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Abstract. Motivation modulates behaviour depending upon contextual
and internal cues. Like animals, successful artificial agents must imple-
ment different behavioural strategies in order to satisfy dynamical needs.
Such causal factors emerge from internal homeostatic or allostatic pro-
cesses, as well as from external stimuli or threats. However, when two or
more needs coalesce, a situation of motivational conflict ensues. In this
work we present a four-stage dynamical framework for the resolution of
motivational conflict based upon principles from dynamical systems and
statistical mechanics. As a central mechanism for the resolution of con-
flict we propose the use of potentials with multiple wells or minima. This
model leads to behavioural switching either by means of a bifurcation
or by the stochastic escape from one of the wells. We present analytical
and simulation results that reproduce known motivational conflict phe-
nomena observed in the study of animal behaviour, in the case of two
conflicting motivations.

Keywords: Motivation · Motivational conflict · dynamical systems ·
behavioural switching · attractor dynamics

1 Introduction

Dealing with motivational conflict is an important aspect of animal behaviour
[19]. Consider, for example, the conflicting need to eat or drink as studied in
[15, 16], or the conflict between aggression and mating as exemplified by the
response of male stickleback fish to territory invasion by a female conspecific [1].
The former conflict is driven by opposing intrinsic needs or deficits, the latter is
driven by extrinsic factors, and in both cases conflict resolution requires multiple
needs to be satisfied.

Different types of conflict yield different behavioural patterns. Conflict may
be resolved via time budgeting, modulated by biological rhythms that occur
on different time scales [2]. Or it may be resolved by switching between alter-
native behaviour systems that may be inhibited or disinhibited by the current
behaviour. New patterns of behaviour may emerge (ambivalence), and these
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may be related (redirection) or unrelated (displacement) to the causes of either
motivation [2].

An influential conceptual model of motivation was introduced by Lorenz
[10]. Accordingly, independent reservoirs are filled by ‘energies’ that are action-
specific, and when a corresponding energy threshold is exceeded a valve opens to
release the corresponding behavioral pattern. Theoretical investigations of moti-
vational conflict often extend this idea to additionally consider direct interactions
between motivations via cross-inhibition [12]. Most early investigations incorpo-
rated analogies from control theory [18], and in particular used feedback loops
to implement Lorenzian energy build-up with competition between motivations
driven by internal deficits. Deficits usually inhibit one another directly [11] or
bias a decision switch based on ‘tendencies’ derived from internal state [7]. Such
models can be shown to reproduce a wide range of motivational phenomena, but
they have been difficult to map directly onto neural systems.

Here we develop a model of how multiple conflicting motivations, each formu-
lated in homeostatic terms, may be resolved to generate appropriate animal (or
robot) behaviour. The model is considered first in theoretical terms, and then
in terms of simulated robot behaviour.

2 Behaviour under motivational conflict

The proposed model has four stages: Internal physiological state, motivational
dynamical system, behavioural selection and pattern expression.

Internal physiological state

We describe the internal physiological state of the agent as a dynamical system.
What are referred to in the literature as deficits, are encoded in the state vector
x ∈ R

n. For some motivational systems, e.g., thirst or thermoregulation, the state
vector can be associated with a physical quantity such as the amount of water or
body heat. For others, such as aggression, it can be related to the accumulation
of an action-specific ‘energy’, in the Lorenzian sense [1]. The internal state vector
evolves according to the following dynamical law,

ẋ(t) = −f(x(t)) + g(u(t)) + h(a(t)). (1)

The first term on the right, −f(x), represents the decay of the energy, corre-
sponding to the Lorenzian model, with the function f specifying the nature of
the decay (e.g., zero-order, first-order etc.) as well as potential interactions be-
tween homeostatic systems. The second term represents an external input u(t),
with the function g allowing for a linear or nonlinear transformation of that
input (i.e., to represent absorption or thermal conductivity dynamics etc.). The
final term represents an autonomic homeostatic process, a(t), with h similarly
enabling linear or nonlinear transformations.

