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Abstract

Background Solitary bees, such as the red mason bee (Osmia bicornis), provide important ecosystem services including 

pollination. In the face of global declines of pollinator abundance, such haplodiploid Hymenopterans have a compounded 

extinction risk due to the potential for limited genetic diversity. In order to assess the genetic diversity of Osmia bicornis 

populations, we developed microsatellite markers and characterised them in two populations.

Methods and results Microsatellite sequences were mined from the recently published Osmia bicornis genome, which was 

assembled from DNA extracted from a single male bee originating from the United Kingdom. Sequences were identified 

that contained dinucleotide, trinucleotide, and tetranucleotide repeat regions. Seventeen polymorphic microsatellite markers 

were designed and tested, sixteen of which were developed into four multiplex PCR sets to facilitate cheap, fast and efficient 

genotyping and were characterised in unrelated females from Germany (n = 19) and England (n = 14).

Conclusions The microsatellite markers are highly informative, with a combined exclusion probability of 0.997 (first parent), 

which will enable studies of genetic structure and diversity to inform conservation efforts in this bee.

Keywords Megachilidae · Red mason bee · Osmia bicornis · Microsatellite marker · Population structure · Conservation 

genetics

Introduction

Bee species are experiencing global declines, which is of 

great concern as they are indispensable pollinators [1–3]. 

The importance of genetics and genomics to bee conserva-

tion is becoming increasingly recognised [1–3]. The risk of 

extinction can be an order of magnitude higher for bees rela-

tive to their diplodiploid counterparts [2, 3]. The increased 

risk of extinction stems from two compounding effects. (a) 

Haplodiploid bees are expected to have a 25% reduction 

in genetic diversity on average, compared to diplodiploid 

counterparts [2]. This in addition to (b) complementary sex 

determining systems that can give rise to sterile or inviable 

diploid males, which further reduce the breeding effective 

population size [2, 3]. Consequently, ascertaining genetic 

structure and genetic diversity of hymenopteran pollinators, 

alongside their sex determining system, will be critical to 

conservation efforts [1–3].

In order to conserve the valuable ecosystem service of 

insect pollination in crop production, it could suffice to focus 

on common or dominant species [4]. Members of the soli-

tary bee genus Osmia are considered such dominant crop 

pollinators, with six members of Osmia belonging to the 

top 100 of bee species with the highest mean contribution 

to crop production value (Osmia cornifrons, Osmia lignaria, 

Osmia taurus, Osmia bicornis, Osmia pumila, and Osmia 

virga; [4]). In fact, Osmia have been extensively studied 

with regard to their potential for crop pollination in green 

houses and fruit crops [5], and Osmia bicornis is already 

commercially available for this purpose in parts of Asia, 

Europe and North America. Acquiring genetic information 

on such a common and dominant species may not only aid 
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conservation efforts, but will also help inform commercial 

breeding and export practices.

Microsatellite markers are part of the molecular toolbox 

that can help inform these efforts, particularly in analyses 

where many individuals are included and subpopulations 

are of interest [6]. Neumann and Seidelmann [7] have previ-

ously identified and validated six microsatellite markers for 

O. bicornis; five dinucleotide repeats and one trinucleotide 

repeat (Table 1). However, dinucleotide repeats are among 

the least reliable as they are more prone to stutter and slip-

page [8]. The resulting shadow bands make dinucleotide 

repeats harder to call, increasing human error in genotype 

calling, which can have far reaching consequences [9]. As 

power of inference relies on the number and variability of 

loci, and the number of individuals sampled [10], the use of 

the six existing microsatellites requires large sample sizes to 

study population genetic structure in O. bicornis [11]. The 

recently sequenced and assembled O. bicornis genome [12] 

using DNA isolated from a male bee sampled in the United 

Kingdom (Penmenner Rd, Lizard, Helston TR12 7NR in 

2015; biosample: SAMN05967202) provides an opportunity 

to expand on these existing microsatellite markers. Here we 

identify seventeen new polymorphic microsatellite markers 

for O. bicornis mined from its genome [12], sixteen of which 

were designed and tested as multiplexes to allow for rapid 

and cost-effective genotyping of this species.

