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 33 

Abstract 34 

Most perceptual decisions rely on the active acquisition of evidence from the 35 

environment involving stimulation from multiple senses. However, our 36 

understanding of the neural mechanisms underlying this process is limited. 37 

Crucially, it remains elusive how different sensory representations interact in the 38 

formation of perceptual decisions. To answer these questions, we employed an 39 

active sensing paradigm coupled with neuroimaging, multivariate analysis and 40 

computational modeling to probe how the human brain processes multisensory 41 

information to make perceptual judgments. Participants of both sexes actively 42 

sensed to discriminate two texture stimuli using visual (V) or haptic (H) 43 

information or the two sensory cues together (VH). Crucially, information 44 

acquisition was under the participants’ control, who could choose where to 45 

sample information from and for how long on each trial. To understand the neural 46 

underpinnings of this process, we first characterized where and when active 47 

sensory experience (movement patterns) is encoded in human brain activity 48 

(electroencephalography - EEG) in the three sensory conditions. Then, to offer a 49 

neurocomputational account of active multisensory decision formation, we used 50 

these neural representations of active sensing to inform a drift diffusion model of 51 

decision-making behavior. This revealed a multisensory enhancement of the 52 

neural representation of active sensing which led to faster and more accurate 53 

multisensory decisions. We then dissected the interactions between the V, H and 54 

VH representations using a novel information-theoretic methodology. Ultimately, 55 

we identified a synergistic neural interaction between the two unisensory (V, H) 56 

representations over contralateral somatosensory and motor locations that 57 

predicted multisensory (VH) decision-making performance.  58 

 59 
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 60 

Significance Statement 61 

In real-world settings, perceptual decisions are made during active behaviors, 62 

such as crossing the road on a rainy night, and include information from different 63 

senses (e.g. car lights, slippery ground). Critically, it remains largely unknown 64 

how sensory evidence is combined and translated into perceptual decisions in 65 

such active scenarios. Here we address this knowledge gap. First, we show that 66 

the simultaneous exploration of information across senses (multi-sensing) 67 

enhances the neural encoding of active sensing movements. Second, the neural 68 

representation of active sensing modulates the evidence available for decision 69 

and, importantly, multi-sensing yields faster evidence accumulation. Finally, we 70 

identify a crossmodal interaction in the human brain that correlates with 71 

multisensory performance, constituting a putative neural mechanism for forging 72 

active multisensory perception.  73 

 74 

 75 
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Introduction 89 

 90 

In our daily lives, we make judgments based on noisy or incomplete 91 

information that we gather from our environment (Heekeren et al., 2004; 92 

Juavinett et al., 2018; Najafi and Churchland, 2018), usually including stimuli 93 

from multiple senses (Angelaki et al., 2009; Chandrasekaran, 2017). The 94 

acquired sensory information crucially depends on our actions - what we see, 95 

hear and touch is influenced by our movements - a process known as active 96 

sensing (Schroeder et al., 2010; Yang et al., 2016b). For example, imagine 97 

attempting to cross the road on a rainy night. You need to interact with the 98 

environment, i.e. turn your head and move your eyes, and process the incoming 99 

stimuli (e.g. car lights, slippery ground) to decide whether and when it is safe to 100 

do so. If you feel the road is slippery, you may need to monitor your steps and at 101 

the same time you may have to walk faster or step back if a car is approaching.  102 

This example indicates that in real-world settings most perceptual 103 

decisions are made during active behaviors (Musall et al., 2019). The quality of 104 

the acquired evidence is driven by such active behaviors, which, in turn, affect 105 

the efficiency of the perceptual decisions that we make as a result of this active 106 

sensing process (Yang et al., 2016a; Gottlieb and Oudeyer, 2018). A first crucial 107 

element of fast and accurate perceptual decisions is the combination of evidence 108 

from different sensory streams (e.g. sight and touch) to form a unified percept 109 

and reduce uncertainty about the stimulus (Ernst and Banks, 2002). However, 110 

while there is extensive evidence that the integration of information from different 111 

sensory modalities improves perceptual choice accuracy (Lewis and Noppeney, 112 

2010; Raposo et al., 2012) and response time (Drugowitsch et al., 2014), 113 

multisensory information processing has not been studied in an active scenario, 114 

where human participants are allowed to implement their own strategy for 115 

gathering evidence - as is the case in real life settings.  116 

Here we addressed this gap in the literature aiming to uncover the neural 117 

mechanisms underlying the formation of perceptual decisions via the active 118 
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acquisition and processing of multisensory information. To achieve this, we 119 

capitalised on our previous work probing the neural correlates of active tactile 120 

decisions (Delis et al., 2018) and extended it to a multisensory setting that 121 

includes visual and haptic information presented simultaneously or separately. 122 

We hypothesised that the neural encoding of active sensory experience would be 123 

enhanced when multisensory information was available and that this neural 124 

multisensory gain would lead to improvements in decision-making performance. 125 

An important aspect of our study is that the participants had full control of 126 

the evolution and duration of each trial. In other words, they could choose how 127 

much information to sample, where to sample this information from and for how 128 

long. Thus, we first aimed to characterise cortical coupling to continuous active 129 

sensing and then combined this with a popular sequential-sampling model of 130 

decision-making, the drift diffusion model (DDM) (Ratcliff and McKoon, 2008), to 131 

understand how the identified representations of active sensing behaviors 132 

influence decisions in the human brain. Here, to bridge the gap between active 133 

evidence acquisition and decision formation, we used the neural correlates of 134 

active (multi-)sensing to constrain the DDM.   135 

Finally, to quantify cross-modal interactions in the brain, we applied a 136 

novel information-theoretic framework named Partial Information Decomposition 137 

(PID) (Williams and Beer, 2010; Timme et al., 2014; Ince, 2017). PID quantifies 138 

the contribution of a) each sensory modality and b) cross-modal representational 139 

interactions (“redundant” or “synergistic”) to the multisensory neural 140 

representation (Park et al., 2018). Redundancy measures the similarity of the 141 

neural representation of the two modalities, while synergy indicates a better 142 

prediction of the neural response from both modalities simultaneously. Ultimately, 143 

this approach revealed the interactions between representations of different 144 

sensing modalities in the brain and shed light onto their role in decision-making 145 

behavior.  146 

 147 

 148 
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Materials and Methods 149 

 150 

Experimental design and paradigm.  Fourteen healthy right-handed participants 151 

(8 female, aged 24±2 years) performed a two-alternative forced choice (2AFC) 152 

discrimination task during which they had to compare the amplitudes of two 153 

sinusoidal stimuli of the same frequency. All experimental procedures have been 154 

reviewed and approved by the Institutional Review Board (IRB) at Columbia 155 

University.  156 

To generate visual and tactile stimuli that can be actively sensed, we 157 

employed a haptic device called a Pantograph (Campion et al., 2005), which can 158 

be controlled to generate the sensation of exploring real surfaces (Fig. 1A). The 159 

Pantograph is a 2-dimensional force-feedback device, that is, a) it produces a 2D 160 

tactile output and b) it simultaneously measures 2D information about the finger 161 

position and applied force. Here we used its first property to generate stimulation 162 

and the second property to record the kinematics of the movements performed 163 

by the participants while they actively explored the presented stimuli. In 164 

particular, we split the workspace of the Pantograph (of dimensions 110 mm x 60 165 

mm) into two subspaces (left - L and right - R, 55 mm x 60mm each) and 166 

generated continuous sinusoidal stimuli of different amplitudes (but same 167 

wavelength of 10 mm) in the two subspaces (Fig. 1B). Then, we instructed the 168 

participants to discriminate the amplitude of the two subspaces as quickly and as 169 

accurately as possible a) using only visual (V) information, b) using only haptic 170 

(H) information and c) combining the two sensory cues (VH). Crucially for our 171 

investigation here, participants were free to choose how to explore this virtual 172 

texture, i.e., where and how fast to move their fingers and how long to explore 173 

each one of the two sides for before making their perceptual choice. Participants 174 

placed their right index finger on the interface plate of the Pantograph (see Fig. 175 

