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Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo char-

acterisation of myocardial microstructure, and there is a growing need for its valida-

tion and standardisation. We sought to establish the accuracy, precision, repeatability

and reproducibility of state-of-the-art pulse sequences for cardiac DTI among

Abbreviations used: ADC, apparent diffusion coefficient; CODE, convex optimised diffusion encoding; CV, coefficient of variation; DTI, diffusion tensor imaging; DW, diffusion-weighted; DWI,

diffusion-weighted imaging; EPI, echo planar imaging; FA, fractional anisotropy; HCM, hypertrophic cardiomyopathy; M2B1resist, M2SE with improved robustness to B1 inhomogeneities; M2SE,

second-order motion-compensated spin echo; MD, mean diffusivity; MODE, motion-compensated optimised diffusion encoding; PGSE, pulsed gradient spin echo; PVP, polyvinylpyrrolidone;

RMSD, root mean squared difference; ROI, region of interest; SD, standard deviation; SE, spin echo; SNR, signal-to-noise ratio; STEAM, stimulated echo acquisition mode.

Received: 24 May 2021 Revised: 19 November 2021 Accepted: 24 December 2021

DOI: 10.1002/nbm.4685

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2021 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

NMR in Biomedicine. 2022;35:e4685. wileyonlinelibrary.com/journal/nbm 1 of 18

https://doi.org/10.1002/nbm.4685

https://orcid.org/0000-0002-6705-3129
https://orcid.org/0000-0001-7312-6745
https://orcid.org/0000-0001-9341-6838
https://orcid.org/0000-0002-2165-7154
https://orcid.org/0000-0001-7435-1311
https://orcid.org/0000-0002-0436-3496
https://orcid.org/0000-0003-3725-8884
https://orcid.org/0000-0002-6509-3776
https://orcid.org/0000-0002-9188-6403
https://orcid.org/0000-0003-1475-2329
https://orcid.org/0000-0002-8827-1838
https://orcid.org/0000-0001-7656-3123
https://orcid.org/0000-0002-6486-7434
https://orcid.org/0000-0001-8670-0929
https://orcid.org/0000-0003-2664-5272
https://orcid.org/0000-0002-6945-5201
https://orcid.org/0000-0001-8943-3539
https://orcid.org/0000-0003-4019-3460
https://orcid.org/0000-0001-9118-0438
https://orcid.org/0000-0003-0999-5684
mailto:i.teh@leeds.ac.uk
https://doi.org/10.1002/nbm.4685
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/nbm
https://doi.org/10.1002/nbm.4685
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnbm.4685&domain=pdf&date_stamp=2022-02-08


Funding information

British Heart Foundation, Grant/Award

Numbers: PG/19/1/34076, SI/14/1/30718,

FS/13/71/30378, PG/17/28/32943, RG/19/

1/34160; German Ministry of Education and

Research (BMBF), Grant/Award Number:

01EO1504; Swiss National Science

Foundation, Grant/Award Number:

PZ00P2_174144; National Institutes of Health

(NIH), Grant/Award Numbers: R21-EB024701,

R01-HL151704, R01-HL135242,

R01-HL124096, R01-HL131823,

R01-H131975, R01-HL141563; Oxford NIHR

Biomedical Research Centre

10 centres internationally. Phantoms comprising 0%–20% polyvinylpyrrolidone (PVP)

were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10

sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimu-

lated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI

in vivo. A second identical scan was performed 1–9 days later, and the data were

analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124,

1.130, 1.113) x 10�3 mm2/s for PGSE, SE and STEAM, respectively, and accurate to

within 1.5% of reference data from the literature. The coefficients of variation in

MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively,

and were similar to previous studies using only PGSE. Reproducibility in MD was

excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95,

0.52 ± 0.58) x 10�5 mm2/s (mean ± 1.96 SD). We show that custom sequences for

cardiac DTI provide accurate, precise, repeatable and reproducible measurements.

Further work in anisotropic and/or deforming phantoms is warranted.

K E YWORD S

cardiac DTI, isotropic phantom, multicentre, polyvinylpyrrolidone, pulse sequence validation,
reproducibility

1 | INTRODUCTION

Diffusion tensor imaging (DTI) is an emerging noninvasive and contrast agent-free method for the characterisation of cardiac microstructure. It

provides measurements, such as mean diffusivity (MD) and fractional anisotropy (FA), that are sensitive to the diffusion of water molecules, and

therefore local tissue structure. Increased MD, for example, corresponded well to late gadolinium-enhanced segments in myocardial infarction,1,2

while decreased FA can reflect cardiomyocyte disarray and increased extracellular volume in hypertrophic cardiomyopathy (HCM).3 Changes in

MD and FA have also been associated with a range of conditions including myocardial infarction,4,5 hypertrophy,6 athlete's heart,7 fibrosis,8 amy-

loidosis9 and dilated cardiomyopathy.10,11

Despite recent advances, several major challenges need to be addressed to facilitate integration of DTI in clinical routine. The first is the

uncertainty in choice of pulse sequence. As a result of cardiac motion, methods for motion compensation have had to be developed. These can be

classed into two broad approaches, both employing cardiac triggering for synchronising to the cardiac cycle, and a single-shot echo planar imaging

(EPI) readout for reduced motion sensitivity. The first method is based on stimulated echo acquisition mode (STEAM)12 with monopolar13 diffu-

sion gradient waveforms. The second method is based on spin echo (SE) with motion-compensated diffusion gradient waveforms.14 The most

widely used SE implementation involves up to second-order motion compensation, rendering the sequence insensitive to constant velocity and

acceleration. Second-order motion-compensated spin echo (M2SE) can be achieved with a range of methods, including asymmetric bipolar

waveforms,15 symmetric tripolar waveforms with improved robustness to B1 inhomogeneities (M2B1resist)16 and numerically optimised wave-

forms convex optimised diffusion encoding (CODE)17 and motion-compensated optimised diffusion encoding (MODE)18 with reduced echo times.

