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The growing interest in soft robotics has resulted in an increased demand for accurate and
reliable material modelling. As soft robots experience high deformations, highly nonlinear
behavior is possible. Several analytical models that are able to capture this nonlinear
behavior have been proposed, however, accurately calibrating them for specific materials
and applications can be challenging. Multiple experimental testbeds may be required for
material characterization which can be expensive and cumbersome. In this work, we
propose an alternative framework for parameter fitting established hyperelastic material
models, with the aim of improving their utility in the modelling of soft continuum robots. We
define a minimization problem to reduce fitting errors between a soft continuum robot
deformed experimentally and its equivalent finite element simulation. The soft material is
characterized using four commonly employed hyperelastic material models (Neo Hookean;
Mooney–Rivlin; Yeoh; and Ogden). To meet the complexity of the defined problem, we use
an evolutionary algorithm to navigate the search space and determine optimal parameters
for a selected material model and a specific actuation method, naming this approach as
Evolutionary Inverse Material Identification (EIMI). We test the proposed approach with a
magnetically actuated soft robot by characterizing two polymers often employed in the
field: Dragon Skin™ 10 MEDIUM and Ecoflex™ 00-50. To determine the goodness of the
FEM simulation for a specific set of model parameters, we define a function that measures
the distance between the mesh of the FEM simulation and the experimental data. Our
characterization framework showed an improvement greater than 6% compared to
conventional model fitting approaches at different strain ranges based on the
benchmark defined. Furthermore, the low variability across the different models
obtained using our approach demonstrates reduced dependence on model and
strain-range selection, making it well suited to application-specific soft robot modelling.
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INTRODUCTION

Over the last few decades, there has been growing interest in the
field of soft robotics (Lipson, 2014; Rus and Tolley, 2015). These
robots offer many advantages over their rigid body counterparts,
with the ability to traverse complex trajectories to reach
previously inaccessible areas, deform both actively and
passively in multiple directions, and interact safely within
delicate environments (e.g., with biological tissues).
Furthermore, they often represent simpler fabrication and
assembly with respect to rigid robots with joints; being
molded in monolithic material designs (Chandler et al., 2020),
with embedded strain limiting materials (Mosadegh et al., 2014;
Polygerinos et al., 2015) or with the addition of functional
components (e.g., magnetic particles) (Kim et al., 2019; Lloyd
et al., 2019). These advantages are afforded due to the highly
compliant nature of the materials from which they are typically
made, and have made soft robots (SRs) a popular choice for
small-scale medical and surgical instrumentation (Cianchetti
et al., 2014, 2018; da Veiga et al., 2020); from common
grasping tasks (Zhang et al., 2017b), endoscopic (Chauhan
et al., 2021; Liu et al., 2021) and minimally invasive surgery
(Edelmann et al., 2017; Oliver-Butler et al., 2017; Jeon et al., 2019)
to microfluidic platforms in order to stimulate and sort cells
(Zhang et al., 2017c; Onaizah et al., 2020).

Actuation of SRs is possible using numerous methods,
including, for example, pneumatic, hydraulic, mechanical,
chemical and magnetic approaches (Burgner-Kahrs et al.,
2015; Le et al., 2016; Thuruthel et al., 2018). However, in the
case of medical and surgical applications, the use of magnetic
actuation is particularly advantageous as it allows for improved
device scalability since mechanical transmission and on-board
power and electronics can be removed (Abbott et al., 2020; da
Veiga et al., 2020). Forces and torques are generated wirelessly
due to ferromagnetic bodies embedded inside the robot
interacting with a local or global magnetic field often
generated by electromagnetic coils (Kummer et al., 2010;
Petruska and Abbott, 2014; Sikorski et al., 2017) or permanent
magnets (Pittiglio et al., 2020). Magnetically actuated soft robots
(MASRs) can be produced in two different ways: a soft
elastomeric matrix can be created using magnetic powder
mixed with the soft materials before the robot is molded (Lum
et al., 2016; Zhang C. et al., 2017; Kim et al., 2019; Lloyd et al.,
2019) or a permanent magnet can be placed inside a cavity of the
already fabricated SR (Jeon et al., 2019; Tariverdi et al., 2021).
Each approach has its advantages and disadvantages with
permanent magnets offering a higher magnetic material
density and thus larger forces and torques for a given external
field but also adding a rigid domain to the robot. Using an
elastomeric matrix, on the other hand, offers the advantages of
maintaining an entirely compliant device, however, introduces
changes to the base elastomer material properties and thus
characterization is limited to that specific matrix (da Veiga
et al., 2021).

As with SRs actuated using alternative means, MASRs are
manufactured using soft elastomeric polymers with elastic
moduli values close to those of biological tissues. While these

highly compliant materials support safer tissue interactions in
surgical applications, they are much harder to model and thus
predict their behavior. Under actuation, the hyperelastic material
can produce highly nonlinear deformations that cannot be
resolved using techniques conventionally used in robotics. As
noted in the research conducted by Chen and Wang (2020), the
preferable way to test and optimize a SR during the early stages of
the design is through finite element analysis (FEA). If a FEA
model is well defined, it can accelerate the process of design
optimization, reducing the need for repeated experimentation
and thus lowering the cost.

Several material models of varying complexity have been
proposed (Mihai and Goriely, 2017), including: Neo Hookean,
Yeoh, Mooney-Rivlin and Ogden models. These models aim to
deliver a relationship between the principal stresses and the
deformation of the material when subject to a mechanical
load. The most popular procedure for characterizing a specific
hyperelastic material, under the hypothesis of isotropy and
incompressibility, involves a mechanical tensile test up to
material failure to collect the stress-strain data (Marechal
et al., 2020). While tensile testing based experiments are the
most popular way to characterize the material model, these have
some limitations including that the strain produced in the gauge
area of the specimen may be larger than the strain measured
globally (Krautz et al., 2017). One way to solve this problem is
through image correlation by observing the strain locally in the
gauge area (Hartmann et al., 2003; Meunier et al., 2008). While
this technique seems promising, it may not be widely accessible.
Furthermore, tensile tests miss information like shear stress that
often requires the use of more complex testing, such as equiaxial
testing (Steinmann et al., 2012) or volumetric testing (Horgan
and Murphy, 2009) which requires multiple experimental
platforms and can be expensive and time-consuming.

