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ABSTRACT
BACKGROUND: The discovery of coding variants in genes that confer risk of intellectual disability (ID) is an important
step toward understanding the pathophysiology of this common developmental disability.
METHODS: Homozygosity mapping, whole-exome sequencing, and cosegregation analyses were used to identify
gene variants responsible for syndromic ID with autistic features in two independent consanguineous families from
the Arabian Peninsula. For in vivo functional studies of the implicated gene’s function in cognition, Drosophila
melanogaster and mice with targeted interference of the orthologous gene were used. Behavioral,
electrophysiological, and structural magnetic resonance imaging analyses were conducted for phenotypic testing.
RESULTS: Homozygous premature termination codons in PDZD8, encoding an endoplasmic reticulum–anchored
lipid transfer protein, showed cosegregation with syndromic ID in both families. Drosophila melanogaster with
knockdown of the PDZD8 ortholog exhibited impaired long-term courtship-based memory. Mice homozygous for
a premature termination codon in Pdzd8 exhibited brain structural, hippocampal spatial memory, and synaptic
plasticity deficits.
CONCLUSIONS: These data demonstrate the involvement of homozygous loss-of-function mutations in PDZD8 in a
neurodevelopmental cognitive disorder. Model organisms with manipulation of the orthologous gene replicate
aspects of the human phenotype and suggest plausible pathophysiological mechanisms centered on disrupted
brain development and synaptic function. These findings are thus consistent with accruing evidence that synaptic
defects are a common denominator of ID and other neurodevelopmental conditions.

https://doi.org/10.1016/j.biopsych.2021.12.017
Intellectual disability (ID) refers to a heterogeneous group of
neurodevelopmental disorders affecting 2% to 3% of the
general population, characterized by significant impairment in
cognitive ability and adaptive behaviors. It is usually sub-
divided into nonsyndromic and syndromic forms, depending
on the manifestation of additional physical, neurologic, and/or
metabolic abnormalities. Typically identified in childhood
because of delayed developmental milestones, affected in-
dividuals struggle with memory, problem solving, language,
and visual comprehension, reflected by an IQ score of ,70 (1).

ID has high phenotypic variability and etiologic diversity.
Based on the IQ score, ID can be classified as mild (50–69),
moderate (35–49), severe (20–34), or profound (under 20) (2).
Among the known causes, approximately 50% of ID cases
have an early environmental etiology, such as intrauterine
exposure to alcohol, the most common nonheritable cause of
ID (3). The remaining w50% of ID cases of known cause have
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a genetic etiology, such as chromosomal abnormalities or
mutations in specific genes (4).

Because ID negatively affects fecundity, dominant auto-
somal variants occurring de novo may contribute to a large
proportion of sporadic cases, particularly in outbred Western
populations (5). Autosomal recessive variants play a significant
role in ID in populations with frequent parental consanguinity,
such as in the Middle East (6,7). Defects in more than 700
genes have been implicated in ID, and a significant overlap has
been noted with genes identified in other neurodevelopmental
disorders such as autism spectrum disorder (ASD) (8). Func-
tional categorization of the encoded proteins has revealed
significant enrichment of proteins involved in glutamatergic
synapse structure and function (9–11). Despite the consider-
able progress in understanding, no treatment is currently
available for ID, and at least 50% of the estimated genetic
causes of ID remain unknown (12).
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Herein, we report the clinical features and molecular diag-
nosis of two independent consanguineous families affected by
syndromic ID from the Arabian Peninsula. Through the appli-
cation of homozygosity mapping and whole-exome
sequencing (WES), we report that all affected individuals are
homozygous for premature termination codons (PTCs) in
PDZD8 (formerly PDZK8), a gene of five exons located at
10q25.3-q26.11, encoding a 1154 aa endoplasmic reticulum
(ER) transmembrane (TM) protein.

In neurons, depletion of PDZD8 has been shown to impair
endosomal homeostasis (13), decrease the proximity of the ER
and mitochondria (14), and decrease calcium ion (Ca21) uptake
by mitochondria following synaptic transmission–induced
Ca21 release from the ER (15).

