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We present a noninvasive Web-based app to help exclude or diagnose myelodysplastic

syndrome (MDS), a bone marrow (BM) disorder with cytopenias and leukemic risk, diag-

nosed by BM examination. A sample of 502 MDS patients from the European MDS

(EUMDS) registry (n . 2600) was combined with 502 controls (all BM proven). Gradient-

boosted models (GBMs) were used to predict/exclude MDS using demographic, clinical,

and laboratory variables. Area under the receiver operating characteristic curve (AUC),

sensitivity, and specificity were used to evaluate the models, and performance was vali-

dated using 100 times fivefold cross-validation. Model stability was assessed by repeating

its fit using different randomly chosen groups of 502 EUMDS cases. AUC was 0.96 (95%

confidence interval, 0.95-0.97). MDS is predicted/excluded accurately in 86% of patients

with unexplained anemia. A GBM score (range, 0-1) of less than 0.68 (GBM , 0.68)

resulted in a negative predictive value of 0.94, that is, MDS was excluded. GBM $ 0.82

provided a positive predictive value of 0.88, that is, MDS. The diagnosis of the remaining

patients (0.68 # GBM , 0.82) is indeterminate. The discriminating variables: age, sex,

hemoglobin, white blood cells, platelets, mean corpuscular volume, neutrophils, mono-

cytes, glucose, and creatinine. A Web-based app was developed; physicians could use it to

exclude or predict MDS noninvasively in most patients without a BM examination.

Future work will add peripheral blood cytogenetics/genetics, EUMDS-based prospective

validation, and prognostication.
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Key Points

� A BM examination is

the gold standard for

the diagnosis of MDS,

but it is invasive and

subjective.

� A predictive

algorithm/app using

data of 10 readily

available parameters

from 1004 subjects

was developed to

help diagnose/rule out

MDS.
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Introduction

An important trend in modern medicine is to develop less-invasive
diagnostic and therapeutic techniques that can replace invasive pro-
cedures, while maintaining high accuracy and efficacy.1,2 In addition,
patients expect to be involved, and that their preferences be con-
sidered.3 The use of digital systems in clinical practice allows data
collection, computer analysis, and machine learning as well as devel-
opment of algorithms that were not possible in the past. These sys-
tems can improve diagnostic techniques and make them less
invasive.4 Here, we propose a new paradigm to help in the diagno-
sis and exclusion of myelodysplastic syndromes (MDS).

MDS is a clonal bone marrow (BM) stem cell disorder, and the
median age of onset is in the eighth decade of life.5-7 MDS is char-
acterized by abnormal hematopoietic maturation and differentiation
that leads to cytopenias, mainly symptomatic anemia, and the poten-
tial for leukemic transformation.7,8 The current gold standard for
diagnosis is BM examination.8-10 Although considered a common
and relatively straightforward procedure, it is still invasive, painful,
and occasionally associated with infectious and bleeding complica-
tions.9,10-12 Such examination also depends on subjective interpreta-
tion of morphology. Many patients and their physicians prefer to
avoid this examination. The lack of diagnosis or its delay may result
in disease progression and may prevent patient access to effective
treatment. In some countries, this may also prevent the patient from
receiving the social and financial privileges accorded to those diag-
nosed with MDS.13,14

We have developed an algorithm to help in the diagnosis or exclu-
sion of MDS based on demographic, clinical, and laboratory param-
eters that would obviate, in many patients, the need for a BM
examination. In our previous work, we introduced a formula that
incorporated 6 clinical variables (age, sex, hemoglobin [Hb], mean
corpuscular volume [MCV], white blood cells [WBCs], and platelets
[PLTs]). Using a logistic regression model, we were able to classify
patients into 1 of 3 categories: probable MDS (pMDS), probably
not MDS (pnMDS), and indeterminate.15 We performed internal vali-
dation with a new set of patients. Approximately 50% of the patients
could be classified as either pMDS or pnMDS. The model was
improved by increasing the number of studied individuals, adding
more variables, and using a more appropriate model, the gradient-
boosted model (GBM).16,17 Here, we have improved the method
using the new GBM, more variables, and many more patients. A
Web app has been developed that would help a clinician diagnose,
and especially rule out, MDS noninvasively, without BM examination,
in s86% of patients.