In addition, soft materials will deform several times their
original length before the fracture point is reached during a
mechanical test. While this data is relevant for some
applications such as pneumatically actuated SRs (Mosadegh
et al., 2014), in other applications, the forces and torques
applied on the material generates only a fraction of the
deformation experienced by the specimens during the tensile
test (Steck et al., 2019). Furthermore, using the entire tensile test
dataset to fit the parameters for lower order models can introduce
considerable errors in the region of interest as the models may
overestimate or underestimate the stiffness (see Figure 1),
limiting the fidelity of associated FEA simulations. A reduced
set of the experimental data, bounded by the maximum expected
strain, may mitigate these issues. However, to decide a priori the
expected strain can be challenging. Increasing the order of the
material model represents another method to reduce fitting
errors, however, this can be potentially harmful to the
robustness and the stability of the simulation (Schumacher
et al., 2020). Previous work has tried to improve the stability
and performance of the modelling by using FEA simulation to fit
the model parameters (Hartmann et al., 2003; Fu et al., 2013;
Schumacher et al., 2020; Hartmann and Gilbert, 2021). The main
idea behind this approach is to find the parameters of the material
model by solving an inverse optimization problem. This system
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explores the search space in order to minimize the error between
the finite element analysis and the experimentally obtained data.
While these techniques may be useful for large deformations; the
potential disparity between local strains in the gauge and the
globally measured strains still exists.

To address these issues, we propose Evolutionary Inverse
Material Identification (EIMI), a material characterization
approach aimed at identifying the parameters for a material
based on the target application, in our case: MASRs. We aim
to characterize materials by using a simulated representation
actuated using the same method as used during experiments.
Having defined a simulation model, we can then create, deform
and observe an equivalent specimen of soft material in a real,
controlled environment. Finally, we define an optimization
problem where the parameters of the material model comprise
the search space while the error between the experimental data
and the simulation is minimized. The problem defined is often
non-linear and gradient methods may fail to find an optimal
solution. We address this issue by using, for the first time, an
optimizer based on an evolutionary strategy. An evolutionary
algorithm (EA) allows a good balance between exploitation and
exploration of the search space (Neri and Tirronen, 2010; Deb,
2014). This technique has several benefits, first, using a simulation
model to search the parameters for the material allows us to
obtain a result that guarantees robustness and increases the
performance of the simulation. Second, by using the same
actuation method in the simulation and experiment, our
resulting material model will be optimized for the target
application. This is because EIMI will intrinsically reduce the
error between the observed stress and the predicted stress from
the analytical model. Moreover, using EIMI over the conventional
tensile testing approach may solve the problem of heterogeneous
deformation encountered by the specimen.

In the next section, our framework for material
characterization is presented. First, we define the FEA model
and the fabrication steps to create the equivalent experimental

sample. Next, using the proposed comparison metric, we discuss
the steps to minimize the fitting errors using an EA. To
demonstrate our characterization approach, we focus on a
MASR, made using two soft polymers commonly found in soft
robotics applications: Ecoflex™ 00-50 and Dragon Skin™ 10
Medium. Finally, in the Experimental Evaluation section the
performances of the models are characterized using the
framework presented, and the resulting model parameters are
compared with the model parameters obtained using the
conventional fitting approach.

CHARACTERIZATION FRAMEWORK

To demonstrate our characterization approach, we first
developed a FEA model of a simple MASR. The design takes
the form of a rectangular body with a small permanent magnet
embedded at the distal end, as shown in Figure 2. The body of the
MASR bends in response to a magnetic torque generated from the
interaction between the embedded magnet and a globally applied
magnetic field. We defined a procedure to allow comparison
between the FE simulation and the experimental data; thus,
developing an objective function for the optimization problem.
Comprehensive details of our approach are presented in the
following sections.

FEA Model
As previously mentioned, conventional uni-axial mechanical tests
on soft materials deform standardized samples over several times
their original length (Marechal et al., 2020). However, in more
realistic soft robotic applications, especially those driven via
magnetic fields, the material may experience only a fraction of
these deformations. To improve fidelity between testing for
characterization and application, we propose simulating the
application-specific actuation method (i.e., magnetically
induced forces and torques) within the FEA simulation and

FIGURE 1 |When the material models are trained using the entire set of tensile data, the error from the model in the region of interest may be considerable. In this
case, we highlight this effect by zooming into a smaller strain range (100%), for (A) Dragon Skin™ 10 MEDIUM and (B) Ecoflex™ 00-50 where there is a significant
variance between the models and experimental data. Ogden model excluded for readability [Data and the Code provided by Marechal et al. (2020)].
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solving an optimization problem using an EA to characterize the
material. Due to the nature of the EA, the simulation model may
be invoked many times, with the potential to significantly increase
computational time. Therefore, we developed our FEA model with
a balance between accuracy and computational cost to simulate the
magneto-mechanical response of our soft robotic designs. This
combines analytical mechanical models used to predict nonlinear
elastic behavior of polymers with magnetic interaction forces and
torques based on a dipole approximation (Petruska and Abbott,
2013; Abbott et al., 2020).

For the mechanical model, we consider soft materials to be
homogenous and isotropic. In previous work, it has been shown
that compressibility and viscoelasticity may be neglected for
lower strains (Steck et al., 2019). In general, to represent the
deformed configuration χ of a soft material the following Cauchy
tensor is used (Wang et al., 2020):

σ � J−1
zW

zF
FT, (1)

where F � ∇χ is the deformation gradient of the deformed
configuration χ, J � det F is the volumetric Jacobian of the
deformation and W is the strain energy function that
characterizes the specific material. If the material is considered
incompressible the Jacobian will be equal to 1. Many different
energy functions have been proposed to characterize the behavior
of soft hyperelastic materials (Mihai and Goriely, 2017). For this
work, we focus on models that have been shown to work well for
lower strains (Steck et al., 2019): Neo Hookean, Mooney-Rivlin,
Yeoh and Ogden of the third order. These material models, up to
the third order, give a wide search space whilst also testing the
fitting capability of the framework. The functions considered in
the characterization framework are presented in Table 1 in terms
of the principal stretches λ1, λ2, λ3. The energy functions each
contain a series of constant parameters Ci and αi that define the
specific material. These parameters can be tuned based on

experimental observations. These parameters, Ci and αi, thus
constitute the decision space of the optimization algorithm.