The physiological processes we consider are assumed to evolve on slower
timescales than that which characterises the behavioural responses, in a close
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submanifold of Rn, given the existence of physiological limits for all processes,
i.e., concentrations can not be negative. To illustrate, consider the following
examples.

Simple reservoir. The simplest model is a constant rate of decay of e.g., energy,
that can be used to represent deficits such as of water or food [7]. Accordingly,
the physiological state evolves by ẋ(t) = −αT + u(t), where α is the decay rate,
T represents some internal autonomic response such as heat generation, and
u(t) represents environmental input, e.g., ambient temperature (note that here
f ≡ 0, g(u) = u and h(T ) = αT ).

Thermoregulation. Consider a recent model of thermoregulatory behaviour pro-
posed by [6], according to which agents are exposed to an ambient temperature
xa and exchange heat upon contact with other agents, xc(t), resulting in a body
temperature, x(t), that evolves according to ẋ(t) = −[k1A + k2(1 − A)]x(t) +
[k1Axa(t)+k2(1−A)xc(t)]+G(t). Here, k1 and k2 are thermal conductivity con-
stants for the exposed area, A, and the non-exposed area of the body, and G(t)
is an autonomic heat generation mechanism that encapsulates different physio-
logical heat sources. Again, the three terms in the right hand side correspond to
those of the general model.

Additionally, we propose that at the interface between body and brain i)
the state vector first has to be compared to some desired state (or set point) to
configure deficits or excesses and respond accordingly. Note that the set point can
be variable (allostatic) ii) the corresponding quantities must be normalized and
expressed in a common currency in order to drive behaviour, and iii) responses
to states representing physiological extremes should be differentially weighted to
avoid fatal consequences (see [18, 13]). The output of these three transformations
is what we call a drive, and the component transformations can be expressed as

xd = D(x− xp), (2)

where D is a non-linear map defined as D = (U ◦N), that is, D(x) = U(N(x)).
The component functions correspond to normalization, N , and urgency, U . Nor-
malization should limit values to the interval [0, 1], and may be linear (compres-
sion of the original domain) or non-linear (e.g., a sigmoidal relationship between
physiological state and motivation). Urgency expressions should ensure that ex-
treme values of the physiological range give rise to higher drives than those closer
to the set points.

Motivational dynamical system

The motivational state of the agent is modelled as a classical particle undergo-
ing random fluctuations, influenced by the potential V (x). The particle can be
thought of as existing in a one-dimensional domain of the generalized motiva-

tional space, P, which we assume here is equivalent to the real line.
We consider distinct motivations to correspond with specific locations of the

phase space P (Figure 1). The energy landscape provided by the motivational
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potential specifies regions of minimal energy that trap the particle for a period
in its evolution, with unstable regions serving as barriers. This energy landscape
is changed dynamically as a function of the motivational factors, i.e., the drives.
More precisely, if ρ(t) represents the position of the particle in the motivational
coordinate, its time evolution is given by

ρ̇ = −
1

τ

∂V

∂ρ
+ σdW (t). (3)

The first term in the right, V (ρ, am), is a potential field that depends upon
the drives, and other motivational factors described shortly, and τ is the time
constant for the evolution. We formalize the concept of a motivation by restrict-
ing V : P × R

n → R to be a motivational potential if and only if there exist
elements ρ̄1, ρ̄2, . . . , ρ̄k, k > 0 such that ∂V

∂ρ (ρk, a1, . . . , ak) = 0 when am = 0
for all m = 1, . . . , k. This characterizes the initial, undisturbed shape with
k motivations. The second term to the right in Equation 3 is a noise term

Motivation 1 Motivation 2

p

q

r

Fig. 1. Concept of motivational potential

with variance, σ2. We refer to the variance of the fluctuations, analogous to
the influence of heat on Brownian motion, as arousal. Note that when σ = 0,

dV
dt = ∂V

∂ρ
dρ
dt = −

[

∂V
∂ρ

]2

< 0. Therefore the dynamics will always tend to select

one motivation. Accordingly, the motivational conflict problem is recast in terms
of the escape or Kramers problems that are familiar in classical statistical me-
chanics [5]. For fixed drives the motivational state, once trapped at point (a) in
Figure 1, will eventually escape with a probability determined by the height of
the barrier at point (b). The higher the drive, the less likely escape it to occur.