Methods: patients and model development

Patients

For the model, 502 (BM based) diagnosed MDS patients were ran-
domly selected from the European MDS (EUMDS) registry.5,6 The
criteria for MDS diagnosis in the EUMDS registry have been pub-
lished earlier.8 To choose controls, we reviewed consecutive reports
from the BM registry of the Tel Aviv Sourasky Medical Center
(TASMC).16,17 The control group included subjects aged 50 years
and older who had undergone BM examination (BME) between Jan-
uary 2011 and December 2018, with BM reported as normal. The
indication for BME in most of these individuals was the evaluation of

an unexplained anemia; some, for staging of lymphoproliferative dis-
orders. Patients with BM involvement as a part of a hematological
or other disease or with any degree of BM dysplasia could not serve
as controls. The characteristics of the control group (n 5 502), as
well as the MDS patient study group, are both described in Table 1.

The institutional review board of the Tel Aviv Sourasky Medical Cen-
ter approved this study, which was conducted in accordance with
the Declaration of Helsinki.

Model development

The clinical and laboratory variables listed in Table 1 (age, sex, Hb,
MCV, WBC, PLT, neutrophil and monocyte counts, serum glucose
and creatinine) were entered as explanatory variables into a logistic
GBM,18,19 with case (MDS patients) or control (patient with MDS
excluded) status as outcome, using the R package gbm.20 Most of
the variables included in the model were selected from among those
routinely measured in patients referred for BME, on the basis of their
known association with MDS.8 The caret package21 was used to
search for optimal model parameters and also to estimate out-of-
sample model performance using 10 times 10-fold cross-validation.
The final model used an interaction depth of 5, a shrinkage parame-
ter of 0.001, and was constrained to have at least 10 observations
at each terminal node. Because the caret training function requires
a complete variable data set, missing values in the data were
imputed using bagged tree models for each variable (using the
caret function preProcess). Imputation was not required for the final
model, as the gradient-boosted trees can naturally deal with missing
data. As data on MDS patients (cases) and controls were obtained
from separate sources, with different degrees of precision, all varia-
bles were rounded to common precision. This ensured a model fit-
ting to the values and not to the precision. Because of the
stochastic nature of a GBM, the sensitivity of the model perfor-
mance to the choice of the random number seed was examined.

Positive predictive values (PPVs) and negative predictive values
(NPVs) were calculated assuming a 20% prevalence of MDS within
the population of patients to which the model would be applied in
practice: that is, patients with unexplained anemia, in whom other
causes of anemia have been excluded, who would likely undergo
BM examination in clinical practice.22,23 We also examined a
2-threshold system in which the model is predictive of MDS diagno-
sis with high PPV above the upper threshold and predictive of MDS
exclusion with high NPV below the lower threshold. We targeted a
PPV of 90% for the upper threshold and NPV of 95% for the lower
threshold. Finally, we repeated the analysis with pretest probabilities
of 10% and 30% in addition to the main analysis with 20% proba-
bility of disease. All analyses were performed using the software
package R, version 3.5.2.24

Results

In Figure 1, the distribution of scores from the GBM, stratified by
known case/control status, is shown. The red bars on the right rep-
resent patients diagnosed with MDS (cases) and the green bars
(left) represent patients for whom MDS has been ruled out by BME
(controls). The lavender region represents the overlap between case
and control patients. It is notable that there is an excellent separa-
tion between patients with and without MDS. Note that in this fig-
ure, case and control prevalence is assumed equal, to illustrate the
score distributions most clearly; in practice, case prevalence is likely
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to be much lower (we have taken 20% as indicative in our calcula-

tions, see "Model development").

The area under the receiver operating characteristic curve (AUC) for

the model fit on the full training data was 0.96 (95% confidence
interval [CI], 0.95-0.97) (Figure 2).

The relative influence of each of the 10 variables in the GBM18 is

shown in Figure 3. Note that the first 3 variables (in order of impor-

tance: MCV, serum creatinine, and neutrophil count) are responsible
for .55% of the influence on the predictive model. Other hemato-

logic and chemistry variables, including lactate dehydrogenase, bili-

rubin, and other routine laboratory parameters were tested and
found to have an insignificant contribution.

