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Abstract The uncertainty in present‐day anthropogenic forcing is dominated by uncertainty in the

strength of the contribution from aerosol. Much of the uncertainty in the direct aerosol forcing can be

attributed to uncertainty in the anthropogenic fraction of aerosol in the present‐day atmosphere, due to a

lack of historical observations. Here, we present a robust relationship between total present‐day aerosol

optical depth and the anthropogenic contribution across three multimodel ensembles and a large

single‐model perturbed parameter ensemble. Using observations of aerosol optical depth, we determine a

reduced likely range of the anthropogenic component and hence a reduced uncertainty in the direct forcing

of aerosol.

Plain Language Summary Despite the impacts of global warming already being felt around the

world, it is still unclear how much of the effect of greenhouse gasses is being offset by the cooling effect of

atmospheric aerosol through the scattering of incoming sunlight and the modification of clouds. A large

part of the difficulty in determining the effect of aerosol is in understanding the proportion of present‐day

aerosol that is due to human activity. In this work, we demonstrate a strong relationship between the total

amount of aerosol in the present‐day atmosphere (something we can measure) and the amount due to

human activity (something we cannot). We further show that this allows us to reduce the uncertainty in the

cooling effect of aerosols.

1. Introduction

Aerosols affect the climate both directly by scattering and absorbing incoming solar radiation and indirectly

by providing the nuclei on which cloud droplets form. Anthropogenic perturbations to the natural back-

ground aerosol population can therefore change the balance in radiation at the top of the atmosphere and

hence provide a forcing, which offsets some of the forcing due to anthropogenic greenhouse gasses.

Despite a concerted effort since the last IPCC assessment (Myhre, Shindell, et al., 2013) the magnitude of

anthropogenic aerosol forcing remains highly uncertain.

One of the main sources of uncertainty in aerosol forcing is the lack of reliable observational estimates of the

amount of natural or preindustrial aerosol (Carslaw et al., 2013; Carslaw et al., 2017; Charlson et al., 1992).

Discerning the anthropogenic contribution to present‐day aerosol from present‐day observations directly is

challenging though. While some aerosol species, such as sea‐salt, are easy to attribute to natural processes,

others, such as sulfate and organic carbon, can have a variety of natural and anthropogenic sources. Further,

nonlinearities in some aerosol processes mean that anthropogenic perturbations can affect the production

and removal of natural aerosol (Stier et al., 2006).

Aerosol optical depth (τ, at 550 nm) is a measure of the extinction of solar radiation by aerosol and is

directly related to the direct aerosol effect. Satellite remote sensing retrievals of τ in the present day

(τPD) are available from a wide range of sensors, on different platforms and using different retrieval algo-

rithms. While satellite‐based retrievals of τ require accurate models of surface albedo and can suffer from

biases due to the need to accurately screen for clouds, they are the only aerosol data sets available which

provide near‐global coverage over land and ocean. τ is also a common GCM diagnostic, and a large

ensemble of model values are available from the AeroCom modeling community (Myhre, Samset,

et al., 2013), as well as some contributions to the CMIP5 and CMIP6 ensembles, making it an ideal

observational constraint.
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A number of cases have been found recently where relatively simple relationships between observable and

unobservable quantities can be discerned, belying the apparent complexity of the underlying system (Allen

& Ingram, 2002; Hall & Qu, 2006). These relationships can be exploited using observations to constrain

model ensemble values of the unobservable quantity. Correlation does not imply causation, however, and

so these “emergent constraints”must be treated with care to ensure that the relationship is physically based

and observationally robust. Further care should be taken that the ensemble of models used to sample the

uncertainty adequately reflects the uncertainty in the properties in question. Similarly, perturbed parameter

ensembles (PPEs) enable exploration of the parametric uncertainty, and with sufficient observations, a con-

strained estimate of a quantity from a given model. This method however can say little of the structural defi-

ciencies of a model and large intermodel differences may be unaccounted for. Here, we look to combine the

strengths of each of these approaches in a complimentary way. An emergent constraint from a large multi-

model ensemble is demonstrated but not relied on. Instead a PPE is used to explore, and constrain, the para-

metric uncertainty quantitively in one model, in the context of the larger multimodel ensemble.