Because assessing human gene function in cognition is
challenging, we used a cross-species approach. We report
that targeted interference of the PDZD8 orthologs in fruit flies
and mice leads to long-term memory, brain structural, and
synaptic plasticity deficits. Our findings are consistent with
accruing evidence that glutamatergic synapse dysfunction
represents a common underlying pathogenic mechanism in ID
and other neurodevelopmental disorders (8–10).

METHODS AND MATERIALS

For more detailed methodology, see the Supplemental
Experimental Procedures.

Ethical Approvals

The human study was approved by the Sultan Qaboos Uni-
versity Ethical Committee. Informed consent was obtained
from the parents of the affected individuals using a process
that adhered to the tenets of the Declaration of Helsinki. The
mouse study was conducted in accordance with the UK Ani-
mals (Scientific Procedures) Act 1986 under UK Home Office
licenses and approved by institutional Animal Welfare and
Ethical Review Bodies.

Sequencing and Variant Identification

Homozygosity mapping and WES were conducted as
described previously (16). Segregation in families was
confirmed by polymerase chain reaction and Sanger
sequencing.

Drosophila melanogaster

The UAS-CG10362-RNAi (v.8317; UAS-RNAi) line (17) was
crossed with the Act5C-Gal4 ubiquitous driver line to induce
ubiquitous expression of a specific 326-bp hairpin structure
(CG10362-RNAi) that inhibits expression of the target
CG10362 gene via RNA interference. Behavioral testing was
performed as described previously (18–20).

Mice

C57BL/6NTac-Pdzd8tm1b(EUCOMM)Wtsi mice were generated by
replacing an 835-bp sequence including exon 3 with a lacZ
expression cassette, which created a frameshift that changed
the phenylalanine (F) and isoleucine (I) at positions 333 and 334
to an asparagine (N) and a termination codon (*) (p.F333Nfs1*)
(Figure S1A, C) (21). Heterozygotes were intercrossed to
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generate Pdzd8 homozygous mutant (Pdzd8tm1b; tm1b) and
heterozygous and wild-type (WT) littermates for phenotypic
testing.

Mouse Behavioral Testing

Behavioral testing of early adults over 8 weeks of age was
performed as described previously (22–25).

Electrophysiology

Extracellular field recordings using transverse hippocampal
slices prepared from 4- to 6-week-old mice were performed as
described previously (26). Three different long-term potentia-
tion (LTP) induction protocols were used. Theta burst stimu-
lation (TBS) consisted of 10 bursts at 5 Hz, where each burst
consisted of five stimuli at 100 Hz. This was applied either
once (13 TBS) or three times separated by 10 seconds (33
TBS). High-frequency stimulation (HFS) consisted of one burst
of 100 stimuli at 100 Hz (13 HFS).

Structural Magnetic Resonance Imaging

For high-resolution structural magnetic resonance imaging,
16-week-old mice were terminally anesthetized and intracar-
dially perfused. Samples were processed, imaged, and
analyzed as described previously (27). A linear model with
genotype and sex as predictors was fitted to the absolute
(mm3) and relative volume of every region independently and to
every voxel independently in the brains of Pdzd8tm1b and WT
mice, with a false discovery rate threshold of 1%.

RESULTS

Clinical Features

Family A consists of 3 affected (A.IV.1, A.IV.2, and A.IV.5) and 2
unaffected (A.IV.3 and A.IV.4) siblings born to consanguineous
parents (first cousins) (A.III.1 and A.III.2) within an extended
Omani pedigree (Figure 1A). Clinical examination revealed that
all affected individuals have moderate to severe ID with autistic
features, myopathy, and facial dysmorphism (myopathic face
with orbital hypertelorism, malar flattening, open mouth, and
high-arched palate). In addition, each affected sibling had
other specific health problems, as detailed in Table 1. Both the
father (A.III.2) and an unaffected male sibling (A.IV.3) had mild
autistic features, and both parents (A.III.1 and A.III.2) had mild
myopathy and reduced facial expression.

Family B consists of 1 affected (B.IV.2) and 3 unaffected
(B.IV.1, B.IV.3, and B.IV.4) siblings born to first cousin parents
(B.III.1 and B.III.2) within an Emirati pedigree (Figure 1B). On
clinical examination at 4 years of age, the affected male (B.IV.2)
presented with delayed speech, moderate ID, mild autistic
features (echolalia, jumping, hand flapping, lack of eye con-
tact), attention deficit, dysmorphic features (low-set ears with
simple helix, bilateral ptosis), and other specific health prob-
lems detailed in Table 1.