1A) and moved it freely to explore the textures of both subspaces (Fig. 1C) 176 

before reporting their choice (i.e., which amplitude is higher) by pressing one of 177 

two buttons on a keyboard (left or right arrow) using their left hand.  178 
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Specifically, in the H condition, the Pantograph produced sinusoidal forces of 179 

different intensity between L and R. When the participants placed their index 180 

fingers on the plate (interface) of the Pantograph, these forces at the interface 181 

had the effect of causing fingertip deformations and thus tactile sensations that 182 

resembled exploring real surfaces. Thus, when moving their finger on the 183 

Pantograph, participants had the sensation of touching a rough surface (with 184 

different amplitudes between L and R – see Fig.1B middle panel). In the V 185 

condition, stimuli matching the tactile stimuli were presented on a screen of the 186 

same dimensions. More precisely, amplitudes of the sinusoidal virtual texture in 187 

H were translated into contrast levels of sinusoidal gratings in V, i.e. the 188 

participants were seeing black and white stripes of different intensity/contrast 189 

between L and R. Presentation of visual stimuli was generated using 190 

Psychtoolbox and visual contrast varied between 0.5 and 1.5 around the default 191 

contrast value. The visual angle was 12o±6o. Stimulus presentation was 192 

controlled by a real-time hardware system (Matlab XPCTarget) to minimize 193 

asynchrony which was <1ms. Importantly, to match the sense of touch, only the 194 

part of the workspace corresponding to the participant’s finger location was 195 

revealed on the screen (i.e. a moving dot following the participant’s finger - see 196 

Fig. 1B left panel). Thus, in the V condition, grayscale visual textures (of different 197 

contrast between L and R) were shown wherever the participants moved their 198 

fingers while no forces were applied to the participants’ fingers (i.e. no H 199 

stimulation). Hence, in both sensory domains, participants could only sense the 200 

presented stimulus via active exploration, i.e. finger movements on the x-axis. 201 

Accordingly, in the VH condition, both the visual and haptic textures were 202 

congruently presented and sensed by the participants using finger movements 203 

(Fig. 1B right panel). Overall, participants had to decide whether L or R had 204 

higher amplitude based on their haptic (in H trials), visual (in V trials) or visuo-205 

haptic (in VH trials) perception of this virtual surface. Participants reported that 206 

they perceived the V and H signals as one stimulus in the VH condition. 207 
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The amplitude difference between L and R (representing the difficulty of the task) 208 

varied from trial to trial. On each trial, participants compared between the 209 

reference amplitude 1 (presented either on the left or right subspace) and one of 210 

six other amplitude levels (0.5, 0.75, 0.9, 1.1, 1.25, 1.5). Each trial was initiated 211 

by the participant. Trial onset was considered the time point at which horizontal 212 

finger velocity exceeded 0. Trial duration was determined by the participant and 213 

lasted for the whole period during which the participant made exploratory 214 

movements to sense the surface. The trial ended when the participant pressed 215 

the < or > key on the keyboard with their left hand to indicate their L or R choice. 216 

Each participant performed 20 trials for each amplitude level and for each 217 

sensory condition (V, H, VH), resulting K = 20 trials x 6 amplitudes x 3 conditions 218 

= 360 trials in total. One participant showed poor behavioral performance 219 

(accuracy was not significantly different from chance level) and another 220 

participant’s EEG recordings were significantly contaminated with eye movement 221 

artifacts, thus data from these two participants were removed from any 222 

subsequent analyses. We report results from the remaining N = 12 participants. 223 

We also discarded trials in which participants did not respond within 10secs from 224 

trial onset or their RTs were shorter than 0.3 seconds. This resulted in the 225 

rejection of 4.9% of the trials.  226 

Data recording and pre-processing. During performance of the task, we  227 

measured a)_the choice accuracy and response time (RT) of participants’ 228 

responses, b) movement kinematics (x, y coordinates of finger position recorded 229 

by the Pantograph) at a sampling frequency of 1000Hz and c) EEG signals at 230 

2048 sampling frequency using a Biosemi EEG system (ActiveTwo AD-box, 64 231 

Ag-AgCl active electrodes, 10-10 montage).  232 

To compare accuracies and RTs across sensory conditions, we used two-way 233 

ANOVAs with factors condition and stimulus difference followed by Bonferroni-234 

corrected post-hoc t-tests. We also fit psychometric curves to the accuracy data 235 
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of each participant using a cumulative Gaussian distribution and computed the 236 

point of subjective equality (PSE) and slope of the curve at the PSE.  237 

Single-trial movement velocity waveforms were computed using the derivatives 238 

of the recorded position. EEG recordings were preprocessed using EEGLab 239 

(Delorme and Makeig, 2004) as follows. EEG signals were first down-sampled to 240 

1000Hz to match movement kinematics and dynamics. Then, they were 241 

bandpass filtered to 1-50Hz using a Hamming windowed FIR filter. To isolate the 242 

purely neural component of the EEG data, we used the following procedure: we 243 

first reduced the dimensionality of the EEG data by reconstituting the data using 244 

only the top 32 principal components derived from Principal Component Analysis 245 

(PCA). Although we record from 64 channels, we expect our recordings to span a 246 

considerably lower-dimensional space (as a result of correlations, crosstalk and 247 

common sources), thus to enhance the ability of ICA to identify truly independent 248 

components, we reduce the data dimensions to half using PCA. Thereafter, an 249 

Independent Component Analysis (ICA) decomposition of the data was 250 

performed using the Infomax algorithm (Bell and Sejnowski, 1995). We then used 251 

an ICA-based artifact removal algorithm called MARA (Winkler et al., 2011) to 252 

remove ICs attributed to blinks, horizontal eye movements (HEOG), muscular 253 

activity (EMG), and any loose or highly noisy electrodes. MARA assigned each 254 

IC a probability of being an artifact; we removed components with probabilities 255 

above 0.5. 256 

Decoding finger kinematics from EEG signals. To assess the neural encoding of the 257 

participants’ active sensory experience in the three sensory conditions, we used a 258 

multivariate linear regression analysis introduced in (Di Liberto et al., 2015) and shown 259 

in Equation 1 below. As in our previous work (Delis et al., 2018), we hypothesized that 260 

the sensorimotor strategy employed by the participant can be represented by the 261 

velocity profiles of the participant’s exploratory movements which capture changes of 262 

movement direction as well as speed changes. Thus, as kinematic feature representing 263 

the active sensing behavior, we used 1-d finger velocity on the x-axis (capturing L-R 264 

finger movements) but also finger position (on the x-axis) yielded qualitatively very 265 
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similar results. Finger movement in the y-axis (which did not provide any sensory 266 

information) did not show any significant correlation with the EEG signals and was not 267 

considered further. We thus performed a multivariate ridge regression (Crosse et 268 

al., 2016) predicting the 1-d finger velocity (on the x-axis) from the EEG data. 269 

Specifically, our decoding analysis aimed to reconstruct the movement velocity 270 

from a linear combination of the EEG recordings with time lags ranging between 271 

[-200ms, 400ms] with respect to the instantaneous velocity values. Specifically, 272 

we  aimed to decode the velocity profile 𝑠(𝑡) of the participants’ scanning 273 

movements from the simultaneously recorded EEG signals 𝑚(𝑖, 𝑡), as 274 

follows:                                       275 

 𝑠̂(𝑡) ≅ ∑ ∑ 𝑔(𝜏, 𝑖)𝑚(𝑡 + 𝜏, 𝑖)𝑖𝜏                                                  (1)   
where 𝑠̂(𝑡) is the reconstructed finger velocity and 𝑔(𝑖, 𝜏) is a filter that integrates 276 

information spatially across EEG channels 𝑖 and temporally across time lags 𝜏 to 277 

decode the velocity profile from the EEG recordings. Here we used 𝜏 ∈278 [−200𝑚𝑠, 400𝑚𝑠], i.e. we examined the EEG information about the finger velocity 279 

at time 𝑡 from 𝑡 − 200𝑚𝑠 (200𝑚𝑠 earlier) up to 𝑡 + 400𝑚𝑠 (400𝑚𝑠 later). Varying 280 

these lags did not improve reconstruction performance and yielded qualitatively 281 

similar results with the main effects always in the [−200𝑚𝑠, 400𝑚𝑠] temporal 282 

window, so we used this window for all our further analyses. To learn the 283 

decoding filters and compute the velocity approximation accuracy (𝑟2) between 284 

the original and the reconstructed velocity profiles, we used the multivariate 285 

temporal response function (mTRF) Matlab Toolbox implementing regularised 286 

linear (ridge) regression (Crosse et al., 2016). In all our filter estimations, we 287 

used a cross-validation procedure. We first randomly split our data into two sets, 288 

a training set (80% of the trials) to learn the filters and a test set (the remaining 289 