In this work, we demonstrate, and explain, a robust relationship between τPD and the anthropogenic aerosol

optical depth, τant (defined as the difference between present‐day and preindustrial aerosol optical depth,

denoted τPD and τPI, respectively) across three different model ensembles. We use satellite‐based observa-

tions of τPD to constrain the uncertainty in τant in a large PPE, and in turn the clear‐sky aerosol

forcing (RFari).

2. A Constraint Emerges

As common GCM diagnostics, both τPI and τPD are available from a wide range of models. Here, we consider

the CMIP5 (Taylor et al., 2012) models which participated in the fixed sea surface temperature aerosol

experiments (Zelinka et al., 2014) and the AeroCom Phase II models (Myhre, Samset, et al., 2013). We also

include the recently produced CMIP6 ensemble. The τPI and τPD diagnostics are used from piClim‐control

and piClim‐aer simulations respectively, and the RFari is diagnosed using the APRP method (Taylor

et al., 2007; Zelinka et al., 2014) as applied to the CMIP6 model outputs (Smith et al., 2020). One drawback

in using these ensembles to represent uncertainty in aerosol forcing however is that many of these simula-

tions share anthropogenic emissions inventories and use the same or similar parameterizations for natural

aerosol emissions, potentially leading to a lack of representativity within and across these ensembles.

To sample these uncertainties, we use Gaussian process emulators (O'Hagan, 2006) trained on a PPE of 183

simulations of HadGEM3‐UKCA corresponding to distinct combinations of 26 physical parameters relating

to aerosol processes and emissions, for both present‐day (2008) and preindustrial (1850) emissions (Carslaw

et al., 2017; Yoshioka et al., 2019). The emulators are created using GPflow (Matthews et al., 2017) using a

Gausian process regression model with a radial basis function kernel and hyper‐parameters optimized using

the Broyden, Fletcher, Goldfarb, and Shanno algorithm (Nocedal & Wright, 2006). We are then able to

explore the full parametric uncertainty attributable to the chosen parameter perturbations in global mean

τPI and τPD by sampling the emulators at 1,000,000 parameter combinations from across the

26‐dimensional parameter space of the PPE, drawn using a set of expert‐elicited marginal distributions on

the parameters (Yoshioka et al., 2019). Note that the three parameters relating to carbonaceous emissions

Table 1

The Satellite Products and Global Mean Values Used to Estimate the Observational Uncertainty in τPD

Platform Sensor Retrieval AOD Reference

Aqua MODIS DarkTarget 0.159 Levy et al., 2013

Terra MODIS DarkTarget 0.175 Ibid.

ENVISAT AATSR ADV 0.168 Kolmonen et al., 2016

ENVISAT AATSR ORAC 0.174 Thomas et al., 2009

ENVISAT AATSR SU 0.136 North, 2002

Noaa18 AVHRR DeepBlue and SOAR 0.146 Hsu et al., 2013

Seastar SeaWiFS DeepBlue and SOAR 0.130 Ibid.

Mean 0.155

Standard deviation 0.018
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were left unperturbed in this experiment as τPD provides little constraint on these and they are only of sec-

ondary importance for RFari.

In order to account for the uncertainty in satellite observations of τPD, we use the standard deviation in the

global mean value obtained from seven distinct data sets covering five platforms, three sensors, and five

retrieval algorithms, as listed in Table 1. These observational data sets then provide well characterized global

estimates of τ, although the possibility of remaining systematic biases cannot be entirely discounted. Due to

the orbits of the platforms and the difficulty in retrieving τ over snow and ice, these values represent averages

only between 60°S and 60°N. For the PPE and CMIP6 values reported here, we consider the same latitudinal

range. While using only the global yearly average of τPD as a constraint allows considerable freedom in the

spatial and temporal distribution in the model, we find it still provides a robust constraint, and minimizes

observation and sampling uncertainties.