The soft material of the FE simulation is then deformed
through the interaction with a rigid body, in our case a
permanent magnet. The forces f and torques τ on the
permanent magnet are induced via a homogeneous magnetic
field. These can be modeled by employing the following equations
(Jeon et al., 2019; Abbott et al., 2020):

f � ∇(B ·m), (2)

τ � m × B, (3)

wherem is the magnetic moment of the permanent magnet, B is
the magnetic flux density. In a uniform magnetic field, magnetic
forces are zero as the field gradient is ∇B � 0, leaving only the
restoring torque to act on the permanent magnet. In addition, the
magnetization of an object is defined as m � vχ(H)H where v is
the volume of the sample, χ(H) is the susceptibility tensor, H is
the applied magnetic field where H � B/μ0 defines the
relationship between the magnetic field and magnetic flux
density in which μ0 is the magnetic permeability of free space.
In our case, we can simplify these equations without undermining
the validity of the model with the following assumptions. First,
since we are using a permanent magnet subject to a small
magnetic field, this has no influence on the magnetic moment.

FIGURE 2 | Simulated representation: (A) geometry of the sample is shown; (B)mesh used for the FEM simulation, the direction of the magnetic field, as well as the
magnetization direction M, are shown; (C) an example simulation result is also shown.

TABLE 1 | Strain Energy functions for incompressible hyperelastic materials (Mihai
and Goriely, 2017).

Model Strain energy function

Neo Hookean W � C1
2 (λ21 + λ22 + λ23 − 3)

Mooney–Rivlin W � C10(λ21 + λ22 + λ23 − 3) + C01(λ−21 + λ−22 + λ−23 − 3)
Yeoh W � ∑3

i�1
Ci
2i(λ21 + λ22 + λ23 − 3)i

Ogden W � ∑3
i�1

Ci
2α2i

(λ2α11 + λ2α12 + λ2α13 − 3)
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Second, since the permanent magnet is physically small, it can be
approximated as a point dipole by neglecting its geometry and
therefore the susceptibility tensor becomes an identity matrix. As
a result, the magnetic moment can be simplified as:

m � v
B
μ0

� vM, (4)

A global coordinate system can be established since the magnetic
actuation is the result of an external magnetic field interacting with
the magnet.We consider actuation within a 2D plane, therefore, only
one component of themagnetic field is non-zero.We define this to be
the x-axis according to our reference frame (Bx ≠ 0 and By,Bz � 0).
The SR was fixed at one end and constrained to bend in only one
direction by the applied magnetic field, constraining the magnetic
moment to the xy plane. The simplified relationship can be seen in
Eq. 5.

τz � −myBx � −∣∣∣∣m∣∣∣∣∣∣∣∣B∣∣∣∣ sin θz, (5)

Finally (see Sample Fabrication and Experimental Setup section),
body forces due to gravity were integrated in the simulation
model, to reconcile with the experimental setup.

The geometry and constraints of the MASR were selected to allow
reduction of the model to a 2D plane (Figure 2A), and thus to
perform 2D simulations with computational efficiency, by
considerably reducing the nodes of the mesh and therefore the
complexity of the system. The model so defined can be assumed
as plane strain, since the cross-sectional thickness is sufficiently large
to consider the depth dimension of the strain tensor equal to zero. For
each simulation, geometry of the design was varied using 3
parameters: the length and the width of the robot, and the length
of the magnet to match the physical dimensions of the MASR. A
quadrilateral mesh was then generated based on the planar geometry
(see Figure 2B), and themesh sizewas determined after a dependency
analysis over the magnet displacement for a fixed magnetic flux
density of 15mT. The magnet was positioned within the robot body
with the magnetization direction (north pole) oriented towards the
distal end. Therefore, the magnetization direction of the magnet and
the externally appliedfield are perpendicular when the sample is in the
resting position, thus maximizing torque (see Figure 2B). The
simulation model response may then be evaluated for a range of
magnetic fields (Figures 2C, 5B), in line with experimental testing.
The model was implemented using COMSOL Multiphysics®. V5.4
(COMSOL, Sweden) and solved using Multifrontal Massively Parallel
Sparse direct Solver. The number of quadmesh elements used for each
geometry are summarized in Table 2.

Sample Fabrication and Experimental Setup
To provide experimental data for the optimization, samples were
prepared and tested under a varying magnetic field. Four versions
of the design were prepared with the geometrical parameters
summarized in Figure 2. One of these geometries (Type 1) was
used for training the material characterization through the
optimization algorithm, while the others were used for
validation (Type 2, 3, 4).

Molds were created for each geometry using a 3D Printer
(Ultimaker S5), as shown in Figure 3. Samples were created using
two soft elastomers: Dragon Skin™ 10Medium and Ecoflex™ 00-
50 (Smooth-on Inc., United States). For each material, the two-
part components were mixed in equal weight using a high
vacuum-mixer (Arv-10 from THINKYMIXER, Japan), at a
pressure of 20 kPa for 90 s with the centrifuge set at 1,400 rpm
to thoroughly mix and remove any air bubbles. A volume of
material equal to two times the size of the specimen was slowly
injected from the bottom of the mold and residual bubbles and
excessive material were expelled using a port at the top of the
mold. The material was allowed to cure at room temperature as
specified by the manufacturer (5 h for Dragon Skin™ 10 Medium
and 3 h for Ecoflex™ 00-50). Once cured, the samples were
demolded and the appropriately sized magnets (grade N52,
K&J Magnetics Inc., United States) were inserted in the pre-
allocated space, with the magnetization direction (north pole)
pointing towards the distal end of the MASR.

As shown in Figure 4, samples were tested using a uniform
magnetic field, generated using a 1D Helmholtz Coil (DXHC10-
200, Dexing Magnet Tech. Co., Ltd., Xiamen, China). During the
experiment, the current in the coil was increased in discrete
amounts. As a result, the magnetic field was increased
proportionally to the current in the coil as described by Eq. 6
(Abbott et al., 2020).

Bx � (4
5
)(3/2)μ0nI

R
, (6)

where n is the number of coil windings, I is the current in the coils
and R is the radius of the coils. For each discrete current step, the
sample deformation was recorded using a camera (acA 2040-
120um, Basler AG, Germany) and post-processed (Figure 4). The
resolution of the images was 0.043 px/mm.