Two studies compared the performance of STEAM and M2SE. One reported more than twofold higher signal-to-noise ratio (SNR) efficiency in

M2SE compared with STEAM,19 while the other, performed on a system with standard clinical gradients, observed that STEAM was more robust

over a range of cardiac phases.20

The second challenge is the known sensitivity of diffusion MRI, not just to tissue properties, but also to acquisition parameters. Fitting of a ten-

sor to diffusion-weighted (DW) data ignores non-Gaussian diffusion effects21 stemming from the multiple compartments and barriers present within

the complex cell microenvironment, leading to measures of apparent diffusivity that are sensitive to parameters such as pulse sequences,19,20 diffu-

sion times22 and b-value.23 Furthermore, DTI relies on low SNR DW images, leading to errors in measured parameters,24,25 and sensitivity to image

resolution and SNR.26 The low SNR necessitates larger voxel sizes that enhance partial volume and residual motion artefacts,27 while the rapid

switching of diffusion gradient waveforms may enhance eddy current effects.27 Additionally, early STEAM studies erroneously ascribed b-values of

0 s/mm2 to the non-DW data during the reconstruction, leading to bias in MD, even within one sequence type.28,29 Consequently, studies in the

myocardium of healthy volunteers have reported a wide range of MD (0.87 x 10�3 to 1.72 x 10�3 mm2/s) and FA (0.29 to 0.61).19,20,30,31 This

hampers comparison of data between sites and studies, and a standardised protocol is needed for comparison of absolute values.
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The third challenge is the need to establish reproducibility of DTI parameters within and across sites. One intrasite study in healthy volunteers

using a STEAM-EPI sequence showed no significant differences in myocardial MD and FA acquired at two time points.28 Another single-site study

in patients with HCM32 reported coefficients of variation (CVs) of myocardial MD and FA across two time points of 19% and 7.2%, respectively.

Intersite reproducibility is typically measured by scanning standardised subjects and substrates, such as travelling volunteers and phantoms,

respectively, at multiple sites. Such studies have been performed most widely in the context of brain imaging, and have reported good reproduc-

ibility in MD and FA across up to 11 sites, with intersite CVMD in brain ranging from 1.6% to 5.4% and CVFA ranging from 2.0% to 4.5%.33–35 One

cardiac DTI study involving healthy volunteers at two sites reported myocardial CVMD and CVFA of up to 7% and 6%, respectively.29

While volunteers are key to assessing the real-world performance of DTI, phantoms are more cost-effective for larger scale studies, offer lon-

ger term stability and allow for customisation of features for isolation of sources of variation in the data. Isotropic phantoms, for example, ice

water33 or aqueous solutions of polyvinylpyrrolidone (PVP)34,36,37 or nickel chloride and sodium chloride,35 provide a homogeneous substrate

with known MD, while biomimetic phantoms simulating cardiac microstructure38 additionally permit reproducible measurements of FA. While

such anisotropic phantoms could facilitate more realistic evaluation of anisotropy, these remain generally unavailable. Moreover, isotropic phan-

toms have a unique advantage, in that there exist gold standard reference measurements of diffusivity in the case of water, and corroborating

MD values in the literature in the case of PVP.

In this multicentre study, we sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences

for cardiac DTI among 10 centres internationally. We employed a standardized, custom-built, temperature-controlled PVP phantom to permit

baseline evaluation of MD and FA, as well as intrasite and intersite reproducibility in a homogeneous, isotropic substrate with known diffusivity,

and acquired data using a product noncardiac DTI pulse sequence to serve as a reference.

2 | MATERIALS AND METHODS

Ten sites participated in the study (one Philips 1.5-T scanner, nine Siemens 3-T scanners). Phantoms were produced at a single site and shipped to par-

ticipating sites. Data were acquired using a standardised protocol prescribing both product and custom DTI sequences. A second scan was performed

from 1–9 days following the first scan. Data were uploaded to a central server, and analysed by a single site using a standardised processing pipeline.

2.1 | Phantom preparation

The phantom comprised 7 x 50-ml Falcon tubes filled with PVP (Sigma Aldrich, Dorset, UK) in distilled water in concentrations ranging from 0%

to 20%. The tubes were positioned vertically in an outer container using a laser-cut plastic holder. Prior to imaging, the tubes were immersed in

an ice-water bath and given sufficient time to equilibrate to 0�C (Figure 1). The phantoms were placed at the isocentre in identical orientation.

2.2 | Data acquisition

To verify consistent temperature, a fast diffusion-weighted imaging (DWI) scout scan was performed using the product sequence (i.e. pulsed gra-

dient spin echo [PGSE] with single-shot EPI readout). The mean apparent diffusion coefficient (ADC) was measured in a region of interest (ROI) in

F IGURE 1 Phantom design. (A) Photograph of phantom prior to filling with ice-water bath. (B) Key for identifying tubes with different
concentrations of polyvinylpyrrolidone (PVP)
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the central tube. The scout scan was repeated at 10-min intervals, until the mean ADCs across two consecutive scans were within 3% agreement.