We consider all the sampled emulator variants whose τPD is outside the range of the observed values implau-

sible and hence reject that parameter combination. In effect, we are using a wide uniform (or top‐hat) dis-

tribution for the observed τPD and explore the sensitivity of our results to the width of this distribution

below. This “history matching” approach produces a “constrained” set of model variants which is now com-

patible with the observations (see, e.g., Lee et al., 2016). The parameter combinations corresponding to these

plausible simulations are then used to predict unobservable quantities such as τant and RFari, providing the

new, observationally constrained distributions.

Figure 1 shows the relationship between τant and τPD in the CMIP5 and Aerocom multimodel ensembles, as

well as the joint probability distribution for both the unconstrained HadGEM‐UKCA PPE (contour lines)

and the PPE constrained by the observations (as a hex‐density plot‐ which represents a 2D histogram using

hexagonal bins, avoiding visual artifacts sometimes associated with square bins). The marginal distributions

of τant and τPD for each of the ensembles are shown along the top and right‐hand side. The distribution of τPD
in both the CMIP5 and AeroCom ensembles peaks just below the lower observational bounds, while the

unconstrained PPE shows a larger spread and higher mean value—above the upper observational bound.

Aerosol models are typically “tuned” to have a plausible τPD (although they appear to be biased low com-

pared to these observations), while the PPE was designed to sample the full parametric uncertainty, and

so this difference is not surprising. The higher range of values for τPD shown in the PPE is due to the large

base τPD produced by the model (labeled “default” in Figure 1) and the large range of uncertainty in

sea‐salt emissions elicited during the construction of the experiment.

A clear relationship between global annual mean τant and τPD is evident in each of the ensembles and

can be understood in simple physical terms. First, it can be shown that the covariance between X and X

+Y, where X and Y are two normally distributed random variables, must be positive. The fact that both

τant and τPD are not independent and covary through shared removal mechanisms only increases this

covariance. This is demonstrated by drawing samples from the simple analytic model for τant described

by Charlson et al., 1992:

τant ¼ αSO4
f RHð ÞQSO2

Y SO4
LSO4

=A;

where the molar scattering cross section (αSO4
Þ, enhancement in scattering due to humidification (f), anthro-

pogenic sulfur dioxide source strength (QSO2
Þ; sulfate yield (Y SO4

Þ; sulfate lifetime LSO4
ð Þ, and global area

(A) all have the same values and uncertainty estimates (as Charlson et al., 1992). We then extend this to esti-

mate τPD as

τPD ¼ αSO4
f RHð Þ QSO2

Y SO4
þ Qn

SO4

� �

LSO4
=Aþ τSS þ τD þ τOC;

by including a natural sulfate source term (Qn
SO4

, with the same lifetime) and including natural sea‐salt (τSS),

dust (τD), and organic carbon (τOC) components from the distributions described in Bellouin et al., 2013. As

shown in gray‐scale contours of Figure 1, this distribution shows a very similar relationship to both ensem-

bles and is in remarkably good agreement with the observations. This good agreement suggests that poten-

tial nonlinearities in this relationship (such as spatiotemporal variation inLSO4
), which the PPE includes but

this simple model does not, are of secondary importance in the global mean.
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Indeed, the parameters which were found to affect the shape of the PPE joint distribution the most were the

scaling of sea‐salt and anthropogenic sulfate emissions, and the parameter scaling removal through dry

deposition (not shown)—the three key uncertainties in the simple model (where all removal terms are repre-

sented by an SO4 lifetime). While the anthropogenic emissions primarily affect τant and the sea salt emissions

only affect τPD, the dry deposition affects both, providing the basis of the relationship in the PPE (see

Figure S1). This allows an observational constraint on τPD (0.14–0.17) to be translated into a constraint on

τant (a 1σ range of approximately 0.03 to 0.05). Visually inspecting the overlap between the multimodel rela-

tionships and the observational range of τPD provides a very similar range of τant of approximately 0.03–0.04.