Identification of PDZD8 Mutations

The pedigree structures of families A and B suggested auto-
somal recessive transmission of a homozygous mutant allele
from a common ancestor as the most likely explanation for
syndromic ID in each family. In family A, homozygosity
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Figure 1. Two families with PDZD8 mutations. (A)
Pedigree of four-generation family A showing cose-
gregation of PDZD8 p.(S733*) homozygosity with
syndromic ID in 3 affected siblings (represented by
filled symbols). (B) Pedigree of four-generation family
B showing cosegregation of PDZD8 p.(Y298*) ho-
mozygosity with syndromic ID in the affected indi-
vidual (represented by filled symbol). Two progeny
who died in utero are represented by small triangles.
The numbers in generation III indicate brothers and
sisters of the parents (B.III.1 and B.III.2). (C) Sanger
sequence chromatograms showing the PDZD8 4-bp
(AGTT) deletion (c.2197_2200del) identified in family
A. (D) Sanger sequence chromatograms showing the
PDZD8 nonsense mutation (c.894C.G) identified in
family B. (E) Schematic diagram depicting domain
structure and functions of PDZD8 in human
(Q8NEN9; top), mouse (B9EJ80; middle), and
Drosophila (Q9VYR9; bottom). The ER-TM domain
(2–24 aa) and a region between the PDZ and
phorbol-ester/diacylglycerol binding (C1) domains
(466–797 aa) are required for interaction with pro-
trudin (13,34,49). The SMP domain is required for the
formation of PDZD8 dimers or oligomers (49). The
SMP and PDZ domains are required for the extrac-
tion of lipids from the ER to late endosomes and
lysosomes (13,49). The C1 domain is required for
interaction with PS and PI4P associated with the late
endosome/lysosome membrane (13,50). The CC
domain is required for interaction with Rab-7a
(34,49,51). Black horizontal lines indicate interactor
binding sites; broken vertical red lines indicate the
location of PTC (human: p.Y298* & p.S733*; mouse:
p.F333Nfs1*). Numbering is from published sources
(13,34,35). C, carboxyl-terminus; CC, coiled-coil; ER,
endoplasmic reticulum; ID, intellectual disability; N,
amino-terminus; PR, proline-rich; PS, phosphati-
dylserine; PI4P, phosphatidylinositol 4-phosphate;
PDZ, PSD-95/DlgA/ZO-1-like; PTC, premature
termination codon; SMP, synaptotagmin-like mito-
chondrial lipid-binding; TM, transmembrane; UAE,
United Arab Emirates.
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mapping using single nucleotide polymorphism array data in
affected males A.IV.1 and A.IV.2 and variants extracted from
WES in affected female A.IV.5 identified homozygous regions
on chromosomes 6 (2.57 Mb), 10 (28.28 Mb), 13 (5.20 Mb), and
17 (8.38 Mb) shared by all three (Figure S2A).

WES in subject A.IV.5 revealed 9032 variants in these
shared homozygous regions. After filtering for rare variants
predicted to be pathogenic followed by segregation analysis,
only variants in ANKRD2 [NM_020349.4: c.982C.T;
p.(R328W)] and PDZD8 [NM_173791.5: c.2197_2200del;
p.(S733*)] remained, both within the 28.28-Mb region on
chromosome 10 (Figure 1A and Figure S2B).

The PDZD8 c.2197_2200del variant deletes four base pairs
in exon 5, introducing a frameshift and PTC (Figure 1C and
Table 2) absent from gnomAD. ANKRD2 variant c.982C.T lies
in exon 9, is present at a frequency of 0.00001961 with no
homozygotes in gnomAD version 2.1.1 (control subjects) (28),
and causes missense change p.(R328W) (Figure S2C), pre-
dicted by PolyPhen-2 to be possibly damaging and by SIFT as
Biological Ps
deleterious (29,30) (Table S1). In a structural model of
ANKRD2, the p.(R328W) variant appears to change the general
conformation of the protein (Figure S2E). Both variants were
absent from 50 ethnically matched Omani control DNAs.