Sites performed experiments using the product PGSE sequence13 and a custom DTI sequence of their choice optimised for cardiac-specific appli-

cations. The scan parameters for the product sequence were TR/TE = 3000/85 ms, coronal view, field of view (FOV) = 300 � 230 mm, in-plane

resolution = 2.5 mm, slice thickness = 8 mm, gap = 8 mm, slices = 3, bandwidth � 3000 Hz, parallel imaging acceleration = 2x, ECG-triggered

with simulated heart rate = 60 beats per min. Specified parameters such as TE and resolution were fairly conservative, to ensure that all sites

could meet the sequence specifications in the presence of different hardware capabilities. To ensure consistency in diffusion schemes across dif-

ferent scanners, the following diffusion schemes were specified: (i) DWI scout scan: non-DW images = 1, diffusion vectors (3) = [1 0 0; 0 1 0; 0 0

1], b = 450 s/mm2, repetitions = 3, acquisition time �36 s; (ii) DTI scan: non-DW images = 1, diffusion vectors39 (6) = [0.5257 0.8507 0;

0.5257–0.8507 0; 0 0.5257 0.8507; 0 0.5257–0.8507; 0.8507 0 0.5257; �0.8507 0 0.5257], b = 100, 300, 450 s/mm2, repetitions = 30, acquisi-

tion time �29 min. Each site performed imaging with one custom sequence of their preference, including spin echo-based sequences with up to

second-order motion compensation (M2SE, CODE, MODE, M2B1resist) and STEAM (Figure 2). The relevant acquisition parameters can be found

in Table 1 and the supporting information.

2.3 | Data analysis

Image reconstruction was performed on the scanners using standard vendor reconstruction software. Data storage and management were per-

formed using the Human Heart Project, an online platform for heart imaging research.40,41 Data were analysed centrally using open source Matlab

F IGURE 2 Schematic pulse sequence diagrams describing the diffusion waveforms used. These include the pulsed gradient spin echo (PGSE)
product sequence and custom sequences as follows: motion-compensated spin echo (M2SE), convex optimised diffusion encoding (CODE),
motion-compensated optimised diffusion encoding (MODE), motion-compensated symmetric spin echo (M2B1resist) and stimulated echo
acquisition mode (STEAM). All custom spin echo sequences were motion-compensated up to the second order, and all sequences used a single-
shot echo planar imaging readout. For clarity, preparation pulses, navigators, crushers and spoilers are not shown. Gradient waveform parameters,
including diffusion gradient duration (δn) for each unique gradient lobe, time (b –a), slew time (ζ) and diffusion time (Δ) where applicable, are given
in Table 1. δn was measured from the start of each unique gradient lobe (Gn) to the end of its plateau. Pulse sequences are not shown to scale
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code (https://github.com/vigente/gerardus). The first step was semiautomatic tube segmentation, where tube centres were defined manually,

and ROIs generated up to a fixed radius from the tube centres. Tensors were fit directly to the data using linear least squares, using all image repe-

titions without prior averaging. MD and FA were calculated as follows (Equations 1 and 2, respectively).

MD¼ λ1þλ2þλ3
3

ð1Þ

FA¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1�λ2ð Þ2þ λ1�λ3ð Þ2þ λ2�λ3ð Þ2

λ1
2þλ2

2þλ3
2

s
, ð2Þ

where λ1, λ2 and λ3 are the principal eigenvalues of the diffusion tensor. To obtain the reference diffusivity of water (Dref), the self-diffusion of

water, as measured using an independent non-MR technique, was extrapolated to 0�C using a second-order polynomial fit.42 To assess the effect

of b-values and rationalise an appropriate choice of b-values, average values of MD and FA across an ROI in tube 1 using data acquired with dif-

ferent b-value combinations are reported. Root mean squared differences (RMSDs) between scans 1 and 2 were assessed. MD and FA across

ROIs in all tubes were reported using data from all repetitions, and also expressed as a time course reconstructed from subsampled single repeti-

tions. The reference diffusivity for water was defined as Dref (H2O) = 1.113 x 10�3 mm2/s at 0�C extrapolated from Mills.42

To calculate drift, the MD and FA across repetitions were first smoothed with a sliding window of five repetitions. Drift was determined by

the difference between final and initial values. The stability of MD and FA measurements across repetitions were expressed in terms of the stan-

dard deviation (SD) across repetitions. As the non-DW data had variable b-values, image SNR was calculated based on the b = 100 s/mm2 images

averaged across six DW directions: SNR = mean/SD over repetitions.43

Accuracy in MD in each tube and site was expressed as44:

Accuracy, ∂ j,k ¼MDj,k�MDref,j

MDref,j
�100%, ð3Þ

where MD is averaged across each ROI and both scans. The reference MDref is the MD measured by PGSE averaged across each ROI, and all sites

and both scans. j and k are the tube and site indexes.

Precision in MD in each tube and site was expressed in terms of45:

Coefficient of variation, CV ROIð Þj,k ¼
σ MDið Þ½ �j,k
μ MDið Þ½ �j,k

�100%, ð4Þ

where y σ is the SD of MD and μ is the mean MD across each ROI in scan 1. i, j and k are the voxel, tube and site indexes, respectively.

Intrasite repeatability was assessed by Bland–Altman plots, with mean differences and 95% limits of agreement reported.