Clear‐sky RFari against τant for the samemodel ensembles is shown in Figure 2. The full joint‐probability dis-

tribution from the emulated PPE is shown with contour lines, while the values constrained by the τPD obser-

vations are shown as a hex density. The effect of the constraint of the τPD on the spread in uncertainty in both

τant and RFari is immediately obvious. The full distribution of RFari in the model variants sampled from the

emulated PPE peaks at −0.8 Wm−2 and is nonnegligible even at −1.2 Wm−2. After applying the constraint,

the remaining variants provide a 1σ range in clear‐sky RFari of −0.54 to −0.8 W m−2. This is very similar to

the original AeroCom range (−0.47 to−0.84Wm−2), and a similar range to that which would be provided by

assuming a linear relationship in both the AeroCom and CMIP5 ensembles (−0.7 to−0.85Wm−2) using the

values of τant derived above. The RFari is directly proportional to τant (Charlson et al., 1992) and this is

demonstrated by the excellent agreement in clear‐sky forcing efficiencies RFari

τant
among all three ensembles.

All of which are in line with the values for the AeroCom models reported by Myhre, Samset, et al., 2013;

Myhre, Shindell, et al., 2013 of −23.7± 3.1 Wm−2
τ
−1 (neglecting an anomalous outlier).

Figure 1. Distributions of the present‐day aerosol optical depth, τPD against the industrial‐era change in aerosol optical depth at 0.55 μm, τant, between

preindustrial and present‐day, from AeroCom Phase II, CMIP5 sstClimAerosol and CMIP6 piClim‐aer models. The full joint‐probability distribution sampled

from the emulated HadGEM‐UKCA 26‐aerosol‐parameter PPE is shown as contour lines and the constrained distribution as a hex density. The default and

median model runs of the PPE are also shown for completeness. The gray‐scale contour lines show the joint distribution sampled from an analytic approximation

described in the main text. The horizontal lines show the 1σ observational uncertainty range in globally averaged τPD, while the vertical lines show the resulting

1σ range in τant of the constrained PPE.
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Within this framework, we can ask what effect a reduction in the observa-

tional uncertainty in τPD would have on reducing the uncertainty in RFari
from the PPE even further. Figure 3 shows the uncertainty (1σ spread in

the constrained emulated samples) in RFari as a function of lower and

upper observational bounds on τPD. Naively, the uncertainty might be

expected to decrease closer to the diagonal where the observational uncer-

tainty is smallest. However, the largest control on the uncertainty in the

RFari as constrained through τPD is actually the magnitude of the upper

bound. This reflects the shape of the joint probability distribution in

Figure 1 where the lower bound is already on the edge of the plausible

values from the PPE, whereas the upper bound intersects the peak of

the probability distribution. Intuitively, this can be understood as the

τPD containing less information about the anthropogenic aerosol as the

magnitude increases, as there is more flexibility in how the total is parti-

tioned between anthropogenic and seasalt.

3. Discussion

The anthropogenic contribution to the present‐day aerosol loading has

been a key source of uncertainty in both bottom‐up and top‐down

Figure 2. Clear‐sky radiative forcing of aerosol‐radiation interactions, RFari in Wm
−2

, as a function of the industrial era change in aerosol optical depth at

0.55 μm, τant in AeroCom models (green), CMIP5 models (purple), and CMIP6 models (magenta). The slopes of the lines of best fit for each data set are

−19.1, −21, and −16.3Wm
−2

τ
−1

, respectively. The joint distribution of the full emulated PPE is shown with contours, while the samples consistent with τPD is

shown as a hex density. The default and median model runs are also shown for completeness. The 1σ uncertainties in the fits are shaded, and the correlation

coefficients are indicated in the parentheses in the legend. The 1σ ranges in τant and RFari from the constrained PPE are indicated by the vertical and horizontal

lines respectively.