Because very little ANKRD2 (UniProtKB: Q9GZV1) is
detected in the human brain (31) and primary immunodefi-
ciency is caused by missense changes in the gene (32), the
p.(R328W) variant appears unlikely to be responsible for ID in
family A. However, because ANKRD2 is upregulated in
congenital myopathies (33), p.(R328W) homozygosity may
contribute to myopathy in family A.

In family B, WES of the affected sibling (B.IV.2), with filtering
for predicted pathogenic variants and segregation analysis,
revealed a homozygous nonsense variant in PDZD8 exon 2
[NM_173791: c.894C.G; p.(Y298*)] (Figure 1D and Table 2) as
the most likely cause of his condition. The p.(Y298*) variant is
absent from gnomAD, and no other variants that potentially
explain the phenotype were identified in his exome. gnomAD
control datasets list five other predicted loss-of-function
ychiatry August 15, 2022; 92:323–334 www.sobp.org/journal 325
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Table 1. Clinical Features of Patients With Mutations in PDZD8

Characteristic

Family A Affected Individuals Family B Affected Individual

A.IV.1 A.IV.2 A.IV.5 B.IV.2

Consanguinity Yes Yes Yes Yes

Ethnic Origin Omani Omani Omani Emirati

Genotype, Mat/Pat p.(S733*)/p.(S733*);
c.2197_2200del/
c.2197_2200del

p.(S733*)/p.(S733*);
c.2197_2200del/
c.2197_2200del

p.(S733*)/p.(S733*);
c.2197_2200del/
c.2197_2200del

p.(Y298*)/p.(Y298*); c.894C.G/
c.894C.G

Sex Male Male Female Male

Age, Years 30 25 17 7

Developmental Delay Yes Yes Yes Yes

Intellectual Disability Yes (severe) Yes (moderate) Yes (severe) Yes (moderate)

Autistic Features Yes Yes (mild) Yes Yes (mild)

Facial Dysmorphism Yes Yes Yes Yes

Orbital Hypertelorism Yes Yes Yes Yes

Myopia No No Yes Yes

Myopathy Yes Yes (mild) Yes No

Epilepsy No Yes (controlled) Yes No

Congenital Heart Defects No No Yes No

Marfanoid Habitus Yes No Yes No

Other Behavioral Problems No Yes (OCD) Yes (ADHD; insomnia) Yes (ADHD)

Brain Scan Findings ND ND Hypoplasia of
splenium of corpus
callosum

Normal

Other Findings No No Amblyopia, cleft
palate, scoliosis

Bilateral ptosis, astigmatism,
overlapping toes

Nucleotide and residue numbering are based on NM_173791.5.
ADHD, attention-deficit/hyperactivity disorder; Mat, maternal; ND, not determined; OCD, obsessive-compulsive disorder; Pat, paternal.
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variants in PDZD8, none homozygous, and constraint metrics
indicate that PDZD8 is extremely intolerant to loss-of-function
variation (28).

PDZD8 encodes an integral ER protein (UniProtKB:
Q8NEN9) anchored to the membrane by an N-terminal TM
helical domain (2–24 aa), which is followed by a
synaptotagmin-like mitochondrial lipid-binding domain
(91–294 aa), a PDZ (PSD-95/DlgA/ZO-1-like) domain (366–449
aa), a proline-rich region (551–626 aa), a C1 (phorbol-ester/
diacylglycerol binding) domain (840–891 aa), and a coiled-coil
domain (1028–1063 aa) (13,34,35). If the p.(Y298*) and
p.(S733*) variants evade nonsense-mediated messenger RNA
(mRNA) decay (NMD) (36), truncated PDZD8 proteins lacking
857 (p.Y298*) or 422 (p.S733*) C-terminal amino acids would
be produced (Figure 1E and Figure S3). PDZD8 is highly
expressed throughout the human brain (31), including all
subclasses of GABAergic (gamma-aminobutyric acidergic) and
glutamatergic neurons in the adult primary motor cortex (37)
(Figure S4). Our analysis of bulk RNA sequencing data from the
BrainSpan project (38) revealed that PDZD8 expression is
Table 2. Mutations Identified in PDZD8

Family Ethnicity Genotype PDZD8 Modification

A Omani Homozygous p.(S733*)