Behavioral selection

We conceptualize each motivation as a state. Different readouts of such states
produce tendencies towards different actions, which we relate, conceptually, to
motivation and behavior via motivational tendency kernels. Given a motivation
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ρ̄i in the generalized motivational space, a tendency kernel is a function ξ : P →
[0, 1] with finite support, such that ξ(ρ̄i) = 1.

Using, as an example, a Gaussian tendency kernel, ξ(φ) = G(ρ|ρ̄i, σ
2) with

a certain width σ (unrelated to the arousal), the incentive will decay with the
distance of the system from a given motivation in the phase space. As a second
example, for a step tendency kernel the incentive will be maximal within a region
a ≤ ρ̄i ≤ b around the given motivation.

Fig. 2. Illustration of the tendency kernels (top), and the potential U (bottom).

Behavioral pattern expression

The tendencies from the previous section are used to modulate behaviours by
biasing action selection and/or unfolding Fixed Action Patterns (FAPs), or by
modulating Taxes (i.e. chemotaxis).

3 Recasting motivational conflict

Here we recast some concepts from classic ideas about motivation in the light of
the model outlined.

Switching between two motivations

Some of the early research in motivational conflict was related to the switching
between two motivated behaviours (i.e. eating and drinking)[7, 14, 16, 17]. The
switching from eating to drinking can be thought of as the escape of the particle
from the well corresponding to (p) to that corresponding to (q) in Figure 1,
effectively jumping the barrier (r). As such, the expected escape time will be the
latency of the motivation 2 given that the agent is in p, and the bout duration
is the time spent in each well.
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For the following analyses we make the simplifying assumption that the drives
change on a time scale much slower than that governing the motivational parti-
cle ρ, that motivations are read out in terms of non-overlapping step tendency
kernels, and that the most salient action will always be performed.

Stationary distribution It is well know from the theory of Stochastic processes
that the dynamics of ρ satisfies the Fokker-Plank equation [5]

∂p(ρ, t)

∂t
=

∂

∂ρ
[V ′(ρ)p(ρ, t)] + σ2 ∂

2p(ρ, t)

∂ρ2
, (4)

where V ′ = dV/dx, and p(ρ, t) is the probability of finding the particle at position
ρ at time t. For long enough times, and slowly varying drives (and, therefore,
a fixed potential shape), such a probability distribution will reach a stationary
value given by

p∞(ρ) = K exp (−V (ρ)/σ2). (5)

This captures the intuition that an agent should spend more time in the deepest
well. Note that for very small arousal (σ), the agent will remain trapped in that
motivation for as long as the shape of the potential is unchanged.

Motivational transition By analogy with the analysis of Kramers for chemical
reaction systems [9], the expected exit time of the agent from motivation 1 (p)
to motivation 2 (q in figure 1) is given by

T (p → q) = π [|V ′′(q)|V ′′(p)]
1/2

exp
{

[V (q)− V (p)]/σ2
}

. (6)

In the absence of arousal, the exit time will be infinity, and two forms of mo-
tivational switching emerge. When σ2 → 0, escape becomes improbable and
transitions occurs by competition [8], defined here as the transition from moti-
vation 1 due to changes in the causal factors of motivation 2 (i.e., equivalent
to drives). Such a transition occurs when one of the minima is lost due to the
increase in the drives for the second motivation. To illustrate, we need to study
a specific form of the potential V that is differentiable, for which we choose

V (ρ, a, b) = (ρ̄1 − ρ)2(ρ̄2 − ρ)2 + a(ρ̄1 − ρ)2 + b(ρ̄2 − ρ)2, (7)

where a and b are the corresponding drives for motivation 1 and 2 respectively.
For this potential, it can be shown by differentiation that in order for the minima
to exist, the following well relation must be satisfied:

−(ρ̄1 − ρ)(ρ̄2 − ρ)

(

ρ̄1 + ρ̄2
2

− ρ

)

= −
a+ b

2
ρ+

aρ̄1 + bρ̄2
2

. (8)

As such, wells will exist as long as the line specified by the right hand side inter-
sects with the third-degree polynomial specified on the left hand side (see Figure
3). If we increase the drive (b), the well in the vicinity of the first motivation
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disappears and the system will tend inexorably to ρ̄2. In the case when drive a
is zero and drive b increases, the corresponding minimum will reach the height

of the barrier exactly when b = 1
2

(

ρ̄1−ρ̄2

2

)2
. In the well relationship, this change

is equivalent to changing the slope and intercept of the line (Figure 3).