Intersite reproducibility was assessed in terms of:

Coefficient of variation, CVk,l,m ¼ σ MDk,l,m

� �
μ MDk,l,m

� ��100%, ð5Þ

where σ is the SD of MD and μ is the mean MD across each variable separately, MD is averaged across each ROI and both scans. k is the site index

(1, 2, … 10), l is the sequence index (1:PGSE, 2:SE, 3:STEAM), m is the scan index (1, 2). We report the interscan, intersite (PGSE, SE, STEAM),

intersequence (PGSE vs. SE, PGSE vs. STEAM) and intersite/sequence CV (SE vs. STEAM).

2.4 | Statistical analysis

Differences in MD with respect to Dref were assessed by one-sample t-tests. Shapiro–Wilk tests were performed to test for normality in the accu-

racy of MD. Wilcoxon rank-sum tests were performed in each tube to determine the significance of differences between the medians of each

sequence with respect to other sequences. The Bland–Altman results were analysed by pairwise comparisons of mean differences between PGSE,

SE and STEAM, using two-sample t-tests with unequal variances. A significance level of p = 0.05 was used. To compare statistical distributions of

the reproducibility of MD and FA, bootstrapped histograms were calculated by sampling the differences in MD and FA between scans 1000 times

with replacement. Medians and 95% confidence intervals are reported. Histograms with nonoverlapping 95% CIs were deemed to be significantly

different from one another.

6 of 18 TEH ET AL.

https://github.com/vigente/gerardus


3 | RESULTS

3.1 | Data quality

All sites acquired DTI data at two time points. The custom sequence acquisitions were split evenly into two groups, SE (N = 5) and STEAM

(N = 5). While the product sequence acquisitions were standardised apart from small scanner variations in diffusion gradient duration

(25.6 ± 2.9 ms) and diffusion time (39.9 ± 3.5 ms; mean ± SD across sites), there was greater variation across the custom sequence acquisitions.

The main difference was that of all those sites that acquired STEAM data, only one site (site H) was able to acquire three slices of data as stipu-

lated in the protocol, by slice interleaving and using TR = 6000 ms. To maintain consistent scan time, 15 repetitions were used in the analysis.

The other four sites were unable to acquire multislice data in an interleaved fashion because of implementation limitations, and therefore only

acquired single-slice data. As TR = 2000 ms was used, 45 repetitions were acquired to match scan times (sites F, G and I), although one site

acquired 30 repetitions (site J). In the custom SE data, 30 repetitions were acquired with TR = 3000 ms, matching the product sequence. There

were, however, instances in the custom SE data where not all 30 repetitions were available for all DW directions: 27 (site A, scan 1), 29 (site A,

scan 2) and 28 (site E, scan 2) repetitions. Where a given repetition did not include all required DW directions, that repetition was excluded from

analysis. In one site (site H), the data were exported at a reconstructed in-plane resolution of 0.94 x 0.94 mm, and had to be resampled to the

nominal 2.5 x 2.5 mm resolution. Variations in parameters such as TR, TE and diffusion gradient timings are given in Table 1.

Figure 3 shows representative MD and FA maps in a single slice acquired at scan 1, using both product and custom sequences. Qualitatively,

the maps were of good quality within the tubes. By contrast, the data in the surrounding ice-water bath were highly variable, and some voxels

were masked out by the scanner reconstruction (site F). Gibb's ringing (all sites), geometric distortions (site G) and SENSE unfolding artefacts (site

H) were observed.

3.2 | Mean diffusivity

The dependence of MD on b-values in the DTI reconstruction is illustrated in Figure 4. The results show that MD calculated from the product

sequence data was relatively stable at (1.120 ± 0.022) x 10�3 mm2/s across all b-value combinations. By contrast, greater sensitivity to b-value

combinations was observed in MODE and STEAM custom sequences with MD = (1.61 ± 0.73, 1.06 ± 0.13) x 10�3 mm2/s across b-value combi-

nations, respectively. The RMSDs of MD between scans 1 and 2 in the custom sequence data were (0.214, 0.078, 0.048, 0.010, 0.005, 0.010,

0.012) x 10�3 mm2/s across the b-value combinations blow, 100; blow, 300; blow, 450; 100, 300; 100, 450; 300, 450; and blow,100, 300, 450,

respectively. The lowest RMSD for MD was found using the combination of b = 100 and 450 s/mm2, and this was therefore used for subsequent

analysis. As phantom was isotropic, we focus on MD; corresponding FA measurements can be found in the supporting information.

Figure 5 depicts the MD averaged over ROIs within each tube. In tube 1 (0% PVP), the average MDs across all sites and scans 1 and 2 were

(1.124, 1.130, 1.113) x 10�3 mm2/s for PGSE, SE and STEAM, respectively. Relative to the reference diffusivity of H2O at 0�C of

F IGURE 3 Mosaic of mean diffusivity (MD; top) and fractional anisotropy (FA; bottom) maps. Single-slice data are shown and were acquired
using product (top) and custom sequences (bottom) at scan 1
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1.113 x 10�3 mm2/s, the average MD of tube 1, as measured by PGSE and SE, was overestimated by 1.0% (p = 0.01) and 1.5% (p = 0.01), respec-

tively, while STEAM provided a result that was accurate to within 0.04% (p = 0.9). The SD across ROIs in tubes 1–7 increased with PVP concen-

tration, particularly in the STEAM data. Summary values of MD and FA grouped by pulse sequence are presented in Table 2, alongside literature

values where available.