20% of the trials) to apply the filters to and compute the reported 𝑟2 values. In the 290 

training set, we performed 5-fold cross-validation to identify the optimal value of 291 

the ridge parameter 𝜆 (varying 𝜆 = 20, … , 220) that maximizes 𝑟2 between the 292 



 

 

11 

 

estimated and the measured velocity. These investigations revealed that values 293 

of 𝜆 between 20 and 24 yielded almost identical 𝑟2 across all models, thus we 294 

used 𝜆 = 22 for all models for consistency.  295 

Since the weights of the decoding filters are not interpretable in terms of the 296 

neural origins of the underlying processes (Haufe et al., 2014), we transformed 297 

them into encoding filters 𝑓(𝜏, 𝑖) using the “forward model” formalism (Parra et 298 

al., 2002; Haufe et al., 2014), as follows: 299 

𝑓(𝜏, 𝑖) = 𝑚(𝑡, 𝑖)𝑇𝑚(𝑡, 𝑖)𝑔(𝑖, 𝜏)𝑠̂(𝑡)𝛵𝑠̂(𝑡)           (2) 

We then plotted the weights of the forward models 𝑓(𝜏, 𝑖) at specific time lags 𝜏 300 

as scalp maps to visualise the relationship between sensorimotor behavior and 301 

neural activity in each one of the three sensory conditions (V, H, VH). Statistical 302 

analysis of EEG-behavior couplings. To determine statistical significance of the 303 

learned EEG-velocity mappings, we randomized the phase spectrum of the EEG 304 

signals, which disrupted the temporal relationship between the EEG activity and 305 

the kinematics while preserving the autocorrelation structure of the signals 306 

(Theiler et al., 1992). We generated 1000 phase-randomized surrogates of the 307 

EEG data and computed correlations with the kinematics to define the null 308 

distribution from which we estimated p-values. This phase-randomization 309 

procedure maintains the magnitude spectrum of the EEG signals, thus 310 

conserving their autocorrelation structure, which is a fundamental feature of the 311 

original signals when the significance of cross-correlation is assessed. Hence, 312 

using this procedure, the obtained surrogates that define the null distribution are 313 

a more plausible comparison (resulting in a stricter statistical test) than randomly 314 

shuffled surrogates.  315 

Informed modeling of decision-making performance. Having characterised 316 

the cortical coupling to the sensorimotor strategies in the three sensory 317 

conditions, we then probed the relationship between the identified EEG-velocity 318 
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couplings and decision-making performance. To provide this missing link 319 

between active sensing and decision formation, we implemented a Hierarchical 320 

Drift Diffusion Model (HDDM), a well-known cognitive model of decision-making 321 

behaviour, and informed it with the results of our previous decoding analysis.  322 

 We fit the participants’ decision-making performance, i.e. accuracy and 323 

response time (RT), with a hierarchical drift diffusion model (HDDM) (Wabersich 324 

and Vandekerckhove, 2014) which assumes a stochastic accumulation of 325 

sensory evidence over time, toward one of two decision boundaries 326 

corresponding to correct and incorrect choices (Ratcliff and McKoon, 2008). The 327 

model returns estimates of internal components of processing such as the rate of 328 

evidence accumulation (drift rate), the distance between decision boundaries 329 

controlling the amount of evidence required for a decision (decision boundary), a 330 

possible bias towards one of the two choices (starting point) and the duration of 331 

non-decision processes (non-decision time), which include stimulus encoding 332 

and response production. As per common practice, we assumed that stimulus 333 

differences affected the drift rate (Palmer et al., 2005).  334 

In short, the model iteratively adjusts the above parameters to maximize 335 

the summed log likelihood of the predicted mean response time (RT) and 336 

accuracy. The DDM parameters were estimated in a hierarchical Bayesian 337 

framework, in which prior distributions of the model parameters were updated on 338 

the basis of the likelihood of the data given the model, to yield posterior 339 

distributions (Wiecki et al., 2013; Wabersich and Vandekerckhove, 2014). The 340 

use of Bayesian analysis, and specifically the hierarchical drift diffusion model 341 

has several benefits relative to traditional DDM analysis. First, this framework 342 

supports the use of other variables as regressors of the model parameters to 343 

assess relations of the model parameters with other physiological or behavioral 344 

data (Frank et al., 2015; Turner et al., 2015; Nunez et al., 2017). This regression 345 

model, which is included in HDDM, allows estimation of trial-by-trial influences of 346 

a covariate (e.g. a brain measure) onto DDM parameters. In other words, trial-by-347 
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trial fluctuations of the estimated HDDM parameters can be approximated as a 348 

linear combination of other trial-by-trial measures of cognitive function (Wiecki et 349 

al., 2013; Forstmann et al., 2016).  This property of the HDDM enabled us to 350 

establish the link between the results of the EEG-velocity coupling analysis and 351 

the decision parameters of the model, by using the EEG-velocity couplings as 352 

predictors of the HDDM parameters, as explained below (also see Eq. 3 for an 353 

example of such a linear regression of the drift rate parameter). Second, the 354 

model estimates posterior distributions of the main parameters (instead of 355 

deterministic values), which directly convey the uncertainty associated with 356 

parameter estimates (Kruschke, 2010). Third, as a result of the above, the 357 

hierarchical structure of the model allows estimation of the HDDM parameters 358 

across participants and conditions, thus yielding distributions at different levels of 359 

the model hierarchy (e.g. the population level and the participant level 360 

respectively). In this way, the HDDM capitalizes on the statistical power offered 361 

by pooling data across participants (population-level parameters) but at the same 362 

time accounts for differences across participants (represented by the variance of 363 

the population-level distribution and the individual participant-level estimates). 364 

Fourth, the Bayesian hierarchical framework has been shown to be especially 365 

effective when the number of observations is low (Ratcliff and Childers, 2015).  366 

To implement the hierarchical DDM, we used the JAGS Wiener module 367 

(Wabersich and Vandekerckhove, 2014) in JAGS (Plummer, 2003), via the 368 

Matjags interface in Matlab to estimate posterior distributions. For each trial, the 369 

likelihood of accuracy and RT was assessed by providing the Wiener first-370 

passage time (WFPT) distribution with the four model parameters (boundary 371 

separation, starting point, non-decision time, and drift rate). Capitalizing on the 372 

advantages of HDDM, we ran the model pooling data across all participants and 373 

conditions and estimated both population-level and participant-level distributions. 374 

Parameters were drawn from uniformly distributed priors and were estimated with 375 

non-informative mean and standard deviation group priors. As per standard 376 

practice for accuracy-coded data, the starting point was set as the midpoint 377 
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between the two decision boundaries as participants could not develop a bias 378 

towards correct or incorrect choices.. For each model, we ran 3 separate Markov 379 

chains with 5500 samples of the posterior parameters each; the first 500 were 380 

discarded (as “burn-in”) and the rest were subsampled (“thinned”) by a factor of 381 

50 following the conventional approach to MCMC sampling whereby initial 382 

samples are likely to be unreliable due to the selection of a random starting point 383 

and neighboring samples are likely to be highly correlated (Wabersich and 384 

Vandekerckhove, 2014). The remaining samples constituted the probability 385 

distributions of each estimated parameter. To ensure convergence of the chains, 386 

we computed the Gelman-Rubin R2 statistic (which compares within-chain and 387 

between-chain variance) and verified that all group-level parameters had an R2 388 

close to 1 and always lower than 1.01. 389 

Here, to obtain a mechanistic account of the effect of EEG-velocity 390 

coupling on decision-making behaviour, we incorporated the single-trial 391 

measures of these couplings (𝑟2 values defined above) into the HDDM 392 

parameter estimation (Fig. 3B).Specifically, as part of the model fitting within the 393 