The model has a sensitivity of 88% and specificity of 95%. Assum-

ing a case (MDS) prevalence of 20% in the population of patients

with unexplained anemia,23 setting a probability threshold of 0.68 to

achieve an NPV of 0.95, any patient with a predicted GBM proba-

bility (GBMP) of ,0.68 would be classified as predicted not to have

MDS. Setting a probability threshold of 0.82 (i.e. GBMP $ 0.82)

would classify a subject as predicted to have MDS, and would

achieve a PPV of 0.90 (at which point the NPV is also 0.90). In real-

ity, the upper and lower thresholds achieved PPV and NPV of

88.4% and 94.4% respectively (Table 2). Using these two thresh-

olds defines three regions: (i) for GBMP $ 0.82 a patient is pre-

dicted to have probable MDS (pMDS, Figure 1, red vertical line, on

the right), (ii) for GBMP , 0.68 a patient is predicted to be probably

not MDS (pnMDS, Figure 1, green line) and (iii) for 0.68 # GBMP

, 0.82, no prediction is made (between the 2 lines). Here, 5% of

controls and 23% of MDS patients (14% of the entire group) lie in

the no-prediction zone between these 2 thresholds. For a compari-

son, in our earlier logistic regression model, s50% of the patients

fell into this region.15

To determine the robustness of this model, we have examined its

predictive characteristics in a variety of situations. Although most

patients being evaluated for MDS have anemia, others have defi-

ciencies in other cell lines, or in multiple cell lines. Table 2 displays

the PPV and NPV for patients with anemia, neutropenia, and throm-

bocytopenia, as well as bi- and pan-cytopenia. Approximately 90%

of the MDS patients had anemia; s35% to 40% of them had neu-

tropenia, thrombocytopenia or bicytopenia, and s15% had pancyto-

penia, all according to World Health Organization (WHO) criteria.

Using the more severe cytopenia criteria as would be used for the

International Prognostic Scoring System (IPSS) score, s50% of

MDS patients were severely anemic, s20-25% neutropenic,

Table 1. Patient characteristics

MDS, mean (SD) or % Controls, mean (SD) or % P

Age, y 72.5 (9.9) 69.3 (9.8) ,1024

Sex, M/F 57/43 58/42 5.85

Hb 10.0 (1.9) 11.2 (2.2) ,1024

WBC 5.1 (3.0) 7.8 (5.4) ,1024

Platelets 205 (154) 213 (140) 5.38

MCV 97.1 (10.6) 89.9 (9.4) ,1024

Neutrophils 3.0 (2.4) 5.4 (4.7) ,1024

Monocytes 0.45 (0.41) 0.65 (0.54) ,1024

Glucose, g/dL 111.6 (39.0) 117.0 (51.9) 5.075

Creatinine, g/dL 1.0 (0.42) 1.3 (1.04) ,1024

M/F, male/female ratio; SD, standard deviation.
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Figure 1. GBM probability scores stratified by case (red) and control (green) status. The lavender region represents overlap between case and control patients.

Threshold values of 0.68 (green vertical line) and 0.82 (red line) are indicated; above the red threshold value a patient is predicted to have MDS, below the green threshold,

the patient is predicted not to have MDS. Between these 2 threshold values, no prediction is made. In this figure, case and control prevalence is assumed equal to illustrate

the score distributions most clearly; in practice, case prevalence is likely to be much lower (we have taken 20% as indicative in our calculations).
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thrombocytopenic, or bicytopenic, and 5% pancytopenic. The PPV

is lower, ranging from 72% to 90% (58% for severe pancytopenia),

and the CIs broaden. Most important, however, is that the NPV and

the lower limits of its 95% CI are all above 90%. This emphasizes

the importance of this model at this stage as an effective “rule out”

predictor.

Finally, we examined variation in pretest probability. We have

assumed that the a priori prevalence of MDS in our patient popula-

tion with unexplained anemia is s20%. Recognizing that this preva-

lence could vary according to age or other factors, we looked at the

model’s performance with the full data set, also using 10% and

30% pretest probabilities.