3.3 | Accuracy

The accuracy of MD relative to the average MD measured across sites is presented in Figure 6. The null hypothesis that samples were normally

distributed was rejected in three cases (STEAM tube 1, SE tube 3 and PGSE tube 7). Median accuracies between sequences were not significantly

different, except for PGSE tube 2 versus STEAM tube 2 (p < 0.05). Within pulse sequences and between tubes, there were no significant differ-

ences in median accuracies.

3.4 | Precision

The precision of MD across pairs of sequences and tubes show that SE has significantly higher median CV than PGSE in three tubes, whereas

STEAM has significantly higher median CV than PGSE in six tubes (Figure 7). There were clear differences as well when comparing medians

between pairs of tubes, with precision worsening with increasing tube number (i.e. PVP concentration).

3.5 | Intrascan stability

Figure 8 shows the SNR of the b = 100 s/mm2 data in a single repetition. In tube 1, the average SNRs across scans 1 and 2 were 23.3, 19.9 and

20.8 in PGSE, SE and STEAM, respectively, whereas in tube 7, the corresponding average SNRs were 44.1, 41.8 and 31.2. The stability of mea-

surements across repetitions is reported in the supporting information.

F IGURE 4 Sensitivity of mean diffusivity (MD) to b-values used in the diffusion tensor imaging (DTI) reconstruction. Average MD in tube
1 (0% polyvinylpyrrolidone) across sites, two time points, product (left) and custom sequence data (right) and b-value combinations. Mean ± SD
across voxels in the region of interest. Average values for pulsed gradient spin echo (PGSE), spin echo (SE) and stimulated echo acquisition mode
(STEAM) are given by grey, white and black bars, respectively. The b-values of nondiffusion-weighted data are denoted by blow, and ranged from
0 to 76 s/mm2 across sites (Table 1). MD and FA reconstructed using pairs of b-values that include blow are generally further from expected
values and less reproducible across scans. The combination of b = (100, 450) s/mm2 was considered in subsequent analysis
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3.6 | Intrasite repeatability

Bland–Altman plots of MD and FA across two scans are presented in Figure 9. In tube 1, the mean differences of MD in PGSE, SE and STEAM

were (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10�5 mm2/s, respectively (mean ± 1.96 SD). The corresponding mean differences in FA were 0.0006

± 0.0099, 0.006 ± 0.018 and �0.012 ± 0.039. The differences between pulse sequences, as observed in the mean differences of MD and FA,

were not significant at p = 0.05. Linear regression of difference by average values of MD and FA showed low proportional bias, with R2 of 0.16

or less in all cases. Figure 10 summarises the bootstrapped scan-wise mean differences in MD and FA, grouped by pulse sequence. On average

and across tubes, the greatest median scan-wise difference in MD of 0.96 x 10�5 mm2/s was seen in the SE data, whereas STEAM exhibited the

greatest median scan-wise difference in FA of �0.012. Table S1 compares the mean difference averaged across all tubes across sites. The lowest

absolute mean differences in MD and FA in the custom sequence data were seen in sites A and D, respectively.

Overall, STEAM yielded more accurate MD than SE at the isocentre (p = 0.02), while MD and FA across repetitions were more stable in SE

compared with STEAM (p < 0.001). Although SE tended to higher reproducibility in MD and FA than STEAM, these were not significant at

p = 0.05.

3.7 | Intersite reproducibility

The average CVMD was evaluated across scans, sites (PGSE, SE and STEAM separately) and sequence pairs (PGSE vs. SE, PGSE vs. STEAM and SE

vs. STEAM). The results were: CVMD(scans) = 1.0%, CVMD(sites, PGSE) = 2.6%, CVMD(sites, SE) = 3.1%, CVMD(sites, STEAM) = 2.1%, CVMD(sequences, PGSE vs SE)

= 1.2%, CVMD(sequences, PGSE vs. STEAM) = 1.6% and CVMD(sequences, SE vs. STEAM) = 2.6% (Figure 11). Within the intersite grouping, there were no

significant differences in median CV between different sequences. Within the intersequence grouping, median CV in SE versus STEAM was signifi-

cantly higher than both PGSE versus SE and PGSE versus STEAM.

4 | DISCUSSION

In this study, we compared several state-of-the-art methods suitable for in vivo cardiac DTI alongside conventional PGSE data. The results at the

isocentre (i.e. tube 1) showed that, averaged across sites, PGSE, SE and STEAM yielded accurate MD, agreeing with the reference diffusivity of

F IGURE 5 Average mean diffusivity (MD) across regions of interest (ROIs) as a function of polyvinylpyrrolidone (PVP) concentration. Tensors
were reconstructed using b = (100, 450) s/mm2 data. Tubes 1–7 corresponded to 0%, 2.5%, 5%, 7.5%, 10%, 15% and 20% PVP, respectively.
Mean ± SD across voxels in the ROI. The horizontal black line indicates the reference diffusivity (H2O at 0�C) = 1.113 x 10�3 mm2/s
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water at 0�C to within 1.5% or less. Moreover, the MDs in the PGSE, SE and STEAM data were within ±1% of averaged literature values,33,34,37

suggesting good conformance with prescribed experimental conditions. The diffusivity of PVP depends on the concentration, temperature and

length of polymer chains, and an independently measured ground truth is unavailable. We therefore used the MD acquired using PGSE averaged

across sites and scans as a reference for assessing accuracy in PVP with different concentrations: these values were in good agreement with the

literature (Table 2).