Note that for a = b ≫ 0, two wells can merge into one. Indeed, whenever
a = b = ρ̄1+ρ̄2

2 − ρ̄1ρ̄2, the two wells will converge at the mid-way point, leaving
only one stable state. In this case the two motivations will have equal tendencies,
depending on the form of the tendency kernels, and as such the agent would end
up dithering.
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Fig. 3. Top. Existence two wells for a = 0.05, b = 0.1, ρ̄1 = 0 and ρ̄2 = 1. Bottom.
The potential loses one of its minima when the difference between the drives is high
enough. The number of minima, and therefore the shape, of the motivational potential
is illustrated by the number of points in which the orange line crosses the blue cubic
curve.
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4 Simulation results

Time-sharing

When the “arousal” term in Equation 6 is non-zero, there is a chance of random
transitions between motivations without a corresponding change in the drives.
In terms of the motivational literature, these changes can be thought of as time-
sharing, where two motivations are observed to switch in bouts of a consistent
(average) duration [8], independently from the underlying causal factors.

This can be observed in terms of the potential (Equation 7), when the two
wells have the same depth. Figure 4, left, shows that the stationary distribution
predicts an equal time spent by the agent in the two motivational states. The
corresponding motivational dynamics display the expected switching that occurs
more or less frequently depending on the level of arousal, σ. When the heights of
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1.0 Potential
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Motivational potential

ρ

time

Motivational potential

ρ

Fig. 4. Time sharing phenomena in the model, σ = 0.12. Left. The motivational poten-
tial (solid) and stationary distribution (dotted) from equation (5). Right. Simulation
of the behaviour of the motivational particle switching between the two motivations.

the two wells are different, the escape time (and thus the motivational switch)
will differ (Equation 6). In Figure 5 a simulated experiment for the transition
between two motivations shows how the latency and bout duration change as
a function of the shape of the potential. A simulated agent starts in the first
well corresponding to e.g., hunger, the escape time for the well marks the switch
to e.g., thirst, and the bout duration is the time taken to return to hunger. It
can be seen from the simulation that the escape time decreases as the relative
height of the two wells increases (as the agent becomes thirsty), as predicted by
Equation 6. On the other hand, as the drinking well becomes deeper, it takes
a longer time to return to the former motivation. This corresponds to similar
phenomena reported in the animal behaviour literature [16].
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Fig. 5. Left. Latency to motivational switch. Right. Bout duration. ρ̄1 = 0, ρ̄2 = 1,
a = 0. The value of the drive b assumes values in the interval [0, 1/8], where the upper
bound is the theoretical limit at which the first well completely disappears. The escape
time is defines as the first time point such ρ > 0.5. The bout is assumed to properly
start when ρ > 0.7. The bout duration is the time it takes to return to ρ < 0.5 after
the bout has started.

Thermoregulation versus feeding

Here we consider a simulated agent in a two-dimensional (x,y) environment with
a chemical (odour) gradient radiating from a food source with a two-dimensional
Gaussian profile, and a temperature gradient that is linear in the x coordinate
(Figure 6). The physiological state of the agent consists of two homeostatic
variables, energy and temperature, that evolve according to the laws presented
in section 2. The normalization and urgency maps in Equation 2 are given by
sigmoidal and cubic functions. The motivational state is given by the potential
in Equation 7 and the parameters a and b are the absolute value of the drives.
Motivational kernels for behavioural selection are Gaussian.