Using an a priori prevalence of 10%, PPV 5 77.2% (95% CI,

63.8%, 86.7%) and NPV 5 97.4% (97.0%, 97.8%). With a 30%

prevalence, PPV 5 92.9% (87.2%, 96.2%) and NPV 5 90.8%

(89.3%, 92.1%).

To evaluate and internally validate the model, 25 times repeated five-

fold cross-validation was used on the training data to get an esti-

mate of out-of-sample performance. The cross-validation process

was performed on the GBM fitting process, under the assumptions

of fixed shrinkage value and interaction depth. This gave an AUC of

0.88. For comparison, logistic regression achieved an AUC of 0.82

under similar repeated cross-validation. The choice of random num-

ber seed used in the GBM construction was examined and the

model was found to be insensitive to this choice.

To translate this methodology to a practical tool for clinicians, we

have developed a Web-based predictor calculator (Figure 4). Figure

4A provides both the Web address as well as the quick response

code. Upon entering the Web site, a window opens into which the

values for the 10 variables should be entered (Figure 4B). In Figure

5, 3 examples are shown demonstrating typical data for patients

with pMDS (Figure 5A), pnMDS (Figure 5B), and indeterminate

diagnosis (Figure 5C), respectively. Note that this figure is created

assuming a case prevalence of 20% (as opposed to Figure 1,

where 50% was assumed).

In summary, assuming that the target population would be s20% of
patients with unexplained anemia, 10 simple parameters are used in
the model. The model sensitivity and specificity are 88% and 95%
respectively, with an NPV and PPV of 0.94 and 0.88, respectively.
The model helps in exclusion or diagnosis of MDS in 86% of the
tested individuals.

Discussion

In 1959, B. J. Davis reported on the use of machine learning to
improve diagnostic hematology.25 Today, digital and computational
techniques are revolutionizing medicine. The possibility of collecting
and analyzing large amounts of data has allowed the development
of predictive models for new diagnostic techniques.4,26 These are
already being applied in several fields, such as imaging,27,28 nuclear
medicine,29 and pathology.30 Digital tools can also improve monitor-
ing, predict outcome and course, and assist in the treatment of dis-
ease. Several examples of the endless potential of these tools
include: electrocardiographic imaging for monitoring arrhythmias
from the body surface,31-33 a smart watch to detect atrial fibrilla-
tion,34 a computational algorithm that can predict septic shock,35

tools that can monitor and control hypertension,36 and the develop-
ment of prostheses by 3-dimensional techniques.37

Less attention has been paid to another potential role of these
tools: improving quality of life using less-invasive techniques, while
maintaining high accuracy. Today, diagnostic procedures and treat-
ments are assessed not only by their effect on morbidity and mortal-
ity, efficacy and toxicity, but also by their effect on quality of life,
as well as parameters reported by the patients (patient-reported out-
comes).38-44

Here, we propose a noninvasive tool that might, in some situations,
obviate the need for a BME, the gold standard for the diagnosis of
MDS.7,8 This approach may be appropriate as a predictive tool for
the primary care physician evaluating anemic patients, especially
those who may be reluctant to undergo a BME.

In clinical practice, we often encounter elderly patients with mildly
symptomatic (especially macrocytic) anemia or pancytopenia, for
whom the initial workup has excluded the common causes, such as
iron, B12, or folate deficiencies, or hemolysis. These individuals
have an unexplained anemia and a BME would be the next
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0.6 0.4 0.2 0.0
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Figure 2. Receiver operating characteristic curve for the fitted GBM. The

AUC is 0.96 (95% CI, 0.95-0.97).

Gender

Plt

Age

Mono

WBC

Hb

Gluc

Neut

Creat

MCV

0 5 10 15

Relative influence

20 25

Figure 3. Relative influence values of variables in the GBM. Creat,

creatinine; Gluc, glucose; Mono, monocyte; Neut, neutrophil.
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recommended diagnostic step. This is the patient population who
might benefit from such a novel noninvasive diagnostic technique.