Materials and methods

Microsatellites were mined from the O. bicornis genome 

[12; Accession Nr. SRP065762] using MISA (MIcroSAtel-

lite; [13]). Di-, tri-, and tetra-nucleotide repeats were mined, 

with a minimum of eight repeats. Tetranucleotide repeats 

were preferred as they show less stutter and slippage [8] 

and are easier to call. Twenty sequences were selected, 

avoiding poly(N) sequences and composite repeats. Prim-

ers were designed in the sequence flanking the repeat regions 

(20–50 bp away from the repeat) using Primer3 [v 0.4.0; 14] 

with: the optimum melting temperature  (Tm) set at 60 °C, 

product size ranging from 100 to 300 bp, a maximum differ-

ence in  Tm of 0.5 °C between forward and reverse primers, 

a maximum poly(N) of three, a CG clamp, and using Schil-

dkraut and Lifson’s [15] original salt correction formula. 

These thresholds and conditions were relaxed only when no 

appropriate primers could be found.

Live O. bicornis were obtained from a commercial 

breeder (Dr Schubert Plant Breeding Landsberg, Ger-

many) from two breeding sites 100 km apart. Additional O. 

bicornis were obtained from MasonBees Ltd. (Shropshire, 

UK), originating from sites in North Shropshire and Surrey 

(240 km apart). The commercially bred German sites were 

treated as being part of the same population, whereas the 

English sites were treated separately. All individuals were 

delivered as live cocoons within intact nest tubes as part of 

a larger study. 45 nest tubes containing 2–16 individuals 

(mean ± SE = 8.850 ± 1.064) were acquired in total. Adults 

were sexed, with males having a white tuft on the frons, 

whereas females possess two horns. As all of the individu-

als in a single nest tube are presumed to be either siblings 

or half siblings, a single female was taken from each nest 

tube (N = 41).

DNA was extracted using hot sodium hydroxide and pH 

was adjusted using Tris–HCl [HotSHOT; 16]. Specimens 

were frozen at − 20 °C for 1 day, after which a single leg of 

each female was removed using sterile tweezers. Legs were 

placed in a 0.2 ml microcentrifuge tube (Applied Biosys-

tems) and 75 μl of HotSHOT alkaline lysis buffer (25 mM 

NaOH, 0.2 M EDTA, pH 12) was added. Samples were 

incubated at 95 °C for 30 min and cooled to 4 °C for 3 min. 

75 μl of HotSHOT neutralisation buffer (40 mM Tris–HCl, 

pH 5) was added to neutralise the pH. Samples were stored 

at − 20 °C and used within 3 months. Amplification was 

conducted in 2 μl PCR-reactions following Kenta et al. 

[17]. 0.5–20 ng of DNA template was air-dried at 50 °C for 

30 min. 2 μl PCR-reactions were prepared, containing: 1× 

Multiplex PCR Master Mix (QIAGEN) and 0.2 μM primer 

mix—containing fluorophore-labelled forward primer 

(6-FAM and HEX, Sigma-Aldrich; NED, ThermoFisher Sci-

entific) and unlabelled reverse primer in low TE. The PCR 

profile initiated at 95 °C for 15 min, followed by 45 cycles 

of 95 °C for 30 s, 57 °C for 1.5 min and 72 °C for 1.5 min. 

Final extension was performed at 60 °C for 30 min. All PCR 

reactions were performed with the annealing temperature 

of 57 °C, as primer sets were designed for the purposes of 

multiplexing and 57 °C was sufficiently low to amplify all 

primer sets (Table 1). An ABI 3730 48-well capillary DNA 

Analyser (ThermoFisher Scientific) was used for genotyp-

ing, using GeneScan 500 ROX dye Size Standard (Applied 

Biosystems). Genotype calling was performed using Gen-

eMapper (v 3.7; Applied Biosystems), with manual binning 

and scoring of alleles. Alleles were considered polymorphic 

when the minor allele frequency was larger 0.05.

Individuals need to be less related than half-sibs to cor-

rectly test for both Hardy–Weinberg and linkage equilib-

rium. Using seventeen markers, all females were tested for 

possible sibship within each population using MLrelate [v 

1.0; 18]. A total of eight females were identified as possibly 

belonging to half-sib pairs, and one female was subsequently 

removed from each putative half-sib pair for analysis. This 

left 33 females to be analysed. The German individuals 

were pooled for analysis, as a previous study indicated that 

isolation by distance may be both weak and insignificant 

in this species [11]. The respective sample sizes of each 

population can be found in Table 2. Allele frequencies, null 

allele frequencies, and expected and observed heterozygosity 
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Table 1  Primer sequences of one monomorphic and seventeen poly-

morphic Osmia bicornis microsatellite loci (Obic) mined from the 

genome [12], as well as the primer sequences of the six existing 

Osmia bicornis markers (Oru) from Neumann and Seidelmann ([7] 

provided for completeness and ease of access)

a Obic428 was monomorphic, and Obic450 was dimorphic, hence these loci were not tested in multiplex
b The existing microsatellite markers from Neumann and Seidelmann [7] were not tested or incorporated here