The expected value of FA in an isotropic phantom is zero. However, factors including noise, imperfect gradient calibration, eddy currents, and

convection and vibration within the phantom could in principle contribute to nonzero FA. Both SE and STEAM had lower SNRs than PGSE, which

could have resulted in the higher FA in the custom sequences. We chose not to report CVFA because the expected FA in isotropic media is zero,

which leads to unstable CVFA that is biased by the measured FA. For instance, poor gradient calibration would lead to a higher FA, and therefore

artificially lower CVFA. Vibration and convection were not deemed to be major issues due to the good accuracy of MD.

CV (ROI) in MD and FA across sites was lowest in PGSE and highest in STEAM. In an isotropic liquid phantom, the underlying substrate is

expected to be homogeneous. Reasons that could increase CV (ROI) include noise and image artefacts. From Figure 3, Gibb's ringing can be seen

in all datasets due to the hard edges of the phantom. Additional artefacts are visible in the STEAM data (sites G and H), potentially increasing the

CV (ROI). Furthermore, as the tube number and PVP concentration increased, we observed that the mean FA and CV (ROI) in MD and FA were

increasingly elevated, particularly in STEAM. This may be associated with (i) effects of concomitant fields away from the isocentre (site E),

(ii) localised image artefacts in tubes 5, 6 and 7 possibly caused by vibration (site G), and (iii) the increased effect of Gibb's ringing in the tubes with

higher PVP concentrations due to the increased differential in DW image intensities relative to the surrounding ice-water bath.

In cardiac DTI, DW data with finite, low b-values are often used instead of non-DW data to suppress the effects of microvascular perfusion.23

There was no perfusion in the phantom, and therefore MD and FA would be expected to be relatively insensitive to the b-value combinations

used, insofar as perfusion is concerned. This was generally the case for PGSE data. Greater deviations were seen when custom DTI data were

reconstructed from b-value pairs that included non-DW data. See blow in Table 1 for corresponding b-values. Deviations from the expected values

of MD and FA were particularly striking in MODE and STEAM data. With MODE, high MD was seen whenever the blow data were used. This was

due to a shading artefact seen in the DW data, but not in the non-DW data, therefore resulting in a positive bias in MD when the non-DW data

were included in the reconstruction. The shading artefact was potentially due to residual concomitant gradient field effects, and this was reflected

in higher regional heterogeneity compared with other SE data. In STEAM, the value of blow can be substantial due to the effect of crushers and

long diffusion times. The diffusion contrast between blow and bhigh = 100 s/mm2 can therefore be insufficient for reliable estimation of MD and

FA. This is a general result of the increased effects of noise as the range of b-values used for reconstruction are reduced, for instance, resulting in

a positive bias in FA. As bhigh increased to 450 s/mm2, the errors were reduced. Where combinations of b = (100, 300), (100, 450) and (300, 450)

TABLE 2 Mean diffusivity (MD) and fractional anisotropy (FA) across regions of interest in tubes 1–7 by sequence

Tube

[PVP]

(%)

MD (x 10�3 mm2/s) FA

PGSE SE STEAM Literature PGSE SE STEAM Literature

1 0 1.124 ± 0.017 1.13 ± 0.017† 1.113 ± 0.011* 1.115 ± 0.033,29

1.123 ± 0.023,30

1.12 ± 0.0134

0.028 ± 0.016 0.052 ± 0.016* 0.059

± 0.030*

0.037

± 0.01029

2 2.5 1.046 ± 0.018 1.048 ± 0.030 1.027 ± 0.014* 1.05 ± 0.0234 0.036 ± 0.023 0.059 ± 0.023* 0.064

± 0.031*

3 5 0.953 ± 0.023 0.964 ± 0.028† 0.939 ± 0.015 0.98 ± 0.0234 0.049 ± 0.034 0.065 ± 0.032 0.069

± 0.038

4 7.5 0.899 ± 0.020 0.907 ± 0.014† 0.890 ± 0.016 0.042 ± 0.024 0.060 ± 0.021* 0.066

± 0.023*

5 10 0.839 ± 0.026 0.854 ± 0.022 0.842 ± 0.032 0.850 ± 0.024,30

0.85 ± 0.0134
0.049 ± 0.036 0.062 ± 0.034 0.090

± 0.047*

6 15 0.713 ± 0.025 0.729 ± 0.031† 0.697 ± 0.015 0.71 ± 0.0134 0.052 ± 0.032 0.078 ± 0.042 0.113

± 0.066*

7 20 0.607 ± 0.021 0.619 ± 0.035† 0.592 ± 0.010* 0.607 ± 0.019,30

0.59 ± 0.0234
0.048 ± 0.028 0.078 ± 0.032* 0.123

± 0.067*

Note: MD and FA given as mean ± SD across sites and time points. Values from the literature using PGSE at a single time point are given for matching PVP

concentrations and temperature. Significant differences at p < 0.05 (i) in SE and STEAM with respect to PGSE are denoted by *, and (ii) in SE with respect to STEAM

by †.