The developed computer app is based on an analysis following data
collection from .1000 individuals, MDS patients, and non-MDS

controls, all BM proven. Several internal validations have confirmed
the reliability of the predictive model. In practice, to help in the diag-
nosis or exclusion of MDS with this model, one needs only to enter
10 readily available clinical parameters such as the patient’s age,

Table 2. PPV and NPV for all patients and those with anemia, neutropenia, and thrombocytopenia, also demonstrated for patients with

bicytopenia and pancytopenia

MDS, n (%) No MDS, n (%) PPV, % [95% CI] NPV, % [95% CI]

Total (all patients) 502 (100) 502 (100) 88.4 [79.9, 93.6] 94.3 [93.4, 95.2]

Cytopenia: WHO
�

Anemia 454 (90.44) 354 (70.52) 85.0 [74.8, 91.6] 94.8 [93.8, 95.7]

Neutropenia 178 (35.46) 66 (13.20) 73.4 [51.5, 87.8] 97.4 [95.9, 98.4]

Thrombocytopenia 210 (41.83) 174 (34.66) 86.8 [67.9, 95.3] 93.2 [91.6, 94.5]

Bicytopenia 184 (36.65) 112 (22.40) 82.2 [60.2, 93.5] 93.3 [91.5, 94.8]

Pancytopenia 83 (16.53) 31 (6.20) 72.3 [40.4, 91.0] 98.2 [95.7, 99.2]

Severe cytopenia: IPSS†

Anemia 244 (48.61) 151 (30.08) 85.7 [69.4, 94.1] 95.7 [94.3, 96.8]

Neutropenia 135 (26.89) 48 (9.60) 89.1 [54.0, 98.3] 97.6 [95.7, 98.6]

Thrombocytopenia 124 (24.70) 103 (20.52) 90.0 [60.9, 96.3] 93.8 [91.7, 95.4]

Bicytopenia 94 (18.73) 41 (8.20) 84.1 [48.7, 93.9] 96.9 [94.6, 98.2]

Pancytopenia 25 (4.98) 9 (1.80) 57.5 [21.5, 79.8] 97.5 [90.8, 99.4]

IPSS, International Prognostic Scoring System; WHO, World Health Organization.
�Cytopenia according to WHO criteria: anemia (hemoglobin: ,12 g/dL, women; ,13 g/dL, men), neutropenia (absolute neutrophil count, ,1.8 3 109/L), and thrombocytopenia

(platelets, ,150 3 109/L).
†Severe cytopenia, using IPSS criteria: anemia (hemoglobin, ,10 g/dL), neutropenia (absolute neutrophil count, ,1.5 3 109/L), and thrombocytopenia (platelets, ,100 3 109/L).

What is the age of the patient? (years) Sex (M/F)

Haemoglobin count?

75

Platelet count?

White blood count?

Male

Female

Mean corpuscular volume?

Monocyte count?

Creatinine?

Neutrophil count?

Blood glucose concentration?

MDS Predictive Modellinghttps://shiny.york.ac.uk/mds/

A B

10.5

125

0.9

100

3.1

101

0.2

1.1

Calculate

Figure 4. The Web-based app for the noninvasive diagnostic tool. (A) The quick response (QR) code and the full Web address allow entrance to the Web site.

(B) Once in the site, the window opens for entering the values of the 10 variables and calculating the probability of having MDS. The variables: age, sex, Hb, MCV, WBC,

neutrophil count, monocyte count, platelet count (Plt), serum creatinine, and serum glucose. F, female; M, male.
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sex, blood counts, and routine blood chemical values. The result is a

picture and a predictive conclusion (Figures 1 and 5): pMDS (the
red area), pnMDS (green), or indeterminate (lavender). We have
found that, in this patient population with unexplained anemia,
s86% of them can have a determination of either pMDS or
pnMDS. In the remaining indeterminate group, the patient and the

physician would have to discuss whether the BME should be per-
formed to make the definitive diagnosis. Although a long delay in
diagnosis can be detrimental, postponing the decision for only 3 to
4 months is usually harmless in this lower-risk population.

We examined the model in patients with neutropenia and thrombo-
cytopenia as well as in those with bicytopenia and pancytopenia.
We found that the predictive model continues to be reliable espe-

cially with MDS exclusion in almost all of these categories, with
NPV values all above 90% and relatively narrow 95% CIs. More-
over, the lower boundaries of the 95% CI are all above 90% as
well.