To extract image features intrinsically rich in information
that could be used to compare the experimental deformation
with the simulation model, we developed a post-processing
procedure to measure the outer edges of the sample. Bespoke
image processing code was developed using MATLAB (Image
Processing Toolbox, MathWorks, United States), to allow
segmentation and edge extraction where the deflection/
deformation is more prominent along the longitudinal
length of the sample. The following steps were followed: 1)
high contrast images were obtained; allowing the sample
edges to be easily extracted; 2) the boundary of the object
was extracted, and the corners of the sample were determined
from the edges; and 3) after splitting the edge of the sample
into different segments, the relevant ones were saved to be
used as a target in the characterization process (see
Figure 5A).

TABLE 2 | MASR geometry and number of quad mesh elements used for each
type of sample.

Segment Magnet Mesh elements

Length (mm) Width (mm) Length (in)

Type 1 25 5.67 1/16 648
Type 2 35 5.67 1/16 759
Type 3 35 8.5 3/16 783
Type 4 45 8.5 3/16 913
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Benchmark Functions
After the simulated and experimental results were obtained, a
metric was needed to compare the two and allow for
optimization. We propose the following approach to solve the
problem where for each value of the magnetic flux density (Bi)
tested, the predicted simulation model and the recorded
experimental data can be compared. First, the distances (or
error) dji between each point j of the simulation contour and
corresponding closest point of the experimental sample were
evaluated (see Figure 5C). The number of points were in direct
correlation with the mesh, such that from geometry Types 1 to 4,
the number of points j considered were 80, 110, 70, and 100
respectively. The set of distances created have high
dimensionality and thus are impractical to use. Therefore, we
used a statistical method to evaluate the fitting errors between the
FEA model and the experimental data. The standard error SEi is
evaluated for each equilibrium state (i) for the magnetic field Bi

and the chosen model parameters p � [C1 . . .CN, α1 . . . αM] used
for the simulation, such as:

μdi(p, Bi) � 1
Ni

∑
j

dji(p, Bi), (7)

σdi(p, Bi) � 																									
1
Ni

∑
j

(dji(p, Bi) − μdi(p, Bi))2√
, (8)

SEi(p, Bi) � σd(p, Bi)			
Ni

√ , (9)

where μdi and σdi are, respectively, the mean and the standard
deviation of the distances dji, and Ni is the number of points
defining the contours of the simulation model for
equilibrium state i. After evaluating the standard error for
the equilibrium state, we obtained a set of M data (see
Figure 5D). Changing parameters for a hyperelastic model
(or the model type) may result in a stiffer or softer material
compared to the experimental data. This translates into
either smaller or larger deflections, making the simulation
model drift from the experimental data. To further reduce the
dimensionality of this minimization, we decided to evaluate
the mean of the standard error (μSE) across all equilibrium
test conditions:

μSE(p) � 1
M

∑
i

SEi(p, Bi), (10)

The metric in Eq. 10 was used to compare the different material
models and as an objective function for the parameter fitting. In
addition, the standard deviation (σSE) of the standard error was
also used for comparison purposes in the experimental evaluation
section (see Experimental Evaluation section):

σSE(p) � 1
M

∑
i

(SEi(p, Bi) − μSE(p))2, (11)

Algorithm Development and Application
Here, we defined an optimization problem that allows fitting of
the material parameters for a specific analytical model (Table 1).
With the goal of minimizing the error by varying the parameters
p of the hyperelastic model in the search space, the following
minimization problem was defined:

min
x

μSE(p)
subject to pl ≤ p≤pu

, (12)

where the parameters of the hyperelastic models are subject to
upper and lower bounds based on physical constraints. The

FIGURE 3 | Fabrication steps for magnetic robots are shown: (A) injection of the silicone in the negative mold; (B) curing of the silicone; (C) magnet insertion (D)
image of the mold and sample.

FIGURE 4 | Experimental setup for testing magnetic robots. The sample
is mounted in the center of the Helmholtz Coil and the deflection is captured
using a side-view camera.
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dimension of p is naturally connected to the order of the model
selected. To reduce the search space for p we upper bound the
vector element of p to 1 MPa. The objective function involves
computing the simulation model using the parameters p and then
comparing these with the experimental results using Eq. 10. To
solve the defined problem, conventional approaches often rely on
the use of simple relations that can be solved using gradient
methods such as the Levenberg-Marquardt algorithm (Hartmann
et al., 2003; Schumacher et al., 2020). However, due to the
complexity of the simulation model, these methods are
infeasible for our approach since they fail to navigate over a
complex objective landscape. Therefore, we opted to use an EA to
perform the optimization.

EAs are, in general, based on some stochastic phenomena.
This allows a random walk in the search space to improve the
exploration features. Furthermore, these types of algorithms do
not require complete information about the problem landscape.
These characteristics made this type of algorithm an ideal
solution for the problem defined here. In general, EAs are
defined as a cyclic process with specific steps (see Figure 6).
Initially, a random solution or set of solutions is created, then a
two-step process is repeated for several generations (cycles) until
the result converges. The first step involves a selection process
where the best model parameters are chosen based on the metric
(Eq. 10). These solutions are then used to generate new solutions
through a stochastic procedure that will replace the solution
discarded in the previous step, The stochastic procedure for
generating newer solutions is partially based on the
information contained in the solution that survived the
selection phase (Deb, 2014).

In our framework, solutions that don’t comply with Drucker’s
Stability are immediately discarded in the selection phase,
specifically, any result that did not converge to a residual error

1x10−4 within 25 Newton Generation. These results do not
represent a valid solution for our fitness function.

Several EA strategies have been proposed, however, one of
the most successful to date has been the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) (Hansen and
Ostermeier, 2001). This algorithm has shown great
potential for solving complex problems compared to other
optimization strategies (Caraffini et al., 2013, 2019). This
search strategy selects the best solution ] in the population
of η individuals for each cycle. It then uses the distribution of
the new population to incrementally update a covariance
matrix. The principal components of the matrix are
subsequently used to direct the exploration in the search
space and generate new solutions. By updating the
covariance matrix incrementally, the search leads to
solutions that show an improvement compared to previous
cycles. This population-based strategy is a good compromise
between the exploration of the search space and the
exploitation of the best solution. For this reason, we
decided to use the CMA-ES as a solver for EIMI. Five
parameters need to be defined, with the necessary inputs
for the algorithm shown in Table 3. The steps described to
reach material parameters are shown in the flowchart in
Figure 6. The process was implemented in MATLAB
(Matlabworks, United States), with a connection to the FE
simulation in COMSOL Multiphysics® V5.4 using the plugin
LiveLink™.