HDDM framework, we used the single-trial velocity reconstruction accuracies 𝑟2 394 

as regressors of the decision parameters to assess the relationship between trial-395 

to-trial variations in EEG-velocity couplings and each model parameter. 396 

Furthermore, to characterise the effect of active sensing movements on decision 397 

formation, we also incorporated movement parameters in the HDDM framework. 398 

Specifically, we computed the following movement parameters: a) the average 399 

finger velocity (
mv ) on each trial, b) the number of crossings ( crn ) between L and 400 

R which is an indicator of the time it took participants to switch between the two 401 

stimuli and c) the time participants spent exploring one of the two stimuli (here 402 

we arbitrarily selected the low-amplitude stimulus on each trial, lowt ) as an 403 

indicator of exploration time. To understand how these movement parameters 404 

affect the decision-making process and specifically whether they relate to a) 405 

sensory processing and movement planning/execution (i.e. non-decision 406 
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processes) and/or b) evidence accumulation (i.e. decision processes) and/or c) 407 

the speed-accuracy trade-off adopted by the participants, we used these 408 

parameters as regressors for non-decision time, drift rate and decision boundary, 409 

as follows:    410 

  411   𝜏 = 𝛽0 + 𝛽1 ∗ 𝑟2 + 𝛽𝑣 ∗ 𝑣𝑚 +  𝛽𝑠𝑤 ∗ 𝑛𝑐𝑟 + 𝛽𝑒𝑥𝑝 ∗ 𝑡𝑙𝑜𝑤                    (3) 𝛿 = 𝛾0 + 𝛾1 ∗ 𝑟2 ∗ 𝑠 + +𝛾𝑣 ∗ 𝑣𝑚 +  𝛾𝑠𝑤 ∗ 𝑛𝑐𝑟 + 𝛾𝑒𝑥𝑝 ∗ 𝑡𝑙𝑜𝑤    (4) 𝛼 = 𝜃0 + 𝜗1 ∗ 𝑟2 + +𝜗𝑣 ∗ 𝑣𝑚 +  𝜗𝑠𝑤 ∗ 𝑛𝑐𝑟 + 𝜗𝑒𝑥𝑝 ∗ 𝑡𝑙𝑜𝑤    (5)         
where 𝜏, 𝛿, 𝛼 represent the single-trial non-decision time, drift rate and decision 412 

boundary respectively., Velocity reconstruction accuracy 𝑟2, mean finger velocity 413 𝑣𝑚, number of crossings 𝑛𝑐𝑟 and time spent exploring the lower amplitude 414 

stimulus 𝑡𝑙𝑜𝑤 are the single-trial predictor variables with regression coefficients 415 𝛽𝑖 , 𝛾𝑖 , 𝛿𝑖 respectively and 𝑠 = 0.1,0.25,0.5 is the stimulus difference on each trial 416 𝑘 = 1, … , 𝐾 of each participant 𝑛 = 1, … , 𝑁. As per common practice, we modelled 417 

a linear relationship between drift rates and stimulus differences reflecting the 418 

dependence of the speed of information integration on the amount of evidence 419 

available (Palmer et al., 2005; Ratcliff and McKoon, 2008).  420 

 By using the above regression approach we were able to test the influence of 421 

the above EEG and movement parameters on each of the HDDM parameters. 422 

Thus, we tested different models in which the single-trial values of the above 423 

parameters were used as predictors for all combinations of the HDDM 424 

parameters (drift rate, non-decision time and decision boundary). To select the 425 

best-fitting model, we used the Deviance Information Criterion (DIC), a measure 426 

widely used for fit assessment and comparison of hierarchical models 427 

(Spiegelhalter et al., 2002). DIC selects the model that achieves the best trade-428 

off between goodness-of-fit and model complexity. Lower DIC values favor 429 

models with the highest likelihood and least degrees of freedom.  430 
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Statistical analysis of modeling results. Posterior probability densities of each 431 

regression coefficient were estimated using the sampling procedure described 432 

above. Significantly positive (negative) effects were determined when >95% of 433 

the posterior density was higher (lower) than 0. To take into account the 434 

hierarchical structure of the model which estimated both population-level 435 

distributions and participant-level distributions of the parameters, all statistical 436 

tests at the population level were performed by contrasting the group-level 437 

distributions (not the individual participant means) across sensory conditions. 438 

This hierarchical statistical testing has been shown to reduce biases and actually 439 

yield conservative effect sizes (Boehm et al., 2018).  440 

 441 

Partial Information Decomposition. We then aimed to uncover whether the visual 442 

(V) and haptic (H) neural representations of active sensing contained the same 443 

information (redundancy) that is present in the multisensory (VH) representation 444 

or to what extent their contributions are distinct (unique information) or 445 

complementary (synergy). To achieve this, we used the Partial Information 446 

Decomposition (PID) (Williams and Beer, 2010; Timme et al., 2014) applied to 447 

the predictions of the finger velocity encoding models learned in the different 448 

experimental conditions. PID provides an information theoretic approach to 449 

compare the outputs of different predictive models that goes beyond simply 450 

comparing accuracy to determine whether the different models share or convey 451 

unique predictive information content (Daube et al., 2019b). PID extends the 452 

concept of co-information (McGill, 1954), which is defined as follows: 453 

 ( ; ; ) ( ; ) ( ; ) ( ;[ , ])I VH V H I VH V I VH H I VH V H           (6) 454 

where ( ; )I X Y  denotes the mutual information (MI) between variables X and Y. 455 

MI is a nonparametric measure of dependence between two variables which has 456 

the unique property that its effect size is additive (Shannon, 1948). Hence, co-457 

information (also called interaction information when defined with opposite sign) 458 
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quantifies the difference between the sum of the MI when each modality is 459 

considered alone and the MI when the two modalities are observed together 460 

(Park et al., 2018).  461 

Positive values of this difference indicate that some information about the 462 

predictions of the multisensory VH model is shared between the predictions 463 

obtained from the models trained in the unisensory V and H conditions. I.e. there 464 

are common or redundant representations of finger velocity in both V and H 465 

conditions. Negative values of the interaction information indicate a super-466 

additive or synergistic interaction between the predictions of the V and H models, 467 

i.e. the two models provide more information about the multisensory (VH) 468 

prediction when observed together than would be expected from observing each 469 

individually. However, interaction information measures the net difference 470 

between synergy and redundancy in the system, thus it is possible to have zero 471 

interaction information, even in the presence of redundant and synergistic 472 

interactions that cancel out in the net value (Williams and Beer, 2010; Ince, 473 

2017). This occurs because classic Shannon quantities cannot separate 474 

redundant and synergistic contributions, which has led to a growing field 475 

developing Partial Information Decomposition measures to address this 476 

shortcoming.  477 

To give a simple example of such a case, let us consider 3 variables, each 478 

consisting of two bits (i.e. binary (0/1) variables with p(0)=p(1)=0.5). Let also 479 

assume that the first bit is shared between all 3 variables and the second bit 480 

follows the XOR distribution across the three variables. In this case, there is clear 481 

redundancy and synergistic structure, but co-information / interaction information 482 

is zero (Griffith and Koch, 2014).  483 

More precisely, PID addresses this methodological problem by decomposing MI 484 

into unique redundant and synergistic components, as follows: 485 

 ( ; ; ) ( ; ) ( ; ) ( ; , ) ( ; , )
uni uni red syn

I VH V H I VH V I VH H I VH V H I VH V H       (7)  486 
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where ( ; )
uni

I VH V  is the part of the VH model predictions that can be explained 487 

only from the V model predictions, ( ; )
uni

I VH H  is the part of the VH model 488 

predictions that can be explained only from the H model predctions, 489 

( ; , )
red

I VH V H  is the part of the VH model predictions that is common (redundant) 490 

to both the V and H model predictions and ( ; , )
syn

I VH V H  is the extra (synergistic) 491 

information about the VH model predictions that arises when both V and H 492 

predictions are considered together. PID decomposes the joint mutual 493 

information between two predictor signals (here the EEG activity predicted from 494 

an encoding model trained in the unisensory V, H conditions) and a target signal 495 