We implement two taxis behaviours (and no fixed action patterns) and con-
sider the agent to receive a ‘shot’ of energy when it enters the vicinity of the
food source. The agent is modelled as a Braitenberg vehicle [3] with bilateral
sensors for the chemical and temperature signals.

The agent and its environment are shown in Figure 6. Initially, the agent is
driven towards a region in which its body temperature is maintained in the ther-
moneutral zone, which creates a conflict because the food is located in a colder
region. Two phenomena are observed. First, the agent hesitates to approach the
food, and returns multiple times, illustrating a trade-off between the cost of ob-
taining the food and the level of hunger; only when it is hungry enough is the
excursion for the food complete. Secondly, between 40 ms and 60 ms the two
minima of the motivational potential merge, and the agent is in an ambiguous

motivational state (comparable with animal behaviour, see [1]).
Spontaneous transitions are observed when the level of arousal is increased

(Figure 7 at 20ms), with the motivational state changing in the absence of a
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Simulation step

Fig. 6. Simulation environment for the motivated agent. The square to the left rep-
resents the 2D arena with a temperature (colored bar at the top) and a chemical
(concentric circles in the middle) gradient. The panels to the right display the time
course of the motivational dynamical variable ρ (top) and the two homeostatic vari-
ables (bottom). The agent moves autonomously back and forth the food source and its
preferred spot in the thermal gradient.

corresponding behavioural output. This is comparable with displacement phe-
nomena observed in animals, whereby an external cue is shown to drive a novel
behaviour that is otherwise unrelated to the current behaviour.

5 Discussion

We developed a four-stage dynamical model to study how behaviours are affected
by motivational conflict. The first stage keeps track of the internal state of the
agent, the second represents the motivational state, the third contains multi-
ple readouts or measurements in the motivational phase space that give rise
to tendencies for certain behaviours, and the fourth stage controls behaviour
expression.

A theoretical analysis revealed how the motivational state of the agent can
depend on its internal state, allowing us to recast some motivational phenomena
described in the animal behaviour literature. For example, we showed how the
fixed points of the motivational dynamical system can disappear, appear, or
merge, as a function of internal state. We showed how merging of the fixed
points can generate the kinds of ambiguous motivational states that have been
observed in some animals [1]. And by incorporating stochasticity, we showed how
the model can account for phenomena such as time-sharing [7, 14] in terms of
spontaneous transitions and disinhibition [15].
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Simulation step

Fig. 7. An increase in arousal increases the rates of spontaneous switching without
behavioural output

Our model resembles several classical approaches [19] to this problem. For ex-
ample, the changes in the underlying physiological dynamics that are described
correspond to Lorenzian energy accumulation, but with the valve that releases
behaviour recast as a bistability in the motivational state space. However, early
models of motivational conflict typically involve positive feedback loops accord-
ing to a control theory framework [17, 18, 7], and our model does not include
explicit feedback loops, with the control instead directly implemented through
the effect of the environment on the internal state of the agent.

The stochastic motivational system resembles accumulator models [12]. In-
deed, given two stochastic motivations, v1 and v2, as in [12], the motivational
particle, ρ, could be associated with the difference v1 − v2 of such accumulators.
However, interaction between motivations is assumed not to happen explicitly
in our model (i.e. no explicit cross-inhibition), but it is instead assumed to be
mediated via an external field.

Our decision to embed motivational attractors in a metric space corresponds
to an assumption that the underlying space in which behaviours reside has a
definite topology, i.e., that behaviours can be meaningfully ordered and that the
ordering determines the interactions between behaviours that may be observed
in various conflict scenarios. As such, it should be possible to devise experiments
to determine a definite pattern of displacement phenomena for a given animal
(or species).

Finally, we note that the interaction between the motivational state and
the readouts resembles observations of the interactions between the lateral hy-
pothalamus and the ventral tegmental area of the mammalian brain, and that
the tendency readout could be potentially associated with the dopamine signals
that relate to value in these areas [4]. Further connections with the neurobiology
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of decision-making in animal brains, with a focus on possible relationships with
reinforcers and reward, will be explored in future work.

Simulation code is available at https://github.com/ABRG-Models/MammalBot/
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