EXPERIMENTAL EVALUATION

We characterized two elastomers: Dragon Skin™ 10 Medium
and Ecoflex™ 00-50 (Smooth-On Inc, United States). Four

FIGURE 5 | The steps used to obtain the distance between the FE simulation and the experimental data (see Eq. 10): (A) image segmentation and feature
extraction of the left and right edge of the robot; (B) FEM simulation for a chosen model and parameters p � [C1 . . .CN , α1 . . . αM]; (C) distance evaluation dij (green line)
for each point j of the FEM simulation from the experimental data; (D) evaluation of the variance for each value of magnetic flux density Bi.
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samples for each material were created using the dimensions
listed in Table 2. The samples were magnetically actuated in the
Helmholtz coil, by increasing the current in the coils
incrementally from 0 to 1.5 A in steps of 0.1 A for Dragon
Skin™ 10 Medium and from 0 to 1 A in steps of 0.1 A for
Ecoflex™ 00-50. The current can be translated to magnetic flux
density with a conversion factor of 4.7 mT/A. The deformation
at each current step was recorded, and the samples were
segmented (Figure 5). The resulting database was then split
based on geometry. The samples with the Type 1 geometry

(Table 2) were used for the material fitting while the rest were
used for validation.

EIMI Analysis
The data from the samples chosen for the material
characterization are used to define the optimization
problem (see Benchmark Functions section) to solve the
CMA-ES. The number of evaluations and generations
required by the CMA-ES to converge to an optimal
solution and obtain a set of model parameters are shown in

FIGURE 6 | Evolutionary Inverse Material Identification (EIMI) flowchart.
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Table 4. With an increasing number of parameters in the
material model, the table displays the growth in the number of
generations that were required to converge. This is expected,
as they represent a complex objective landscape that is more
difficult to explore. The table also shows an outlier, due to the
stochastic nature of the EA. The characterization of Ecoflex™
00-50 using the Ogden model required only 8 generations,
despite the search space having high dimensionality with 6
model parameters.

The parameters for the models obtained using EIMI are
shown respectively on the top halves of Table 5 for Dragon
Skin™ 10 Medium and Table 6 for Ecoflex™ 00-50. The two
tables list the mean of the standard error and mean of the
standard deviation using Eqs 10, 11 for each type of geometry
and model using both our approach and the conventional
approach (detailed below).

The results for Dragon Skin™ 10 Medium (see Table 5)
show that there is a superior fit achieved for the Type 1
geometry which is the sample used for training. This result
can be easily justified from the nature of the process used for
characterization. The EA will tend to overfit the parameters for
the sample used for training. We can also see that the standard
error for the Neo Hookean, Mooney-Rivlin and Yeoh
analytical models falls in the 95% confidence interval,
making these analytical models similar in performance, as
shown in Figure 7A. The Ogden model, however, falls
outside of the confidence interval. The number of
generations for the Ogden model is higher but could still be
insufficient due to a higher number of parameters. To assess
the generality of the model characterizations, we evaluated the
errors for the other three geometries using the solution
obtained by EIMI. For the Type 2 and Type 3 geometries,
the standard error for the analytical models falls inside the 95%
confidence interval (see Figure 7A). Finally, for the Type 4
geometry, the fitting error of the model parameters is larger.
The errors may be caused by different factors, such as in

segmentation of the experimental image, or an undesired
torsion of the sample as observed during experimental
testing (see Sample Type 4 in Figure 8A) (Lloyd et al.,
2021) which is not captured within the 2D simulation.

For Ecoflex™ 00-50 (see Table 6), the proposed approach
showed similar results to Dragon Skin™ 10 Medium. For the
Type 1 geometry, the method showed a tendency of overfitting
the models with the number of parameters less than or equal to
3. The modelling errors were also within a confidence interval of
98% (see Figure 7B). Again, the Ogden model has the worst
performance for this geometry despite a fast convergence. The
optimizer is able to achieve fast convergence for the Ogden
model by increasing the dimension of the decision space;
however, this results in a more complex landscape that is
difficult to explore since more local minima can influence the
search. The mean standard error µSE falls in the 95% confidence
interval for all geometries. A slight increase in the values
obtained for geometries Type 2 to Type 4 (see Table 6 and
Figure 7B). This result may be justified since the increase in the
size of the sample points obtained by the segmentation
corresponds to an enlargement of the experimental sample
dimension.

Comparison Between EIMI and the
Conventional Approach
To further understand the potential of the EIMI approach, we
compared it to the conventional approach of fitting material
models to experimental uni-axial tensile test data. Here we take
advantage of the data and the code provided by Marechal et al.
(2020). For each material model analyzed (Table 1), we fit each of
the hyperelastic models analyzed using the same tensile data
bounded for different engineering strains. More specifically, we
fit the models to consider tensile test data for strains of: 20, 50,
100% of the deformation and the full tensile dataset. The
obtained parameters and associated errors are shown in the

TABLE 3 | CMA-ES parameters.

Name parameter Value Note

N Number of Parameters Dimension of the decision space
η 4 + 3logN Dimension of the population
] η/2 Solutions used to generate newer solutions
Step Size 0.3 Step Size, determine the speed of convergence
Tolerance 10−6 Stop criteria for the algorithm

TABLE 4 | Number of function evaluations and generations required by the CMA-ES to characterize the materials.

Dragon Skin™ 10 medium Ecoflex™ 00-50

N Evaluation N Generation N Evaluation N Generation

Neo Hookean 91 43 97 46
Mooney–Rivlin 173 55 299 97
Yeoh 398 130 341 111
Ogden 621 153 81 8
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lower part of Tables 5, 6 for Dragon SkinTM 10 Medium and
EcoflexTM 00-50 respectively, and in Figure 7. As can be seen in
both cases, the conventional approach typically produces larger

errors when compared to the EIMI approach. In twenty-one of
the twenty-four cases, the overall improvement with EIMI was
above 26%.

TABLE 5 | Results for Dragon Skin™ 10 Medium.