(here the EEG activity predicted from an encoding model trained in the 496 

multisensory VH condition) into four terms: redundancy, the unique information in 497 

each predictor, and synergy. Redundancy quantifies the information in the target 498 

signal that is shared between the two predictor signals. Synergy quantifies 499 

improvement in prediction of the target when both predictors are observed 500 

together and represents information about the target signal which cannot be 501 

obtained from the individual predictors separately.    502 

To perform PID here, we used a recent implementation based on common 503 

change in surprisal for Gaussian variables (Ince, 2017) which has been shown to 504 

be effective when applied to neuroimaging data (Park et al., 2018; Daube et al., 505 

2019a).  506 

To implement the above approach on our data, we used the recordings of the VH 507 

condition where the two unisensory representations of active sensory experience 508 

could be directly compared with the multisensory representation. We took the 509 

velocity-encoding models obtained in each condition (V, H, VH) and applied them 510 

to the VH data (see Eq. 3) to obtain the V, H and VH predictions of each EEG 511 

sensor activity for all VH trials. Since the unisensory models (V, H) were fit in the 512 

corresponding unisensory condition, they could only have learned a unisensory 513 

representation, whereas the VH model learned a multisensory representation of 514 
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active sensing velocity. Thus, we applied PID for each participant separately to 515 

predict the VH model predictions from the two unisensory V and H model 516 

predictions, which enabled us to quantify the cross-modal interactions between 517 

the two unisensory representations across all EEG sensors.  518 

Statistical analysis of PID results. We performed this decomposition 519 

independently for each EEG channel and obtained scalp maps for the four PID 520 

terms (redundant information, unique information of A, unique information of V, 521 

synergistic information) for each participant. To avoid over-fitting, we 522 

implemented a 5-fold cross-validation procedure. We randomly split the VH data 523 

into 5 subsets used 4 of them to learn the VH, V and H models and the held-out 524 

set to perform the PID on. We repeated this process 5 times to obtain PID values 525 

for all the VH data. To assess statistical significance of the obtained values, we 526 

performed a permutation test. Specifically, we shuffled the target signal, i.e. the 527 

VH model of active sensing, 1000 times while keeping the two predictor signals 528 

(V and H models respectively) unchanged and applied PID to predict the VH 529 

model surrogate data. Output values of the original PID decomposition were 530 

considered significant if the exceeded the 99-th percentile of the distribution of 531 

the surrogate data. Multiple comparisons were corrected for using FDR 532 

(Genovese et al., 2002). 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 
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Results 545 

 546 

We collected behavioral and EEG data while 14 participants actively 547 

interrogated a 2-dimensional texture stimulus that differed in its amplitude in one 548 

dimension (left - L vs right – R). Participants used visual information (V), haptic 549 

information (H) or both types of sensory information simultaneously (VH) to make 550 

a 2-alternative forced perceptual choice (2AFC), i.e., report (via a key press) as 551 

quickly and as accurately as possible on which side (L or R) the texture stimulus 552 

had higher amplitude (Fig. 1B). To sample information from both sides, 553 

participants performed finger movements scanning the workspace of the 554 

Pantograph before reaching a decision (Fig. 1C).  555 

In the H condition, the Pantograph (see Materials and Methods for more 556 

details on the device used to generate the stimuli) was programmed to produce 557 

sinusoidal forces, which yielded the sensation of exploring a rough texture 558 

surface (with different amplitudes between L and R (when participants moved 559 

their index finger on the workspace of the Pantograph (see Fig.1B middle panel). 560 

In the visual domain, participants were moving their fingers to reveal greyscale 561 

stripes of different intensity/contrast between L and R (see Fig. 1B left panel).In 562 

the VH condition, both the visual and haptic textures were congruently presented 563 

wherever the participants moved their fingers (Fig. 1B right panel). Overall, 564 

participants had to decide whether L or R had higher amplitude based on their 565 

haptic (in H trials), visual (in V trials) or visuo-haptic (in VH trials) perception of 566 

this virtual surface.  567 

 568 

Multisensory gain in behavioral performance 569 

Multisensory stimulation resulted in significantly higher discrimination 570 

accuracy (91.5%±2.1% in VH vs 85.8%±2.2% in V and 86.3%±2.2% in H, two-571 

way ANOVA with factors condition and stimulus difference, F(2,99)=5.64, 572 

p<0.005, see also slopes in the corresponding psychometric curves in Fig. 1D, 573 
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𝑃𝑆𝐸𝑣 = 0.034 ± 0.013, 𝑃𝑆𝐸ℎ = −0.001 ± 0.009 𝑃𝑆𝐸𝑣ℎ = −0.019 ± 0.007, 𝑠𝑙𝑜𝑝𝑒𝑣 =574 2.397 ± 0.2964, 𝑠𝑙𝑜𝑝𝑒ℎ = 1.826 ± 0.147, 𝑠𝑙𝑜𝑝𝑒𝑣ℎ = 3.001 ± 0.2514) compared to 575 

the unisensory conditions (post-hoc t-tests, Bonferroni corrected,  p=0.009 for V-576 

VH and p=0.019 for H-VH). Response times also reduced in VH (4.11±0.30s vs 577 

4.41±0.31s in V and 4.25±0.29s in H, two-way ANOVA with factors condition and 578 

stimulus difference, F(2,99)=3.19, p=0.045, see also corresponding cumulative 579 

distribution functions in the three conditions, Fig. 1E). This result was significant 580 

at the population level for VH vs V differences (post-hoc t–test, p=0.021, 581 

Bonferroni corrected) but not VH vs H differences (post-hoc t-test, p=0.066, 582 

Bonferroni corrected) in response times. As expected, we also found a main 583 

effect of stimulus differences, with accuracy increasing (F(2) = 91.82, p < 0.0001) 584 

and reaction times decreasing (F(2) = 4.56, p < 0.02) with larger stimulus 585 

differences, respectively. There was no interaction between the sensory 586 

condition and stimulus difference on either measure (accuracy: F(4) = 0.66, p = 587 

0.62; reaction times: F(4) = 0.05, p = 0.99). Taken together, these results indicate 588 

that multisensory information increased decision-making performance. 589 

 590 

Reconstruction of active sensing velocity from EEG recordings 591 

We then aimed to establish a relationship between brain activity and the 592 

active sensory experience of the participants in each one of the three sensory 593 

conditions. To this end,  we performed a multivariate ridge regression (Crosse et 594 

al., 2016) between the EEG data and the 1-d finger velocity data (on the x-axis) 595 

to quantify neural encoding of sensorimotor behavior.  596 

This analysis yielded the optimal linear combination of EEG channel 597 

activations with time lags ranging between [-200ms, 400ms] that approximated 598 

the measured movement velocities. We found that reconstruction accuracy 599 𝑟2 was above chance level in all sensory conditions (all p-values<0.01, Fig. 2B). 600 

To obtain interpretable topographies of the neural activity underlying these EEG-601 

velocity couplings, we inverted the obtained velocity-decoding (backward) 602 
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models into velocity-encoding (forward) models (Parra et al., 2005; Haufe et al., 603 

2014). This revealed that centro-frontal locations (with positive weights) and 604 

occipital locations (with negative weights) contributed most to velocity 605 

reconstruction in the three sensory conditions with time lags ranging from 20 to 606 

160 ms - see Fig. 2A showing the scalp topographies of the forward models and 607 

Fig. 2C-D showing the corresponding temporal response functions (averaged 608 

across frontal and occipital channels respectively) in the three sensory 609 

conditions.    610 

 611 

    612 

Impact of active multi-sensing on the quality of perceptual evidence 613 

To characterise the relationship between the identified EEG-velocity 614 

couplings and decision-making performance,, we employed a Hierarchical Drift 615 

Diffusion Model (HDDM). In brief, the HDDM decomposes task performance (i.e. 616 

accuracy and RT), into internal components of processing representing the rate 617 

of evidence integration (drift rate, δ), the amount of evidence required to make a 618 

choice (decision boundary separation, α), and the duration of other processes, 619 

such as stimulus encoding and response production (non-decision time, τ). 620 

Ultimately, by comparing the obtained values of all three core HDDM parameters 621 

across the V, H and VH trials, we could associate any behavioral differences 622 

resulting from the deployment of multisensory information (more accurate and 623 

faster perceptual choices as in Fig. 1) to the constituent internal process reflected 624 

by each model parameter.   625 

Here, to obtain a mechanistic account of the formation of perceptual 626 

decisions via the active sampling of (multi-)sensory information, we incorporated 627 

the single-trial measures of brain-sensing- couplings (𝑟2 values) into the HDDM 628 

parameter estimation (Fig. 3B). Specifically, we applied the obtained decoding 629 

filters to the single-trial EEG data and computed velocity reconstruction 630 

accuracies for each trial of each sensory condition (using a nested cross-631 
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validation process, see Materials and Methods for more details). Then, as part of 632 

the HDDM fitting process, we integrated   these single-trial 𝑟2 values in the 633 