Tm = melting temperature in °C, MS = multiplex primer set (all PCR amplified at 57 °C), FL = fluorophore label, Motif = repeat motif, and Refer-

ence = NCBI Reference Sequence ([12]; with genomic location in italics) or EMBL accession number in the case of the Oru markers from [7]

Locus FL Primer sequence (5ʹ–3 ʹ ) Tm MS Motif References

Obic113 6-FAM F: CTG CCC TCT CGT CTC TTC C 60.08 C (CCAG)7 NW_021683655

R: AAT TCG GGT TGA AAC CTG TG 59.83 3,249,555–3,249,781

Obic1176 HEX F: ACG CTT GTC GCT TTCAG 60.14 B (TGTA)8 NW_021683667

R: TTC TCG AAC AGA TGT CCT TGG 60.24 1,318,406–1,318,636

Obic1181 NED F: CTC GGG AAT CCA CCT TAT TG 59.38 A (CTTT)13 NW_021683667

R: TGC CTA GCG AAA GAG GGT AG 59.61 1,330,169–1,330,419

Obic1206 HEX F: CCA ACC TTC CCA CAC CTA AC 59.3 D (ACCT)9 NW_021683667

R: AAC AGG ACA AAG GAG CGA AG 59.47 1,448,980–1,449,214

Obic1238 6-FAM F: ACA ATT TGT AGG GTG GAC ACG 59.77 B (AGCA)13 NW_021683667

R: GCG ATT CAA CCT CCT TTC AC 59.68 268,439–268,685

Obic1252 6-FAM F: CCT TCC TAT GTC GCT GCT G 59.56 C (TTTC)17 NW_021683667

R: TCC AAG TTC CTG TAC CAA TGTG 59.89 362,230–362,496

Obic1374 6-FAM F:CTA TCC GGC ACT CTT TCT CG 59.97 A (GTTC)9 NW_021683668

R: AAA CGC GGA ATG AGA TAT GC 60.07 896,441–896,675

Obic168 HEX F: AGC CAC GTT GAA GTT GTT GC 61.28 A (TTC)10 NW_021683656

R: GGG TTT CTC CGT TCT GCT G 60.79 1,147,308–1,147,536

Obic1 HEX F: CGG TTT ATG GCA GGT AAA CG 60.37 D (AG)14 NW_021683655

R: GTA GCA GCA GCC GGT GTA TC 60.83 1,045,524–1,045,750

Obic220 NED F: CTG CAT CAC CTA CGC AAC TG 60.47 D (CGCA)8 NW_021683656

R: AAC GCG CCA AGT AGA ATC TG 60.41 2,567,542–2,567,772

Obic415 6-FAM F: GAA TGG GCA ACG TCT ATT TACAG 59.91 A (CAGA)8 NW_021683658

R: ATC CTT TGT TGC CGT TTG TC 59.98 562,062–562,292

Obic450a 6-FAM F: TTG CCT TTC GAA ATC AAG C 58.98 – (GAAG)6 NW_021683659

R: CGA CAG ATC GAA ACG TCA TC 59.25 140,411–140,633

Obic629 HEX F: CTG CTT CGG CCT CTT TCT AC 59.22 B (CTTT)12 NW_021683660

R: AAG TCG GTT CTT CGC ATA CC 59.2 1,912,638–1,912,876

Obic73 HEX F: CCA ATA CCT CCC TCT TCT CCTC 60.44 C (TCC)14 NW_021683655

R: CCC ACG TTC TGC CAT TAC TC 60.52 2,545,096–2,545,330

Obic740 NED F: AGT ACG CGT CAC GAC AAA GAG 60.5 C (AAGG)17 NW_021683661

R: GTA CAA CCG GCC ATC GTA TC 60.22 26,681–26,947

Obic77 NED F: GAT CTC GTG TTC ACG GTA GG 58.16 B (GT)19 NW_021683655

R: CTG CAG TTT CCT GGA TCG 57.82 2,568,116–2,568,352

Obic95 6-FAM F: TTT AAG GAA ACA GCC AGC AG 58.17 D (GGAA)9 NW_021683655

R: TTC ATG AAG TAT AAG AGG AAA CGA C 58.00 2,886,250–2,886,484

Obic428a 6-FAM F: GGG TAA AGG GTT AGG GAA CTG 58.88 – (TGGC)6 AJ884679

R: AGC AAG GGT GGT AGT GAA GG 59.21

Oru10b – F: TTT CAT GTT CCG TAT TGT CA 50 – (AC)11 AJ884680

R: TGT TCG CTT CCA AAA TCA 50

OruS4b – F: GAA CGA AAC ACC ACT GTC TT 50 – (AC)10 AJ884681

R: CAC GGC GAG ACG AAT 50

OruE5b – F: CGG AGA CTT GGT TGA AAA T 50 – (GA)13 AJ884682

R: AAG CAC TAC CAC CTT TCT TTA 50

OruS8b – F: TTG GAA AAG AAG CGG ATG AG 51 – (AG)14 AJ884683

R: CAC CCT CGG AAC CAC TCT C 51

OruC4b – F: CGT AGA AAA CGA ACC CTG TAA 52 – (CT)13 AJ884684

R: CGA TAG CCG TAT GGT AGC AC 52

OruA8b – F: TCG CGA TGT ATC GTG TTC CTT 54 – (GAA)9 AJ884679

R: GGC TGG CGG CTG TCT AAG 54