Model εeng Parameters Type 11 Type 2 Type 3 Type 4

µSE
2 σSE2 µSE

2 σSE2 µSE
2 σSE2 µSE

2 σSE2 µSE
2 σSE2

Method
Proposed

Neo
Hookean

μ � 4.317 × 10⁴ Pa 0.220 0.041 0.403 0.027 0.440 0.039 1.131 0.376 0.549 0.400

Mooney
Rivlin

C₀₁ � 1.190 × 10⁵ Pa,
C₁₀ � −9.740 × 10⁴ Pa

0.219 0.040 0.405 0.028 0.430 0.027 1.140 0.378 0.549 0.405

Yeoh C₁ � 2.406 × 10⁴ Pa,
C₂ � −1.707 × 10⁵ Pa,
C₃ � 2.055 × 10⁶ Pa

0.211 0.033 0.421 0.037 0.447 0.036 1.177 0.329 0.564 0.422

Ogden C₁ � 1.362 × 10⁴ Pa,
C₂ � −5.762 × 10⁵ Pa,
C₃ � 7.633 × 10⁵ Pa α₁ � 9.330,
α₂ � 3.376, α₃ � 2.487

0.241 0.045 0.444 0.017 0.443 0.028 0.997 0.323 0.531 0.325

Conventional Neo
Hookean

[0.0.2] μ � 2.040 × 10⁴ Pa 1.356 0.473 1.505 0.467 1.870 0.617 1.170 0.272 1.475 0.297
[0.0.5] μ � 2.319 × 10⁴ Pa 1.129 0.387 1.305 0.399 1.565 0.510 0.929 0.184 1.232 0.270
[0,1] μ � 2.818 × 10⁴ Pa 0.783 0.243 0.977 0.272 1.095 0.325 0.628 0.091 0.871 0.207

[0,10.4] μ � 7.526 × 10⁴ Pa 0.878 0.428 1.251 0.400 1.474 0.597 2.581 1.038 1.546 0.732
Mooney
Rivlin

[0.0.2] C₀₁ � 6.900 × 10⁴ Pa,
C₁₀ � −5.549 × 10⁴ Pa

/ / 1.054 0.303 / / 0.672 0.097 0.863 0.270

[0.0.5] C₀₁ � 4.068 × 10⁴ Pa,
C₁₀ � −2.355 × 10⁴ Pa

0.454 0.096 0.650 0.123 0.660 0.128 0.659 0.183 0.606 0.101

[0,1] C₀₁ � 4.908 × 10⁴ Pa,
C₁₀ � −3.511 × 10⁴ Pa

0.804 0.252 0.996 0.279 1.126 0.338 0.640 0.091 0.892 0.214

[0,10.4] C₀₁ � 9.272 × 10⁴ Pa,
C₁₀ � −1.357 × 10⁵ Pa

3.635 2.035 6.381 3.161 6.066 3.159 9.303 4.533 6.346 2.322

Yeoh [0.0.2] C₁ � 1.302 × 10⁴ Pa,
C₂ � 1.249 × 10⁵ Pa,
C₃ � −5.947 × 10⁵ Pa

/ / 0.909 0.215 / / 0.603 0.093 0.756 0.216

[0.0.5] C₁ � 1.953 × 10⁴ Pa,
C₂ � 7.410 × 10³ Pa,
C₃ � −3.117 × 10³ Pa

0.258 0.047 0.463 0.025 0.446 0.027 0.922 0.297 0.522 0.282

[0,1] C₁ � 2.045 × 10⁴ Pa,
C₂ � 4.473 × 10³ Pa,
C₃ � −5.341 × 10² Pa

0.227 0.044 0.425 0.018 0.429 0.029 1.022 0.334 0.526 0.344

[0,10.4] C₁ � 4.873 × 10⁴ Pa,
C₂ � 3.171 × 10² Pa,
C₃ � −1.044 Pa

1.183 0.608 1.724 0.651 1.966 0.868 3.235 1.365 2.027 0.869

Ogden [0.0.2] C₁ � −6.831 × 10⁶ Pa,
C₂ � 4.031 Pa, C₃ � −6.826 Pa

2.622 1.477 4.356 2.155 4.377 2.267 6.737 3.290 4.523 1.690

α₁ � 1.476 × 10⁻¹,
α₂ � 5.027 × 10⁻¹,
α₃ � 1.454 × 10⁻¹

[0.0.5] C₁ � −2.323 × 10⁷ Pa,
C₂ � 1.793 × 10⁻⁶ Pa,
C₃ � 7.254 Pa

2.487 1.396 4.088 2.003 4.146 2.133 6.387 3.096 4.277 1.603

α₁ � 9.959 × 10⁻²,
α₂ � 2.011 × 10¹,
α₃ � 3.233 × 10⁻¹

[0,1] C₁ � −5.740 × 10⁵ Pa,
C₂ � 1.333 × 10⁻¹ Pa,
C₃ � 1.329 × 10⁻² Pa

3.869 2.157 6.742 3.316 6.463 3.352 9.826 4.757 6.725 2.439

α₁ � 2.702 × 10⁻¹,
α₂ � 1.034, α₃ � 4.038

[0,10.4] C₁ � −9.193 × 10⁴ Pa,
C₂ � 1.641 × 10⁻¹ Pa,
C₃ � −7.673 × 10⁻² Pa

3.342 1.887 5.761 2.894 5.592 2.934 8.562 4.226 5.814 2.138

α₁ � 2.696, α₂ � 3.402, α₃ � 3.576

1Sample used for the identification for the approach proposed.
2The value dimension is in (mm).
The best result for each methodology is shown in bold.
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TABLE 6 | Results for Ecoflex™ 00-50. The best result for each methodology is shown in bold.