Abbreviations: PGSE, pulsed gradient spin echo; PVP, polyvinylpyrrolidone; SE, spin echo; STEAM, stimulated echo acquisition mode.
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s/mm2 were used, the MD and FA were qualitatively indistinguishable. However, we found that the combination of b = (100, 450) s/mm2 yielded

the best reproducibility in MD between scans 1 and 2, and this was consistent with typical b-values used in the literature.19,22

The SNRs in the b = 100 s/mm2 images at the isocentre were comparable between SE and STEAM. The SNR generally increased with

PVP concentration as the mean signal intensity was less attenuated by diffusion-weighting. Away from the isocentre in tube 7, the image

SNRs in PGSE and SE were 41% and 34% higher than that in STEAM, which may have arisen from image artefacts as described (sites G and

H). Furthermore, in four instances of STEAM, only a single slice was acquired due to limitations in implementation. In these cases, reduced

FOV was used, which involved excitation slice-selection gradients that were orthogonal to subsequent slice-selection gradients. As a result,

acquisition of multiple slices while maintaining constant acquisition time would necessitate a reduction in the number of repetitions propor-

tional to the number of slices (site H). By implementing a slab-tilted reduced FOV imaging method that is compatible with multislice imaging,

this enabled site H to extend the TR to 6 s, rather than the 2 s used by the other STEAM sites, which recovers some of the SNR efficiency

lost by using the STEAM technique. This motivates a shift from standard slab-perpendicular methods towards better methods of reduced

FOV imaging, such as slab-tilted methods. We note that image SNR does not fully reflect the stability of measurements, as it does not take

into account higher b-value data and associated potential issues. For instance, among the STEAM acquisitions, lower SNR was found along-

side lower CV in MD and FA (site H).

The mean differences in MD in tube 1 across scans were relatively small at 0.22%, 0.21% and 0.47% in PGSE, SE and STEAM, respectively,

expressed as a percentage of the respective average MD. The 95% limits of agreement were higher at ±0.84% in SE compared with ±0.52% in the

F IGURE 6 Accuracy in mean diffusivity (MD) measurements. Accuracy of MD relative to the reference MD was reported across pulse
sequences and tubes (T). The reference MD in each tube was determined by the mean MD across sites and scans. Data from scans 1 and 2 were
first averaged. Wilcoxon rank-sum tests were performed between pairs of sequences (pulsed gradient spin echo [PGSE] vs. spin echo [SE]; SE
vs. stimulated echo acquisition mode [STEAM]; PGSE vs. STEAM) for each separate tube, and between pairs of tubes for each separate sequence;
*p < 0.05). Differences in median accuracy between tubes within the same sequence were not significant at p < 0.05. Data were sorted by
sequences-tubes (top) and tubes-sequences (bottom) for clarity
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STEAM data. For FA, both the absolute mean difference and 95% limits of agreement were lower in SE (0.006 ± 0.018) compared with STEAM

(�0.012 ± 0.039). The MD data suggest that there was good reproducibility across the different classes of sequences. That the reproducibility

with respect to FA was poorer could be due to the intrinsically low FA and lack of underlying microstructure.

Intrasite repeatability was superior to intersite and intersequence reproducibility, as measured in terms of CVMD. This is consistent with the

literature. Intersite reproducibility ranging from 2.1% (STEAM) to 3.1% (SE) was similar to other studies using PGSE alone,33,34 where values

ranged from 2.1% to 3%. We also observed that intersite reproducibility was marginally poorer than intersequence reproducibility. The CV in all

cases was low compared with CV in vivo,29 as the phantoms were static, isotropic and consistently fabricated. We would anticipate greater vari-

ation between sites and sequences, with added phantom complexity simulating anisotropy and/or motion.

While we consider the various SE sequences collectively, it is worth noting that each of the four SE sequences used have their specific char-

acteristics. Despite having the longest TE, the M2B1resist sequence had the lowest FA, regional heterogeneity in MD and FA, and SDMD and

SDFA across repetitions, and highest SNR among custom sequences. Owing to the symmetric design of the diffusion gradients, the sequence,

along with M2SE, is inherently more robust to concomitant fields. Furthermore, as the zeroth and first gradient moments are nulled prior to the

refocusing pulse, its insensitivity to motion with constant velocity is less dependent on the refocusing pulse being close to 180� compared with

other custom SE sequences.46 However, the additional gradient lobes relative to M2SE, and the need for crushers due to the nulling of zeroth gra-

dient moments before the refocusing pulse, extend the minimum TE. M2SE and MODE yielded the best interscan reproducibility in MD and FA,

respectively. While shorter TE are feasible with CODE and MODE compared with M2SE and M2B1resist, the former two sequences are sensitive

to spatially varying concomitant fields due to the asymmetry of diffusion gradient waveforms about the refocusing pulse, and corrections are

F IGURE 7 Precision in mean diffusivity (MD) measurements. Precision of MD was reported across pulse sequences and tubes (T). Wilcoxon
rank-sum tests were performed between pairs of sequences and tubes; *p < 0.05, **p < 0.01, ***p < 0.001. In several tubes, precision was poorer
in spin echo (SE) and stimulated echo acquisition mode (STEAM) compared with pulsed gradient spin echo (PGSE). There was a clear dependence
of precision on tube number. Data were sorted by sequences-tubes (top) and tubes-sequences (bottom) for clarity
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employed to mitigate image artefacts arising from concomitant fields. As the custom SE group data include data acquired with four different SE

sequences, the within-group variation would be expected to decrease were a single sequence used.

The current work provides a promising basis for future clinical studies. While other quantitative CMR techniques have arguably been ham-

pered by methods that differ even in phantoms and are very sensitive to readout parameters,47 here we demonstrate that a wide range of

sequences from different centres have excellent agreement in a simple phantom. Clinically, the availability of multiple sequences for cardiac DTI

offers sites the flexibility to choose the sequence to suit the pathology of interest and hardware configuration available. SE, for instance, yields

higher SNR efficiency but requires higher performance gradient systems. STEAM, on the other hand, is able to acquire data over a wider range of

cardiac phases, but requires breath-holding, which may be difficult in some patient cohorts. While the comparison of cardiac DTI sequences

remains an active area of research, there may be a clinical case for both classes of sequences.