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were estimated using Cervus [v 3.0.7; 19]; Hardy–Wein-

berg equilibrium and linkage disequilibrium were tested 

using GENEPOP [v 4.7; 20,21]. Tests for Hardy–Weinberg 

equilibrium and linkage disequilibrium were carried out by 

population, and corrected using false discovery rate [22]. 

Genotyping data used are given in Online Resource 1. Four 

multiplexes (Table 1) were designed using Multiplex Man-

ager [23] and AutoDimer [24], and subsequently checked 

for allelic dropout and non-specific amplicons by comparing 

replicates of the samples carried out in simplex, duplex and 

the eventual multiplexes shown in Table 1.

Results

A single locus (Obic428) was found to be monomorphic, 

and was subsequently excluded from analysis. The remain-

ing seventeen loci were in Hardy Weinberg equilibrium 

(p > 0.05; Table 2). Out of all 136 marker combinations 

(n*[n − 1]/2), for each of the three populations, none 

showed significant linkage disequilibrium (p > 0.05). Esti-

mates for null allele frequencies could only be obtained 

for the pooled German population (n = 19), this was due 

to the high variability at each locus coupled with the low 

sample size in the English populations (n = 7, in each). 

Obic113 and Obic1374 showed a high estimated null 

allele frequency (> 0.1) for the pooled German population 

(Table 2). For the English populations, a large disparity 

between observed and expected heterozygosity (Δ > 0.2) 

may be indicative of the presence of null alleles, which 

Obic168 and Obic450 showed for the North Shropshire 

population (Table 2). Obic740 likewise showed a dif-

ference in observed and expected heterozygosity in this 

population (Table 2), albeit below 0.2 (Δ = 0.19). For the 

Surrey population, the expected and observed heterozy-

gosities of Obic415 and Obic113 were also suggestive of 

the presence of null alleles (Table 2). Because null alleles 

for several markers in this study (Obic113, Obic1374, 

Obic168, Obic450, and Obic415) are population specific 

(Table 2) care must be taken when using these markers 

in future studies. Null alleles (as well as allelic drop out) 

might occur for any marker depending on the population. 

Therefore, estimating null allele frequency and accounting 

for error rates by using appropriate tests is necessary for 

any analysis [9].

Discussion

Solitary bee species tend to be understudied genetically, 

compared to their social cousins [25]. Osmia bicornis 

is only one of two Megachilid bees to have its genome 

sequenced [3], and here we present seventeen newly 

mined and validated microsatellite markers. Additionally, 

Table 2  Characterisation of the seventeen multiplexed Osmia bicornis microsatellite loci for three populations

NA = number of alleles,  Ho = observed heterozygosity,  HE = expected heterozygosity, HWE = p-value for Hardy–Weinberg equilibrium test, 

Null = estimed null allele frequency, and  PSA = proportion of individuals successfully amplified. Markers in bold showed estimates of null 

alleles > 0.1 or disparate observed and expected heterozygosities that may be suggestive of null allleles

Locus North Shropshire, England (N = 7) Surrey, England (N = 7) Landsberg, Germany (N = 19)