HDDM framework by using them as regressors of the three core HDDM 634 

parameters (drift rate, non-decision time and decision boundary – see Materials 635 

and Methods). The corresponding regression coefficients were estimated 636 

together with the HDDM parameters thus enabling the assessment of the 637 

relationship between trial-to-trial variations in EEG-velocity couplings and each 638 

model parameter. We also used as regressors three movement parameters 639 

(average velocity mv , number of crossings between L and R crn  and time spent 640 

on the lower amplitude stimulus lowt ) which served to dissociate the effect of the 641 

exploratory movements (captured by these parameters) on decision formation  642 

from the effect of the neural encoding of these active sensing movements 643 

(captured by 𝑟2). 644 

We found that the best-fitting model (achieving the best complexity-645 

approximation trade-off as evaluated by the Deviance Information Criterion, Fig. 646 

3A) was the one using 𝑟2 as regressor of the drift rate only and crn , lowt  as 647 

regressors of non-decision time only ( Figure 3B shows a graphical illustration of 648 

the best-fitting model and Fig. 3C shows the model fitting of the accuracy and RT 649 

data where bars represent actual data and lines represent model fits). The 650 

means and confidence intervals of the estimated values of the three core HDDM 651 

parameters are reported in Table 1. Crucially for our investigation here, the EEG-652 

velocity couplings 𝑟2 were predictive of drift rates in single trials (regression 653 

coefficients 𝛽1 were larger than zero for all three sensory conditions, 654 𝑃𝑟𝑜𝑏(𝛾1(𝑉) > 0) > 0.97,𝑃𝑟𝑜𝑏(𝛾1(𝐻) > 0) > 0.99, 𝑃𝑟𝑜𝑏(𝛾1(𝑉𝐻) > 0) > 0.999; Fig. 655 

3D). Furthermore, the contribution of 𝑟2 to drift rate was higher in VH trials 656 

compared to V and H trials (𝑃𝑟𝑜𝑏(𝛾1(𝑉𝐻) > 𝛾1(𝑉)) > 0.95  and 𝑃𝑟𝑜𝑏(𝛾1(𝑉𝐻) >657 𝛾1(𝐻)) > 0.99; Fig. 3D) indicating a multisensory enhancement of evidence 658 

accumulation rates via an increased weighting of the EEG-velocity couplings in 659 

the VH condition.  660 
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We then examined whether this multisensory gain could explain the 661 

observed improvements in behavioral performance when multisensory 662 

information is available. Indeed, this enhanced contribution of 𝑟2 to drift rate was 663 

predictive of multisensory improvements in behavioral performance. Specifically, 664 

cross-participant differences in 𝛽1’s across conditions correlated with the reported 665 

increases in accuracy (𝑟 = 0.58, 𝑝 = 0.049 for VH vs V and 𝑟 = 0.75, 𝑝 = 0.005 666 

for VH vs H; Fig. 3F), suggesting that differences in accuracies across 667 

participants were accounted for by the contributions of EEG-velocity couplings to 668 

evidence accumulation. Thus, participants with greater drift rate amplification 669 

achieved stronger enhancements in their behavioral performance as a result of 670 

multisensory information available. 671 

We also found that both switching time between the two stimuli as 672 

captured by crn  and exploration time spent on one of the two stimuli as captured 673 

by lowt  were predictive of non-decision time (𝑃𝑟𝑜𝑏(𝛽𝑠𝑤 > 0) > 0.999, 𝑃𝑟𝑜𝑏(𝛽𝑒𝑥𝑝 >674 0) > 0.999 for all V,H,VH; Fig. 3G-H) in single trials indicating that non-decision 675 

processes (i.e. related to sensory processing and movement planning/execution) 676 

are dependent on switching and exploration times. There was a positive cross-677 

participant correlation (𝑟 = 0.695, 𝑝 = 0.0121) between 𝛽𝑒𝑥𝑝 and RT (averaged 678 

across trials and sensory conditions) suggesting that participants with larger 679 

contributions of exploration time to their non-decision times took longer to 680 

respond (Fig 3I).  However, we found no reliable difference in the corresponding 681 

regression coefficients (𝛽𝑠𝑤, 𝛽𝑒𝑥𝑝) between the three sensory conditions 682 

(𝑃𝑟𝑜𝑏(𝛽𝑠𝑤(𝑉𝐻) > 𝛽𝑠𝑤(𝑉)) = 0.632, 𝑃𝑟𝑜𝑏(𝛽𝑠𝑤(𝑉𝐻) > 𝛽𝑠𝑤(𝐻)) = 0.843, 683 𝑃𝑟𝑜𝑏 (𝛽𝑒𝑥𝑝(𝑉𝐻) > 𝛽𝑒𝑥𝑝(𝑉)) = 0.107, 𝑃𝑟𝑜𝑏 (𝛽𝑒𝑥𝑝(𝑉𝐻) > 𝛽𝑒𝑥𝑝(𝐻)) = 0.210;Fig. 684 

3G-H). There was also no difference in the decision boundaries in the three 685 

sensory conditions (𝑃𝑟𝑜𝑏(𝛼(𝑉𝐻) > 𝛼(𝑉)) = 0.731, 𝑃𝑟𝑜𝑏(𝛼(𝑉𝐻) > 𝛼(𝐻)) > 0.804; 686 

Fig. 3E). These results indicate that neither the switching and exploration times 687 
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nor the amount of evidence required to make a decision were dependent on the 688 

sensory condition. 689 

 690 

Quantifying multisensory interactions 691 

Having established that the neural encoding of the behavioral kinematics 692 

is related to the multisensory gain in decision evidence, we then aimed to assess 693 

how the neural representations of the two unisensory stimuli (V, H) interact to 694 

form a multisensory representation. To this end, we employed Partial Information 695 

Decomposition, which enables the quantification of cross-modal representational 696 

interactions in the human brain (see Methods for details). Specifically, the PID 697 

information theoretic framework quantifies the degree to which a) each 698 

unisensory (V,H) representation contributes uniquely to the encoding of active 699 

sensing behavior (unique V or H information), b) the two unisensory (V,H) 700 

representations share information about active sensing (redundancy) and c) the 701 

two unisensory (V,H) representations convey more information when observed 702 

simultaneously (synergy).  Here, we used PID to predict the forward (velocity-703 

encoding) VH model (target signal) from the two unisensory forward models V 704 

and H (predictor signals). The decomposition revealed that the V model provided 705 

unique information in right parieto-temporal locations whereas the H model 706 

contributed uniquely in left prefrontal and parieto-occipital locations (Fig. 4A, all 707 

p-values<0.01, FDR corrected). Crucially, we also found multisensory 708 

interactions in the form of a) redundant effects in left prefrontal and parieto-709 

occipital electrodes and b) synergistic effects over left centro-parietal scalp (Fig. 710 

4A, all ps<0.01, FDR corrected). Here, a redundant interaction means that the 711 

representation of velocity is common to both the V and H modalities (Ince et al., 712 

2017; Park et al., 2018).  A synergistic interaction means a better prediction of 713 

the modelled multisensory response can be made when considering both the V 714 

and the H representations together (rather than independently). That is, 715 
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knowledge of the simultaneous combination of the EEG signal predicted by V 716 

and H models gives more information about the VH EEG signal.  717 

 718 

Multisensory accuracy scales with synergistic interactions 719 

Next we investigated the behavioral relevance of the identified cross-720 

modal interactions. In particular, we asked whether the identified synergistic 721 

representation of the two modalities was predictive of behavioral performance 722 

across participants. Indeed, we found a significant positive correlation (Pearson’s 723 

R = 0.75 and 0.72, all p < 0.01) between synergy in both significant channels 724 