B Emirati Homozygous p.(Y298*)

Nucleotide and residue numbering are based on NM_173791.5.
CADD, Combined Annotation Dependent Depletion.
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relatively stable from 8 weeks after conception to early adult-
hood (23 years) across regions of the developing human brain
(Figure S5), suggesting a role in neurodevelopment, making
PDZD8 a strong candidate for involvement in ID.
Long-term Memory Deficit in Drosophila
Knockdown Model

To assess PDZD8 function in cognition, we targeted the
orthologous gene in D. melanogaster. The PDZD8 ortholog,
CG10362 (FlyBase ID: FBgn0030358), encodes a 1037 aa
protein (LD34222p; NP_572771.1; UniProtKB: Q9VYR9) that
has a similar domain structure but relatively low amino acid
conservation compared with human PDZD8 (24% identity).
Drosophila PDZD8 has an N-terminal TM domain followed by a
synaptotagmin-like mitochondrial lipid-binding domain, a PDZ
domain, and a C1 domain but, unlike mammalian PDZD8,
lacks a C-terminal coiled-coil domain (Figure 1E) (39). In adult
flies, CG10362 expression is enriched in head, eye, brain, and
thoracico-abdominal ganglion (noncephalic central nervous
Nucleotide Change Frequency in gnomAD CADD Score

c.2197_2200del 0 35

c.894C.G 0 37
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system) tissue (40). RNA interference–mediated knockdown
(KD) of CG10362 reduced the level of the target CG10362
transcript by 56.32 6 9.20% in adult Act5C-Gal4 x UAS-RNAi
F1 (CG10362-KD) males upon comparison with UAS-RNAi and
Act5C-Gal4 control animals (Figure 2A).

In the aversive olfactory conditioning assay, the ability of
CG10362-KD flies to memorize a novel association between
an odor and mechanical shock for 30 seconds or 30 minutes
was unaltered (Figure 2B). In the courtship conditioning assay,
CG10362-KD males demonstrated reduced suppression of
courtship behavior 48 hours, but not immediately or 30 mi-
nutes, after exposure to a premated female (Figure 2C). Un-
conditioned CG10362-KD males displayed robust courting
behavior toward virgin females (data not shown). These results
suggest that KD of CG10362 impairs long-term courtship-
based memory but does not affect learning, short-term mem-
ory, or basal sexual behavior.
Pdzd8tm1b Mice Exhibit Restricted Growth and
Brain Structural Alterations

To gain further insight to the cognitive effects of PDZD8
disruption, we studied the pre-existing Pdzd8tm1b mouse line,
generated in the EUCOMM (European Conditional Mouse
Mutagenesis) program (21), which harbors the mutation
F333Nfs1* that closely models the PTCs identified in families A
and B (Figure 1E). The mouse ortholog, Pdzd8, encodes a 1147
aa protein (UniProtKB: B9EJ80) that has 87% aa conservation
with, and a similar domain structure to, human PDZD8. Real-
time quantitative reverse transcription polymerase chain re-
action confirmed the absence of Pdzd8 mRNA including exon
3 in Pdzd8tm1b mouse brain (Figure S6). Western blotting using
an antibody to PDZD8, with an epitope between the C-terminal
C1 and coiled-coil domains (Figure S3), detected a w140-kDa
protein in WT mouse brain, which was 63.24 6 3.84% less
abundant in heterozygous samples and absent from Pdzd8tm1b

samples (Figure S7), confirming the loss of full-length PDZD8
in Pdzd8tm1b mice.

When intercrossing heterozygotes, Pdzd8tm1b pups were
weaned at rates 36% and 48% lower than the expected
Mendelian genotypic ratio in two separate colonies. Surviving
and 30 minutes (short-term memory) after training of KD (n = 7; 0.2405 6 0.095
(Kruskal-Wallis: c2

2 = 1.2764, p = .5282). (C) Courtship conditioning assay memor
UAS (n = 20; 0.34936 0.0994), and Gal4 (n = 18; 0.31696 0.0772) flies (Kruskal-W
6 0.1085), UAS (n = 24; 0.5326 6 0.1542), and Gal4 (n = 19; 0.5144 6 0.1067) flie
(n = 33; 1.21026 0.0902), UAS (n = 27; 0.73016 0.0786), and Gal4 (n = 25; 0.812
hoc Bonferroni’s correction, Gal4 vs. UAS: p = 1.0, KD vs. UAS: p = , .001, KD
plotted as mean 6 SEM. **p , .01 vs. controls; ##p , .01 vs. Gal4; ***p , .001