NA HO HE PHW PSA NA HO HE PHW PSA NA HO HE PHW Null PSA

Obic113 3 0.29 0.28 1 1 5 0.29 0.66 0.096 1 6 0.42 0.49 0.467 0.114 1

Obic1176 7 0.71 0.88 1 1 5 0.71 0.85 1 1 6 0.74 0.74 0.467 − 0.024 1

Obic1181 4 0.71 0.65 1 1 4 0.57 0.71 1 1 8 0.68 0.78 0.716 0.063 1

Obic1206 4 0.86 0.7 1 1 2 0.29 0.26 1 1 6 0.63 0.69 0.737 0.042 1

Obic1238 4 0.57 0.65 0.94 1 4 0.71 0.66 1 1 6 0.79 0.74 0.971 − 0.04 1

Obic1252 5 0.71 0.8 1 1 5 0.83 0.82 1 0.86 8 0.68 0.82 0.716 0.079 1

Obic1374 3 0.71 0.67 1 1 4 0.57 0.69 1 1 6 0.53 0.72 0.467 0.152 1

Obic168 3 0.29 0.62 0.84 1 2 0.29 0.44 1 1 6 0.63 0.76 0.467 0.064 1

Obic1 2 0.14 0.14 NDa 1 1 0 0 NDa 1 5 0.47 0.5 1 0.016 1

Obic220 2 0.57 0.53 1 1 2 0.57 0.53 1 1 3 0.53 0.5 1 − 0.049 1

Obic415 3 0.57 0.47 1 1 4 0.43 0.71 0.533 1 7 0.42 0.52 0.716 0.058 1

Obic450 2 0.14 0.36 0.94 1 2 0.29 0.44 1 1 2 0.47 0.37 0.813 − 0.134 1

Obic629 6 0.86 0.84 1 1 4 0.86 0.74 1 1 6 0.68 0.79 0.716 0.055 1

Obic73 3 0.43 0.56 1 1 3 0.71 0.7 1 1 5 0.74 0.7 1 − 0.04 1

Obic740 8 0.71 0.90 0.84 1 7 0.71 0.88 0.533 1 11 0.79 0.86 1 0.031 1

Obic77 3 0.43 0.39 1 1 2 0.29 0.26 1 1 3 0.32 0.28 1 − 0.081 1

Obic95 3 0.86 0.70 1 1 5 0.71 0.76 1 1 6 0.74 0.74 0.716 − 0.008 1
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the markers work in conjunction with a relatively easy 

extraction method [16], which lends itself to non-invasive 

sampling. The existing microsatellites [7] have already 

been used to gauge genetic differentiation in subpopula-

tions across Europe [11]. However, even with the large 

sample sizes used, patterns such as isolation by distance 

could not be definitively inferred [11]. Power of inference 

relies heavily on the number and variability of loci [10], 

and the markers presented here are a marked improvement 

upon this. The markers will prove valuable in gauging the 

genetic diversity, inbreeding and effective population 

sizes of this common solitary bee. For instance, nothing 

is known on the impact of the species’ commercial move-

ment on the genetic structure and health of wild popula-

tions. Furthermore, the marker set could be used to: char-

acterize population densities and foraging range [3], help 

identify cryptic species [1], perform a genetic test of the 

mating system of the species, and study genetic diversity 

in relation to immunity for instance [1]. Ultimately, such 

studies will help inform and establish robust breeding and 

conservation programs [1–3]. Our new markers will sup-

plement the six existing markers [7], bolstering the power 

of inference in genetic studies. The new markers have been 

combined and validated for use in multiplex PCR, to create 

a robust and powerful set of markers, suitable for cost- and 

time-effective genotyping.

As bee declines threaten the integrity of ecosystem 

function and food security [1, 3], managed and semi-

managed pollinators such as O. bicornis and related 

Osmia species are becoming increasingly important as a 

supplementary pollinator force [5]—particularly for use 

in greenhouses and orchards. For instance, Osmia corni-

frons and Osmia excavata are used in parts of Asia, where 

Osmia pedicornis and Osmia taurus are also being con-

sidered as managed pollinators [5]. Osmia cornuta is used 

alongside O. bicornis in Europe, and Osmia lignaria, O. 

cornifrons, and Osmia ribifloris are all used in the United 

States [5]. All of these agriculturally managed Osmia spe-

cies (excepting Osmia ribifloris) belong to the ‘bicornis 

clade’, originating 5.6 Ma ago (4.2–7.1 Ma; [5]). Due to 

this close phylogenetic relationship (O. pedicornis and O. 

taurus having the closest relation [5]), many of the mark-

ers developed for O. bicornis here are likely to work in 

these species as well. As no other Osmia have had their 

genomes sequenced so far [3] and no microsatellite mark-

ers yet exist for these species, the microsatellite markers 

that are available for Osmia bicornis may provide a timely 

answer for monitoring and studying these species. Espe-

cially, considering Osmia species are being introduced to 

non-native areas due to their utility as managed pollina-

tors, potentially driving decline in native congeners [5].

Supplementary Information The online version contains supplemen-
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