Model εeng Parameters Type 11 Type 2 Type 3 Type 4

µSE
2 σSE2 µSE

2 σSE2 µSE
2 σSE2 µSE

2 σSE2 µSE
2 σSE2

Method
Proposed

Neo
Hookean

μ � 2.684 × 10⁴ Pa 0.276 0.034 0.541 0.038 0.655 0.160 0.668 0.234 0.535 0.182

Mooney
Rivlin

C₀₁ � −5.099 × 10⁴ Pa,
C₁₀ � 6.463 × 10⁴ Pa

0.276 0.033 0.556 0.033 0.677 0.172 0.689 0.247 0.550 0.192

Yeoh C₁ � 1.398 × 10⁴ Pa,
C₂ � −3.195 × 10⁴ Pa,
C₃ � 4.480 × 10⁵ Pa

0.277 0.033 0.564 0.035 0.682 0.167 0.705 0.251 0.557 0.197

Ogden C₁ � −2.728 × 10³ Pa,
C₂ � −1.651 × 10⁵ Pa,
C₃ � 4.920 × 10⁵ Pa
α₁ � −1.719,
α₂ � −2.883 × 10⁻¹,
α₃ � −3.947 × 10⁻³

0.324 0.032 0.518 0.051 0.611 0.119 0.617 0.191 0.518 0.137

Conventional Neo
Hookean

[0.0.2] μ � 9.175 × 10³ Pa 1.744 0.594 1.280 0.357 1.815 0.663 1.391 0.524 1.558 0.262
[0.0.5] μ � 1.039 × 10⁴ Pa 1.588 0.545 1.202 0.331 1.619 0.588 1.256 0.464 1.416 0.218
[0,1] μ � 1.118 × 10⁴ Pa 1.492 0.513 1.147 0.312 1.499 0.540 1.171 0.424 1.327 0.195
[0,16.4] μ � 4.354 × 10⁴ Pa 0.791 0.315 1.193 0.309 1.343 0.605 1.332 0.677 1.165 0.258

Mooney
Rivlin

[0.0.2] C₀₁ � 5.516 × 10⁴ Pa,
C₁₀ � −5.249 × 10⁴ Pa

/ / / / / / / / / /

[0.0.5] C₀₁ � 1.636 × 10⁴ Pa,
C₁₀ � −8.039 × 10³ Pa

0.905 0.286 0.767 0.147 0.830 0.227 0.683 0.164 0.796 0.094

[0,1] C₀₁ � 1.447 × 10⁴ Pa,
C₁₀ � −5.539 × 10³ Pa

0.794 0.236 0.693 0.108 0.725 0.171 0.611 0.125 0.706 0.076

[0,16.4] C₀₁ � 6.233 × 10⁴ Pa,
C₁₀ � −2.203 × 10⁵ Pa

2.826 1.559 4.036 2.026 3.470 1.988 3.641 2.236 3.493 0.504

Yeoh [0.0.2] C₁ � 1.768 × 10³ Pa,
C₂ � 1.289 × 10⁵ Pa,
C₃ � −6.313 × 10⁵ Pa

/ / 1.509 0.414 / / 1.538 0.529 1.524 0.021

[0.0.5] C₁ � 8.603 × 10³ Pa,
C₂ � 5.213 × 10³ Pa,
C₃ � −4.209 × 10³ Pa

0.829 0.246 0.728 0.124 0.761 0.182 0.644 0.140 0.741 0.077

[0,1] C₁ � 9.800 × 10³ Pa,
C₂ � 9.536 × 10² Pa,
C₃ � −1.710 × 10² Pa

0.650 0.168 0.606 0.061 0.615 0.109 0.546 0.101 0.604 0.043

[0,16.4] C₁ � 1.385 × 10⁴ Pa,
C₂ � 1.110 × 10² Pa,
C₃ � −8.767 × 10⁻² Pa

0.279 0.030 0.572 0.027 0.703 0.189 0.713 0.263 0.567 0.202

Ogden [0.0.2] C₁ � −6.190 × 106 Pa,
C₂ � −6.405 Pa,
C₃ � 3.679 Pa

2.831 1.558 4.004 1.998 3.496 1.998 3.634 2.227 3.491 0.490

α₁ � 1.339 × 10⁻¹,
α₂ � 1.331 × 10⁻¹,
α₃ � 4.581 × 10⁻¹

[0.0.5] C₁ � −1.263 × 10⁷ Pa,
C₂ � 2.298 Pa, C₃ � 1.807 Pa

2.758 1.513 3.889 1.929 3.418 1.947 3.541 2.164 3.402 0.473

α₁ � 9.804 × 10⁻²,
α₂ � 3.050 × 10⁻¹,
α₃ � 3.050 × 10⁻¹

[0,1] C₁ � 5.433 × 10⁶ Pa,
C₂ � 1.923 × 10⁴ Pa,
C₃ � −1.754 × 10¹ Pa

2.473 1.338 3.451 1.658 3.119 1.752 3.193 1.928 3.059 0.416

α₁ � 2.447 × 10⁻¹, α₂ � 6.933,
α₃ � 7.507 × 10⁻²

[0,16.4] C₁ � 7.274 × 105 Pa,
C₂ � −1.385 Pa,
C₃ � 6.724 × 10⁻¹ Pa

2.532 1.374 3.540 1.714 3.180 1.792 3.264 1.976 3.129 0.427

α₁ � 3.210, α2 � 3.295, α₃ � 3.372

1Sample used for the identification for the approach proposed.
2The value dimension is in (mm).
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For the Dragon Skin™ 10 Medium (Table 5), the Yeoh model
fit via the conventional method with strains constrained to 50 and
100% of the original length, produced similar results to EIMI;
with the latter showing modest improvement of below 2% against
the best two models using the conventional approach. However,
choosing the most appropriate engineering strain range for fitting
purposes is not a trivial matter. The other analytical models (with
different strain ranges) using the same dataset failed to get close to
the same results, with the EIMI showing at least a 30%
improvement. This underlines the difficulty of choosing the
most suitable analytical model and the correct stress-strain
selection over the tensile data.

Interestingly, for Ecoflex™ 00-50 (Table 6), the best overall
performance with the conventional fitting was obtained again
using the Yeoh model using the full range (16 times the original
length) of strain data for Type 1 and Type 2 geometries and 100%
strain for Type 3 and Type 4. Our EIMI showed a performance
improvement of 6.8% compared to the best model which in this
case was Ogden. For the rest of the cases, EIMI showed an
improvement of at least 26%. This result again illustrates how
difficult it is to pre-determine the correct range of tensile data to
use in order to fit analytical models.

Overall, it is possible to see that the models fit using a
conventional approach over different ranges of stress-strain data
failed to converge to similar results. The box plots in Figure 7 show a
higher variance between conventional models fit using the same
tensile range. On the other hand, all the models obtained using the
EIMI converge to similar performance values, validating the
procedure. Thus, the proposed EIMI method showed that it is
capable of dynamically fitting the models without any previous
knowledge of the strain involved.