(CP3 and C5) and accuracy in VH, suggesting that participants with more 725 

synergistic representations at left centro-parietal electrodes achieved better 726 

multisensory performance (Fig. 4B). This result suggests that synergy in 727 

contralateral centro-parietal EEG signals modulates multisensory decision-728 

making behavior. Due to small sample size we cannot be sure this finding will 729 

generalise, but nonetheless report it as an interesting exploratory finding. 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 

 738 

 739 

 740 

 741 

Discussion  742 

 743 

In this work, we coupled neural decoding of continuous sensorimotor behavior 744 

with modeling of decision-making performance and a quantitative assessment of 745 

crossmodal neural interactions to understand how the human brain forms 746 

perceptual decisions via the active acquisition of multisensory evidence. We 747 

showed that the neural encoding of active sensing modulates the decision 748 
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evidence regardless of the sensing modality. We further demonstrated that the 749 

simultaneous sensing of different modalities enhances this neural coupling and 750 

this enhancement drives the dynamics of active multisensory decisions. We 751 

finally dissected the neural information conveyed by cross-modal interactions and 752 

identified a potential neural mechanism supporting multisensory decisions.   753 

Recent research on active sensing uncovered the strategies implemented by 754 

humans to sample sensory information (Yang et al., 2016b). Here we 755 

investigated this active sensing approach in a decision-making task using a 756 

computational approach which decodes the neural activity that encodes 757 

movement kinematics. Crucially, we made a first step in broadening this line of 758 

research to a) include sensory information from multiple modalities and b) reveal 759 

its neural underpinnings. These two developments enabled us to uncover the 760 

different sensory representations of active sampling behavior in the human brain.  761 

To achieve this, we implemented an informed cognitive modeling approach that 762 

linked the neural correlates and the movement characteristics of active sensing 763 

behavior with the cognitive processes involved in decision-making. Specifically, 764 

we asked if decision-making depends on the neural representations of active 765 

(multi-)sensing. To answer this question, we used a single-trial measure of the 766 

neural encoding of active sensing behavior as predictor of decision-making 767 

performance and found that, indeed, trial-to-trial fluctuations of the neural 768 

representations of active sensing are predictive of the rate of evidence 769 

accumulation for all three sensory conditions (V, H, VH). Crucially, we showed 770 

that the multisensory (VH) representation of active sensing was a stronger 771 

predictor of drift rate (Figure 3D) thus offering a neural link between active multi-772 

sensing and perceptual decision-making. We also split the motion profile into its 773 

two main components, i.e. a) switching between the two alternative stimuli and b) 774 

exploration within one particular stimulus and demonstrated that both 775 

components were predictive of the duration of non-decision processes (Figure 776 

3G-H), thus simply reflecting the time spent for movement planning and 777 
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execution and the consequent acquisition and encoding of sensory information.  778 

These novel findings were only made possible by the use of an active multi-779 

sensing paradigm in a decision-making task and the joint cognitive modeling of 780 

behavioral, neural and sensorimotor signals.    781 

We then capitalized on the identified neural representations of active (multi-782 

sensing), to dissect cross-modal interactions in the human brain. To this end,  we 783 

employed PID, a recently developed rigorous methodology for the quantification 784 

of information conveyed uniquely or jointly by different neural representations 785 

(Williams and Beer, 2010; Timme et al., 2014; Ince, 2017). PID further 786 

distinguishes between two types of interactions between the neural 787 

representations of the two sensory modalities (V, H). A synergistic interaction 788 

indicates that a better prediction of the multisensory neural response can be 789 

made when the predicted values of the unimodal forward models for V and H are 790 

considered jointly rather than independently. Our results suggest that this 791 

synergistic interaction of the two neural representations correlates with 792 

multisensory behavioural performance (Figure 4B). Instead, a redundant 793 

interaction indicates that the two unimodal models provide the same information 794 

about the multisensory condition, thus the multisensory response there is 795 

common to both modalities (Park et al., 2018; Daube et al., 2019a). This 796 

suggests that the underlying neural signals reflect a modality-invariant 797 

representation. 798 

As a result of this analysis, we were able to identify neural signals representing 799 

these two types of interactions. Specifically, we found that EEG channels in 800 

(parieto-)occipital and prefrontal areas carried redundant representations of the 801 

two sensory streams, perhaps reflecting supramodal coding mechanisms of 802 

active sensing (Figure 4A, redundancy). This finding is in line with previous 803 

research assigning a multimodal role to occipital cortex (Lacey et al., 2007; 804 

Murray et al., 2016) and suggesting that multisensory enhancements originate 805 

from the sensory cortices (Kayser and Logothetis, 2007; Lakatos et al., 2007; 806 
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Lewis and Noppeney, 2010). Specifically, recent research involved the visual 807 

cortex in audio-visual interactions (Mishra et al., 2007; Cao et al., 2019; Rohe et 808 

al., 2019) as well as tactile perception and visuo-haptic interactions (Lucan et al., 809 

2010; Sathian, 2016; Gaglianese et al., 2020). In agreement with the above, here 810 

we also found unique H information in parieto-occipital electrodes. Concerning 811 

the prefrontal cortex (PFC), recent evidence assigned to it a modality-general 812 

role in arbitrating between segregation or fusion of sensory evidence from 813 

different modalities (Cao et al., 2019). Thus, the involvement of the PFC in the 814 

regulation of adaptive multisensory behaviors in general (Koechlin and 815 

Summerfield, 2007; Donoso et al., 2014; Tomov et al., 2018) and perceptual 816 

decisions in particular (Heekeren et al., 2006; Philiastides et al., 2011; Rahnev et 817 

al., 2016; Sterzer, 2016) makes it a likely contributor to the formation of the most 818 

appropriate sensory representation that drives decision-making behavior. In other 819 

words, the PFC may support a mechanism gauging candidate (multisensory or 820 

unisensory) representations for selecting among multiple strategies to solve the 821 

task at hand (Calvert, 2001; Hein et al., 2007; Noppeney et al., 2010; Cao et al., 822 

2019). Our active multi-sensing task requires participants to continuously weigh 823 

different sensing strategies and refine their scanning patterns to maximize 824 

information gain. Hence, the PFC may capitalise on multisensory information 825 

(when of benefit) to support such flexible behavior striking a balance between 826 

sampling more evidence and committing to a choice.  827 

The above findings are consistent with our previous study focusing on the tactile 828 

modality, which attributed a sensory processing function to occipital cortex 829 

(specifically localized to the lateral occipital complex) and a decision formation 830 

function to right prefrontal cortex (middle frontal gyrus) (Delis et al., 2018). Taken 831 

together with the current results, our findings suggest these two brain areas may 832 

play a crossmodal role in supporting active perception and decision-making. 833 

Overall, our work adds to the existing literature on multi-sensory interactions by 834 

quantifying how sensory representations interact to encode active sensing 835 

behaviors.  836 
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More importantly, here we revealed a novel functional role for contralateral 837 

centro-parietal signals in active visuo-haptic decisions. We found that brain 838 

signals over left centro-parietal scalp locations showed stronger encoding of 839 

active sensing when the two sensory streams were available (Figure 4A, 840 

synergy), thus possibly representing a neural mechanism of multisensory 841 

integration. In line with the ongoing debate on the multisensory nature of primary 842 

sensory cortices (Ghazanfar and Schroeder, 2006; Liang et al., 2013), cross-843 

modal visuo-haptic interactions leading to enhanced neural representations have 844 

been found in the primary somatosensory cortex (S1) (Zhou and Fuster, 2000; 845 

Dionne et al., 2010). Here we further characterised these interactions as carrying 846 

super-additive/synergistic representations of the active multi-sensory experience 847 

and demonstrated that they are related to the accuracy of active multisensory 848 

judgments.  849 

It is also worth noting that our results do not rule out the possibility that 850 

other brain areas – not directly related to active sensing - may contribute to 851 

regulating the speed and accuracy of active multisensory decisions. In fact, 852 

recent research breakthroughs have explained the development of multisensory 853 

representations from different sensory streams in the human brain (Aller and 854 

Noppeney, 2019; Cao et al., 2019; Rohe et al., 2019). Furthermore, recent 855 

studies have started to investigate how the interactions between sensory 856 

representations shape decision formation (Bizley et al., 2016; Franzen et al., 857 