As expected, for prediction of MDS in these groups the accuracy is
somewhat diminished, and the 95% CIs are widened. This is in
large part owing to the small numbers of patients in these groups. It

is likely that for patients with multiple cytopenias, a BM evaluation
would be indicated, irrespective of the model prediction.

Most of the variables found to be relevant and introduced into the
model (Table 1; Figures 3 and 4) were expected to have an impact
and help in the diagnosis. The likelihood of MDS is expected to
increase as Hb, WBC, neutrophil, and platelet counts are reduced.
The likelihood may also increase with increasing age, and sex has lit-
tle effect, as expected. These were seen in the model (Figure 3).
However, the impact of 2 variables, creatinine and glucose, was
less expected. A possible hypothesis for the inverse relationship
between creatinine and the incidence of MDS is that normal serum
creatinine excludes the anemia associated with renal failure and
makes the diagnosis of MDS more likely. The association of glucose
and MDS requires further investigation. It is worth mentioning that
impaired glucose metabolism in red blood cells,45 and involvement
of glucose metabolism in the erythropoiesis in MDS patients, has
already been reported.46-48 MCV in diabetes has been investigated
but no definitive conclusions made. Although studies reported on
lower MCV,49,50 others suggested that the hyperosmolarity is asso-
ciated with an increased MCV.51 One should bear in mind that vari-
ables with high predictive value do not necessarily predict causality.
These unexpected findings, however, highlight the power of such
computer-based analyses, where the data and the machine learning
draw our attention to new biologic phenomena that we had not
noticed previously.

Figure 5. Examples of the predictive app in practice. Values for a given patient are entered into the appropriate spaces, and the calculate button is pressed. A blue

line indicates the probability of the patient having MDS. (A) Values are entered for a patient with pMDS. Note the position of the blue line in the red region. (B) Values for a

patient who probably does not have MDS (pnMDS). (C) Patient with an indeterminate diagnosis. In this figure, a case prevalence of 20% is assumed (as opposed to Figure

1 where 50% was assumed).
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The proposed predictive model has some limitations. Although it
has a high potential to help in the diagnosis or exclusion of MDS,
certain relevant information has not yet been integrated into the
model, especially morphology, blast percentage, genetics, and cyto-
genetics. We and others have suggested that BM morphology is
not only subjective, but may also be less important today than in the
past.52,53 MDS is not the first hematologic disease diagnosed with-
out a BME. Chronic lymphocytic leukemia is diagnosed using
peripheral blood (PB) cytogenetics and flow cytometry,54 and poly-
cythemia vera is diagnosed with the demonstration of JAK-2 muta-
tion in PB.55 Although the BM blast percentage, cytogenetics, and
mutational analysis would also not be available, these limitations
could eventually be overcome by obtaining PB genetic informa-
tion,56,57 by flow cytometry,58 and also by medical imaging.59,60

A recent study has demonstrated that specific morphologies may
be associated with somatic mutations.61 Perhaps, conversely, spe-
cific genetic signatures reflect corresponding morphologic changes.
Thus, such genetic mutational information, when obtained from PB,
could be a complementary component on the way toward a noninva-
sive MDS diagnosis, avoiding BME. Other studies on using machine
learning diagnostic models have recently been reported.62-64

Today, next-generation sequencing is available in many laboratories
and helps in the diagnosis of MDS.8 However, this technique is still
not a standard in much of the world and is still not a mandatory
component of the diagnosis of MDS. Moreover, although myeloid
mutations are increasingly seen with advancing age and are associ-
ated with a markedly greater incidence of MDS, their presence is
still not sufficient for diagnosis because the vast majority of patients
with such genetic signatures do not have MDS.65-67 Although the
exact place of the myeloid mutations is not fully determined at this
time, its increasing importance makes it very likely that future incor-
poration of such information into our model will only improve its pre-
dictive quality. In the meantime, such a predictive model might be
applied by any physician in the community, without the need for per-
forming mutation analysis.