Figure 3. The standard deviation in RFari sampled from the emulated

HadGEM3‐UKCA aerosol PPE for different lower and upper bounds on

the corresponding emulated τPD.
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estimates of the aerosol forcing. We have demonstrated a robust relationship between present‐day total and

anthropogenic aerosol loading across three multimodel ensembles and a PPE, which is consistent with a

simple physical model. Combined with observational bounds on the total present‐day aerosol loading we

estimate τant from the PPE to be in the 1σ range 0.031–0.049 (or a 95% credible range of 0.027–0.056). For

comparison, by determining the anthropogenic contribution to fine mode aerosol in the Monitoring

Atmospheric Composition and Climate reanalysis (Benedetti et al., 2009), Bellouin et al., 2013 determine

τant as 0.06. This is slightly higher than our estimate, potentially due to relying on the MODIS retrieved τ,

which are two of the largest values used in our observational data set. The Max Planck Institute Aerosol

Climatology (Kinne et al., 2006) combines AERONET climatologies with aerosol properties from

AeroCom models (Kinne et al., 2006) and report τant of 0.03, which is in good agreement with our estimate.

The plausible range in τant translates into a constrained clear‐sky RFari in the PPE of −0.69 ± 0.14 Wm−2 (or

a 95% credible range of −0.94 to −0.48 Wm−2). Although this range is not significantly smaller than the ori-

ginal ranges demonstrated in the AeroCom (Myhre, Samset, et al., 2013; Myhre, Shindell, et al., 2013) and

CMIP5 (Zelinka et al., 2014) ensembles, these were not sampling the full model uncertainty, as demon-

strated by the large uncertainty in the unconstrained PPE forcing for HadGEM‐UKCA (−0.91 ± 0.23

Wm−2, or 95% range of 1.32 to −0.56 Wm−2). The large difference in τ distributions between the PPE and

the other multimodel ensembles suggests that a wider (looser) constraint would be expected when taking

into account structural model differences however. This approach nevertheless shows the possibility of con-

straining τant using present‐day observations and the importance of improved observational estimates of τPD
and their uncertainties. We have also explored the sensitivity of this constraint to the observational uncer-

tainty in τPD. The constraint is much more sensitive to the upper bound, rather than the spread, and so a

robust estimate of this upper bound should be the focus for future investigation. It is also possible that other

retrieved properties, such as fine mode AOD or multiple‐wavelength AOD would provide a tighter con-

straint, in particular when applied simultaneously.

While all the model ensembles are in good agreement on the clear‐sky forcing efficiencies, there is still

uncertainty around the magnitude of aerosol absorption and, in particular, the absorptivity of black carbon.

Indeed, this PPE did not explore the large uncertainty in the imaginary part of the refractive index of black

carbon. By combining the AOD constraint with observations of absorbing AOD, it may be possible to better

constrain the magnitude of aerosol absorption. Future work will use absorbing AOD measurements to con-

strain the RFari, including the (large) uncertainty in these particles. The radiative forcing due to

aerosol‐cloud interactions (RFaci) depends logarithmically on τant and so is even more sensitive to its uncer-

tainty than RFari (Carslaw et al., 2013). Despite AOD being an unreliable proxy for cloud condensation

nuclei (Stier, 2016), a constraint on anthropogenic fraction should be expected to constrain the anthropo-

genic contribution to CCN and hence help constrain RFaci. Future work will explore this possibility.

Data Availability Statements

The CMIP5 values are available directly from Zelinka et al., 2014. The AeroCom II data are read directly

from the tables in Myhre, Samset et al, 2013; Myhre, Shindell et al. 2013. CMIP6 data will be made available

as a supplement to Smith et al., 2020. Raw simulation output data from the HadGEM‐UKCA PPE ensembles

are available as Met Office postprocessing data format (.pp; Met Office, 2013) from the JASMIN data infra-

structure (http://www.jasmin.ac.uk). Some of the climate‐relevant fields are derived and stored in netCDF

files (.nc) containing data for all ensemble members and made available as a community research tool.

The total data sizes are around 85 TB.
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