2020; Mercier and Cappe, 2020).  858 

Our primary aim here was to provide the missing link between the active 859 

acquisition of multisensory evidence and its transformation to choice. Overall, our 860 

findings validated the hypotheses that a) active sensing guides decision 861 

formation via evidence sampling and accumulation and b) multisensory 862 

information spurs perceptual decisions by enhancing the neural encoding of 863 

active behaviors. Our information-theoretic analysis also revealed the neural 864 

substrates of multisensory interactions in the human brain that support active 865 

multisensory perception. Ultimately, we identified and characterised a set of 866 



 

 

31 

 

human brain signals that underpin multisensory judgements by subserving an 867 

enhancement of the neural encoding of active perception when multisensory 868 

information is available.  869 
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Figures and Tables  1075 

 1076 

 1077 

Figure 1. Experimental design and behavioral results. A. The Pantograph is a 1078 

haptic device used to render virtual surfaces that can be actively sensed. Top: 1079 

the parts of the Pantograph shown from a lateral view. Participants placed their 1080 

index finger on the interface plate. Bottom: The Pantograph device used in this 1081 

experiment. B. The stimulus in the three sensory conditions. We programmed the 1082 

Pantograph to generate a virtual grating texture. The workspace was split into 1083 

two subspaces (left - L and right - R) that differed in the amplitude of the virtual 1084 

surface that the participants actively sensed. One of the two sides (randomly 1085 

assigned) had the reference amplitude (equal to 1) and the other had the 1086 

comparison amplitude that varied on each trial taking one of the values: 0.5, 1087 

0.75, 0.9, 1.1, 1.25, and 1.5. Participants performed the task using visual 1088 

information only (V), haptic information only (H) or the two sensory streams 1089 

together (VH). Amplitude of the stimulus in the haptic domain (H) was translated 1090 

as contrast in the visual domain (V). Crucially, to match the H condition, only a 1091 

moving dot following the participant’s finger was revealed on the screen in V. C. 1092 

Index finger trajectory indicating the scanning pattern of the virtual texture in one 1093 

trial. On this trial, the participant actively sensed the left subspace first, then 1094 

moved to the right subspace and explored it before coming back to the left 1095 

subspace again and reporting their choice. D. Psychometric curves indicating the 1096 

percentage of non-reference choices for all three sensory conditions (V in blue, H 1097 

in green, VH in red) and for all stimulus differences. Large dots represent 1098 

average percentage of choices across participants and smaller dots represent 1099 

individual participant means. Data are fit using cumulative Gaussian functions. E. 1100 

Cumulative distributions (CDF) of response times for all three sensory conditions 1101 

V in blue, H in green, VH in red) across all trials of all participants. Thick lines 1102 

indicate CDFs across all participant data and thin lines indicate individual 1103 

participant CDFs for each sensory condition. 1104 
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 1107 

 1108 

 1109 

 1110 

 1111 

 1112 

 1113 

 1114 

 1115 
Figure 2. Results of velocity reconstruction analysis using EEG signals. A. 1116 

Scalp topographies of the forward models representing neural encoding of 1117 

instantaneous finger velocity for the three sensory conditions. The presented 1118 

scalp maps show velocity-encoding EEG signals averaged over the following 1119 

time windows: [20,120]ms lags between velocity and EEG for V and VH and 1120 

[60,160]ms lags for H. B. Accuracy of the velocity reconstruction from the EEG 1121 

signals measured using the squared correlation coefficient (𝑟2) between the 1122 

original and the approximated velocity profile in the three sensory conditions (V in 1123 

blue, H in green, VH in red). Bars represent means across participants and 1124 

errorbars represent standard errors (sem). Dots represent individual participant 1125 

data.  C-D. Temporal response functions (TRFs) of the velocity-encoding EEG 1126 

activity in the three sensory conditions (V in blue, H in green, VH in red) 1127 

averaged over frontal electrodes (in C) and over occipital electrodes (in D).  1128 

 1129 

 1130 

 1131 

 1132 
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Table1: Estimated values of the three core HDDM parameters for the best-1133 

fitting model 1134 

Parameter Mean Confidence 
Interval (5%) 

Confidence 
Interval (95%) 

Drift rate (δ) 0.897 0.628 1.162 

Non-decision time (τ) 2.897 2.710 3.045 

Decision boundary (α) 2.853 2.501 3.256 
 1135 

 1136 

 1137 

 1138 

 1139 

 1140 

 1141 

 1142 

 1143 

 1144 
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 1145 

 1146 
 1147 

Figure 3. Informed modeling of decision-making behavior. A. Comparison of 1148 

the best-fitting model (with 2
r  as a regressor of drift rate δ only and crn , lowt  as 1149 

regressors of non-decision time τ only) with alternate models using the Deviance 1150 

Information Criterion (DIC). Positive ΔDIC (DICmodel – DICoptimal) values for all six 1151 

models indicate that the model of choice achieved a better trade-off between 1152 

goodness-of-fit and number of free parameters. B. Graphical representation 1153 

showing hierarchical estimation of HDDM parameters. Round nodes represent 1154 

continuous random variables and double-bordered nodes represent variables 1155 

defined in terms of other variables. Shaded nodes represent recorded or 1156 

computed signals, i.e. single-trial behavioral data (accuracy, RT and stimulus 1157 

differences s), EEG-velocity couplings ( 2
r ) and kinematic parameters (

crn , 
lowt ). 1158 

Parameters are modelled as Gaussian random variables with inferred means μ 1159 

and variances σ2. Plates denote that multiple random variables share the same 1160 
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parents and children. The outer plate is over sensory conditions (V,H, VH) and 1161 

the inner plate is over all trials (K) and participants (N). C. Behavioral RT 1162 

distributions are shown as histograms for each sensory condition (V in blue, H in 1163 

green, VH in red) for correct (right) and incorrect (left) trials together with the  1164 

HDDM fits (black lines). Higher histogram values on the right indicate higher 1165 

proportion of correct choices.  D. Posterior distributions of regression coefficients 1166 

(γ1) of the EEG-velocity couplings ( 2
r ), as predictors of the drift rate (δ) of the 1167 

HDDM shown in A. The three coloured curves indicate posterior distributions for 1168 

the three sensory conditions (blue – V, green – H, red – VH). E. Posterior 1169 

distributions of decision boundaries for the three sensory conditions (blue – V, 1170 

green – H, red – VH).  F. Cross-participant correlation of differences in choice 1171 

accuracy (ΔAcc - x-axis) and differences in β1 (Δβ1 – y-axis) between the 1172 

multisensory (VH) and the two unisensory (V,H) conditions (VH-V in yellow, VH-1173 

H in purple). G. Posterior distributions of regression coefficients (βsw) of the 1174 

number of crossings between L and R (
crn ), as predictor of non-decision time (τ) 1175 

of the HDDM shown in A. H. Posterior distributions of regression coefficients 1176 

(βexp) of the time spent on the low-amplitude stimulus (
lowt ), as predictor of non-1177 

decision time (τ) of the HDDM shown in A.  I. Cross-participant correlation of 1178 

average response times across trials and sensory conditions (x-axis) and βexp (y-1179 

axis). 1180 
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1189 
Figure 4. Neural representations and cross-modal interactions. A. Results of 1190 

PID applied to predict the multisensory (VH) model of active sensing from the two 1191 

unisensory (V and H) models. Dots on the scalp topographies indicate the EEG 1192 

channels that provide significant (p<0.01, FDR corrected) visual unique (top left), 1193 

haptic unique (top right), redundant (bottom left) and synergistic (bottom right) 1194 

neural information respectively.  B. Across-subject correlation between synergy 1195 

in the two significant EEG channels (CP3 in red and C5 in blue) and choice 1196 

accuracy in the VH condition.  1197 

 1198 

 1199 

Author Contributions: Conceptualization: ID, PS, QW 1200 

 Methodology: ID, RAAI, PS, QW 1201 

 Investigation: ID 1202 

 Supervision: PS, QW 1203 

 Writing—original draft: ID 1204 

 Writing—review & editing: ID, RAAI, PS, QW 1205 

 1206 

 1207 

 1208 


	Cover Page
	Clean Copy of Article File