At this time, the principal use of this method would be to help in rul-
ing out MDS without a BME. A BME would be recommended for
the indeterminate patients to make a diagnosis, and for those with
pMDS, to obtain the morphologic and genetic information. Of
course, a BME would also be necessary when the diagnoses of
other diseases are under consideration. We envision that, in the
future, as the methods for obtaining PB genetic information are per-
fected, our model would be used to make the diagnosis as well.

Another limitation of the proposed model relates to the control pop-
ulation and to the model’s generalizability. The predictive model and
the thresholds set were based on our MDS and control patients,
where we assumed a 20% prevalence of MDS in the population of
unexplained anemia. Although there is a great deal of information on
the prevalence of MDS in the general population, there is a paucity
of such information in our population. Whether the prevalence is the
same for various regions around the world is also not clear.
Because of the paucity of data, we made assumptions of preva-
lence based on personal experience, the experience of colleagues,
and the literature. Our experience, along with that of our colleagues,
estimated the MDS prevalence to range from 10% to 30%. We
found similar results in estimations and extrapolations from the litera-
ture and then chose 20% as the pretest probability for the
model.22,23,68-70 The ideal control is the patient with unexplained

anemia after the initial negative workup, who has a normal BME. In
reality, however, not all control patients fell into that category.
Although all of them were at least 50 years old and had a normal
BME, a portion of them had undergone the procedure as a part of
staging for lymphoproliferative disorder. A control group consisting
only of patients with unexplained anemia and a negative workup
could probably result in a more accurate diagnostic model. We
used our control group and assumed a 20% prevalence of MDS
knowing well that neither assumption is perfect. We also do not
know for certain whether any of our control patients had a suspi-
cious myeloid mutation or eventually developed MDS with time. It is
also possible that some of them had idiopathic or clonal cytopenia
of undetermined significance (ICUS or CCUS), but the numbers
would be small given the small prevalence of these in the general
population. The control group reflects a real-world situation, but to
determine the dependence of our method on the a priori prevalence,
we checked its performance using 10% and 30% prevalence in
addition to the 20%. We found that the NPV remains high, but that
PPV is reduced with lower pretest probability. Our future work will
perform a prospective external validation using new patient data
(MDS and controls) from various centers in the EUMDS group and
eventually branch out to other world locations. At least a portion of
these data will include genetic information, allowing us to fine-tune
the model and examine its robustness.

Because of these limitations, it would still be important for the physi-
cian to follow the patient, and with time, if there is a still a significant
level of uncertainty, to consider performing a BME to make the
definitive diagnosis.

Despite the limitations, the proposed model is indeed a step toward
a less-invasive method to help in diagnosis or exclusion of MDS in
the patient with unexplained anemia. Another group developed a
basic MDS model with 4 variables using logistic regression, and the
AUC to predict that confirmed MDS was 0.67.22,71 In our earlier
logistic regression MDS model with 6 variables, the AUC was
0.75,15 the NPV was 0.87, and the PPV was 0.65.35 These com-
pare with our current gradient-boosted MDS model, in which the
AUC, NPV, and PPV are 0.96, 0.94, and 0.88, respectively.

This MDS model has the potential to be more than a helpful tool in
the diagnostic process. In the future, this model could also be
tested on patients for estimating prognosis (which at this time
requires a BME) and following the GBM score as disease pro-
gresses and as patients respond the therapy. Moreover, broadening
the concept, it may serve as a platform or example of incorporating
big data and machine learning into the diagnostic process of dis-
eases in general, and can serve to stimulate research to use such
databases to develop similar noninvasive predictive models for a
variety of other diseases.

In summary, a Web-based computer app has been developed to
help the physician primarily to exclude MDS in a cytopenic individual
and also to predict the possibility of MDS without performing the
invasive BME. The app is based on analysis of data collected from
.1000 individuals. Ten readily available clinical variables of the sus-
pected patients are introduced into the app to assess the probability
that the patient has MDS. In the future, we plan to increase the
number of measured variables (eg, red blood cell distribution width,
whose relevance has recently been demonstrated72) to improve the
predictive power of the model. Moreover, as planned by the EUMDS
group, the model will be validated with independent prospective
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patient data, and applications will be developed to test using the
model as a predictive prognostic tool in addition to diagnosis.
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