-performance value above a

success threshold (g();

• if the maximum budget of evaluations is reached. The

budget can be exceeded when the size of the last popula-

tion is greater than the number of evaluations remaining.

• if after a trial periods of 50 iterations is passed with

getting the minimal task-performance value.

This last condition was introduced for MELAI to detect

when a body-plan does not have the minimum capability

required to solve the task. In a navigation task, it is simply by

detecting if the robot does not move after a certain simulation

duration.

NIP-ES is constituted of cycles by starting to explore for

solutions and then exploit the most promising ones. And after

each restart the exploration power of the algorithm increases

by doubling the population’s size. By starting with a small

population and only increasing it if necessary, NIP-ES tends

to use the minimum necessary number of evaluations [10].

With the hyper-parameters used in this paper, these cycles

are roughly of 20 iterations, therefore with a starting popula-

tion of 10, the minimum budget to have NIP-ES working in

TABLE I
HYPER-PARAMETERS OF NIPE-ES

Initial sigma step (f0) 1

Initial population size 10

Initial novelty ratio ([0) 1

Novelty ratio decrements ([3) 0.05

Sparseness number of nearest neighbors 15

Novelty threshold to add to archive 0.9

Probability to add to archive 0.4

Simulation time 60 seconds

Best task-performance stagnation threshold (g1) 0.05

Low behavioural diversity threshold (g2) 0.1

Trial period (number of iteration) 50

Success threshold (g() 0.95

its full potential is 200. This estimation is due to the fact that

the first stopping criterion can be triggered every 20 iterations

and the second criterion is the least probable to be triggered.

The hyper-parameters and their values for each experiments

of this article are listed in table I.

APPENDIX II: COMPLEMENTARY PLOTS AND FIGURES

C. Elman Network

Fig. 13. Diagram describing the Elman network structure. Solid lines
correspond to forward connections and dashed lines to backward connections.

D. Learning Delta over the initial task-performance

The learning delta is the difference between the the initial

and best task-performance. Figure 14 shows that at the best,

the learning delta decreases linearly when the initial task-

performance increases. Which means that starting from a better

initial solution does not increase the learning delta but allow in

most cases to reach better solution. Also, there is not a clear

difference between with and without archive on these plots.

Only, MELAI reaches higher initial task-performance on the

exploration task and on the photo-taxis task, the distribution

for MEL is more packed around the mean (0.6 of initial task-

performance).

E. Type of robots produced by MELAI



IEEE TCDS 2021 SPECIAL ISSUE ON TOWARDS AUTONOMOUS EVOLUTION, (RE)PRODUCTION AND LEARNING IN ROBOTIC ECO-SYSTEMS 14

Fig. 14. Scatter plots of the learning delta over initial task-performance. All
the values are given with the normalised task-performance
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