There are several limitations of using a static isotropic phantom for quantifying the performance of cardiac DTI sequences. First, the phantom

lacks motion. This prevents the assessment of the quality of motion compensation in the custom sequences, where inadequate motion compensa-

tion is a primary reason for rejected images, elevated MD and failed scans. Incorrect triggering could be difficult to identify from the static phan-

tom images. Second, the phantom lacks anisotropic microstructure, leading to an expected FA of zero. This results in non-Gaussian distribution of

errors in FA, and enhancement in the errors when expressed as a percentage. Third, the phantom substrate is liquid and therefore could be prone

to scanner vibration and thermal convection, which in turn could increase MD, although this was not observed to be a major issue. This effect

may be more pronounced in STEAM, where diffusion times are an order of magnitude longer. Fourth, the T1 and T2 relaxation times of the liquid

substrate are different compared with that found in the heart,37,48 with T1,H2O@0�C = 1525 ms, T2,H2O@0�C = 1472 ms, T1,20%PVP@0�C = 753 ms,

T2,20%PVP@0�C = 623 ms, T1,Heart in vivo = 1184 ms and T2,Heart in vivo = 52 ms, as measured at 3 T. This translates to higher SNR in the phantom

relative to heart, and sequences with longer TE such as custom SE, would suffer greater SNR penalties in vivo. Adjusting for T1 and T2 in the

in vivo setting relative to iced water, the signal in SE would be expected to decrease by 73% to 82%, while the signal in the STEAM data would

decrease by 29% to 49% based on TR and TE in the custom sequences. This would lead to a theoretical 2.7x increase in signal in STEAM relative

to SE in tube 1. In 20% PVP, the relative theoretical improvement in signal in STEAM over SE would be 2.4x.

Despite its shortcomings, the use of a static, isotropic phantom is an important first step for assessing custom sequence performance in

a multicentre study, as it allows a baseline assessment of parameters in the absence of additional variables associated with tissue microstruc-

ture and motion. The phantom was robust and consistent, having been manufactured centrally, and stable over time, permitting repeated

scanning with negligible change in substrate. The use of the ice-water bath permitted accurate temperature control, which is important, as

F IGURE 8 Signal-to-noise ratio (SNR) of b = 100 s/mm2 images. SNR was highest in the pulsed gradient spin echo (PGSE) data: 23.3 and
44.1 in tubes 1 and 7, respectively. Relative to PGSE, SNRs (spin echo [SE]) in tubes 1 and 7 were 85.1% and 94.8%, respectively, while SNRs
(stimulated echo acquisition mode [STEAM]) were 89.4% and 70.8%, respectively. Mean ± SD across voxels in the region of interest
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F IGURE 9 Bland–Altman plots of mean diffusivity (MD) and fractional anisotropy (FA) across two scans (scan 2 – scan 1). Data acquired
using pulsed gradient spin echo (PGSE; left), spin echo (SE; middle) and stimulated echo acquisition mode (STEAM; right) sequences in tubes 1 to
7 (0%–20% polyvinylpyrrolidone [PVP]) are colour-coded by increasing PVP concentration. The black and red horizontal lines indicate the mean
and ±1.96 SD values for tube 1, respectively. The black vertical line indicates the average values for tube 1 across sites

F IGURE 10 Bootstrapped normalised histograms of mean differences in mean diffusivity (MD) and fractional anisotropy (FA) between scans.
Median and 95% confidence intervals (CIs) are given by vertical solid and dashed lines. The MD difference in stimulated echo acquisition mode
(STEAM) was significantly lower than that of pulsed gradient spin echo (PGSE) and spin echo (SE) in tube 5. All other differences in reproducibility
between sequences were not significant
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every 1�C increase in temperature at 0�C leads to an �5% increase in diffusivity. More elaborate systems for monitoring and maintaining

accurate temperature are feasible, but would be costly to implement. In this ice-water phantom, the maximum MD achievable was

�1.1 x 10�3 mm2/s in water. This was in the middle of the range of MDs measured in the heart in vivo with SE and STEAM (0.87 x 10�3

to 1.72 x 10�3 mm2/s), and attributable to the low temperature. To simulate higher MD, a higher temperature would be needed. At 35�C,

water would have too high an MD (3.0 x 10�3 mm2/s). Instead, PVP solutions with concentrations (20% to 40%) would cover an appropriate

MD range (0.9 x 10�3 to 1.8 x 10�3 mm2/s), based on a previous study.49 Crucially, there exist gold standard, independent reference mea-

surements of MD in water over a range of temperatures, and corroborating values of MD in temperature-controlled PVP phantoms in the

literature.

5 | CONCLUSIONS

In summary, we have validated the accuracy, precision, repeatability and reproducibility of state-of-the-art custom sequences for in vivo cardiac

DTI. This study benchmarks the performance of custom SE and STEAM against product PGSE sequences, and identifies baseline variation across

sites, scanners and sequences. Some areas of inconsistency in the measurements have been highlighted, which warrant further methodological

refinement. Future work includes the development of more sophisticated phantoms with more physiological relaxation times, diffusion anisotropy

and motion characteristics. This would add further insight into the robustness and behaviour of cardiac DTI sequences, and the availability of

appropriate phantoms will be key to facilitating quality assurance protocols. Quantitative validation of pulse sequences in phantoms represents an

important step towards rationalising pulse sequences, and will contribute to protocol harmonisation and the establishment of cardiac DTI in the

clinical setting.
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