The performance of the different models can be clearly seen in
Figure 8 where we can qualitatively observe that our proposed
method shows improved performance. In both pictures, the
models obtained using EIMI are compared with the models
trained using tensile data with a strain of up to 100%. In

general, it is possible to see that EIMI is able to produce a
better result regardless of the complexity of the model, with
similar responses across the different models. Whereas the model
fitted using the conventional approach drifts considerably from
the experimental data. For Dragon SkinTM 10 (see Figure 8A), it
is possible to see that the Neo Hookean and the Yeoh models
underestimated the stiffness, while the Mooney-Rivlin model
overestimated the stiffness. For EcoflexTM 00-50 (Figure 8B)
all 3 models underestimated the stiffness.

To understand how performance varies with actuation, we
analyzed EIMI and the best models found using the conventional
approach for each of the magnetic field values tested. More
specifically we analyzed the SE (see Eq. 9) at each magnetic
field value Bi recorded for each type of geometry, as shown in
Figure 9. This allowed us to understand how the models drift
from the experimental sample with increasing magnetic torque.

The performance of the Dragon Skin™ 10 Medium is shown
in Figure 9A. For geometry Types 1, 2 and 3, all the models
obtained using our EIMI approach produce a smaller error than
the best performer (Yeoh) from the conventional approach.
Furthermore, the error is constant with the increasing
magnetic field, while for the other models it increases with the
magnetic field. For Type 4, we see that the conventional Yeoh and
Neo Hookean models have a smaller error across all field values.
This was due to an observed twisting in the sample that reduced
the bending of the beam, which can be interpreted as a stiffer
material in the 2D plane (see Supplementary Video S1). This is
why we see the errors obtained using the EIMI approach steadily
increasing for the Type 4 geometry.

For Ecoflex™ 00-50 (see Figure 9B), we can see that for the
sample used for training (Type 1) the models obtained using
EIMI outperform all other models. For Types 1 and 2 samples, the
Yeoh andMooney-Rivlin models fitted over 100% strain of tensile
data showed slightly worse performance compared to the EIMI
and have a similar trend in the SE with the increasing magnetic
field. However, these models outperform the EIMI for higher

FIGURE 7 | Comparison of the statistical distribution of the standard error mean (see Eq. 10) between the models obtained through the proposed EIMI and the
conventional fitting approaches across the different geometry types for (A) Dragon Skin™ 10 Medium and (B) Ecoflex™ 00-50.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 8 | Article 79057112

Di Lecce et al. Evolutionary Inverse Material Identification

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


values of the magnetic field in Type 4, again likely due to the
twisting of the sample observed experimentally (see
Supplementary Video S1).

Overall, our proposed approach is able to maintain a steady
error (Figure 9) with increasing magnetic field showing that it is
able to dynamically follow the deflection of the robot.

CONCLUSION AND FUTURE
DEVELOPMENT

In this work, we presented an alternative method of material
characterization to dynamically find the best material model
based on the target application. We present a framework for

FIGURE 8 | Comparison between material models and experimental images for (A) Dragon Skin™ 10 Medium samples under a magnetic flux density of 7.05 mT
(top half) and (B) Ecoflex™ 00-50 samples under a magnetic flux density of 4.7 mT (bottom half).
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characterizing hyperelastic materials using an FEA simulation,
application-specific experimental evaluation and an EA to solve
the optimization problem. The results show that the proposed EIMI
approach can fit the parameters for a material model with a high
degree of accuracy. Furthermore, thanks to the use of the simulation
model in the characterization process, we can intrinsically obtain
robust and stable models to use with numerical methods.

Our results also highlight the inherent challenges with the
conventional model-fitting approach. In this study, we rely on
the database of Marechal et al. (2020), where the models are
fitted by minimizing the standard error between the experimental
data and simulation to allow the reader to easily verify and evaluate
new models. However, other strategies such as the minimization of
the relative errors may be considered to improve the material
characterization (Destrade et al., 2017) or the use of a genetic
algorithm (López-Campos et al., 2019). In addition, while it is
possible to get good results with a correct model and strain range
selection for a given application, knowing these in advance is not
always possible, and incorrect selections can lead to large errors. In
contrast, the proposed EIMI approach allows us to dynamically find
the best fit, without limiting and testing the models recursively and
without knowing the scale of the strain involved.

Despite this success, some limitations to our approach exist.When
it is possible equiaxial and volumetric testing are generally preferred
(Mihai and Goriely, 2017). Effects of viscoelasticity and
compressibility were not considered in this study. Compressibility
can be easily integrated into the framework presented here by
enlarging the search space. On the other hand, viscoelasticity may

require careful experimental design, since it is a transient property.
Between each step of induced stress, the time necessary to reach the
equilibriumwill need to be precisely recorded. It will also be necessary
to replicate the experiment using a time-dependent FEM simulation.
Lastly, only onemodel that uses the second invariant I2 of theCauchy
Tensor has been used (Mooney-Rivlin). In the future it might be
beneficial to include others like the Gent-Gent model (Pucci and
Saccomandi, 2002; Anssari-Benam et al., 2021).

While EIMI allows the user the freedom to choose any actuation
method, we focused on magnetic actuation in this study which is
often approximated using the dipole model, and this may not always
be accurate. An oversimplification of the physical model for the
simulation will negatively impact the characterization and drift the
model parameters from their true values. However, if the
experimental setup is similar to the final application the error
caused by the discretization should be contained.

While in this study we focus only on magnetic actuation,
the EIMI approach may be expanded and used to validate
other actuation schemes such as pneumatic or piezoelectric,
with suitable testbed and simulation development. In
addition, the decision space may be further expanded by
adding more parameters to the characterization such as the
magnitude of the actuation forces. For example, if the magnetic
moment is unknown, we can include this variable in the decision
space with the soft material parameters. In this case, the EA would
need to solve an extra degree of freedom to match the experimental
data. Finally, while the analytical model is usually the result of
empirical observation, we can try to expand the optimization

FIGURE 9 | SE comparison between the models fitted using the EIMI and the conventional method using 100% of the engineering strain for increasing magnetic
fields for (A) Dragon Skin™ 10 Medium and (B) Ecoflex™ 00-50.
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problem by also including the strain energy function. With enough
computational power, it may be possible to use a technique such as
genetic programming (Affenzeller et al., 2009) to determine the best
ad-hoc analytical equation that expresses the strain energy function
in parallel to the parameter fitting operation.
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