Biological Ps
Pdzd8tm1b mice appeared healthy but had a lower body weight
and growth rate between 4 and 16 weeks of age (Figure S8A–D).
Soft tissue mass (Figure S8E, F) and body length
(Figure S8G, H) were reduced in 14-week-old Pdzd8tm1b mice.
Structural magnetic resonance imaging to identify changes in
brain morphology revealed a 7.07 6 0.74% decrease in total
brain volume in 16-week-old Pdzd8tm1b mice compared with
WT littermates (Figure 3A). To assess differences in specific
brain regions, the volume of each region was normalized to
absolute brain volume. Pdzd8tm1b mice showed an increased
relative volume of the cerebellum, olfactory bulb, hippocam-
pus, and retrosplenial cortex (Figure 3B–E) but a decreased
relative volume of the thalamus, pallidum, superior colliculus,
and corpus callosum (Figure 3F–I), indicative of brain structural
alterations. Representative structural images for Pdzd8tm1b

and WT mice of each sex are shown in Figure S9.
Pdzd8tm1b Mice Exhibit Spontaneous Stereotypies
and Decreased Anxiety-like Behavior

In the home cage, adult Pdzd8tm1b mice frequently showed
spontaneous repetitive hindlimb jumping behavior
(Figure S10A), typically preceded by rearing against the wall,
when housed in a mixed-genotype group (Video S1) or alone
(Video S2). This stereotyped motor behavior was not observed
in WT littermates.

To assess Pdzd8tm1b mouse behavior in more detail, we
observed mice in the open field test. In the novel arena, the
total distances traveled were comparable between Pdzd8tm1b

and WT littermates (Figure S10B), but the ambulatory activity
of Pdzd8tm1b mice decreased more slowly over the course of
the 1-hour test (Figure 4A, B), indicative of reduced habituation
(41, 42). Pdzd8tm1b mice had more entries to (Figure 4C), and
spent more time (Figure 4D) and traveled further in
(Figure S10C), the center of the arena (Figure S10D), sugges-
tive of less anxiety-like behavior. Pdzd8tm1b mice also exhibi-
ted repetitive jumping behavior in the open field (Figure 4E–G).

In the elevated plus maze, Pdzd8tm1b mice exhibited a
greater frequency of open arm entries (Figure 4I) and head dips
(protruding the head over the edge of an open arm and down
Figure 2. Associative learning and memory in
CG10362 KD flies. (A) Expression of CG10362 in four
pools of 8 to 10 whole adult CG10362-KD (KD:
0.4417 6 0.09643), UAS-RNAi (UAS: 1.006 6
0.04253), and Act5C-Gal4 (Gal4: 1.001 6 0.04712)
male flies (one-way analysis of variance: F2,9 = 23.68,
p, .0001; post hoc Bonferroni’s correction, Gal4 vs.
UAS: p = 1.0, KD vs. UAS: p = .001, KD vs. Gal4: p =
.001). (B) Aversive olfactory conditioning assay
memory indices 30 seconds (learning) after training
of KD (n = 8; 0.2393 6 0.0442), UAS (n = 8; 0.35 6
0.0634), and Gal4 (n = 7; 0.2024 6 0.043) flies (one-
way analysis of variance: F2,20 = 2.189, p = .1382)

6), UAS (n = 7; 0.2969 6 0.0394), and Gal4 (n = 7; 0.2161 6 0.0512) flies
y indices immediately (0 hours) after training of KD (n = 17; 0.4327 6 0.1782),
allis: c2

2 = 0.8324, p = .6595); 30 minutes after training of KD (n = 22; 0.4868
s (Kruskal-Wallis: c2

2 = 0.8672, p = .6482); and 48 hours after training of KD
36 0.0669) flies (one-way analysis of variance: F2,82 = 10.52, p, .0001; post
vs. Gal4: p = .003). Above dotted line (1.0) indicates no memory. Data are
vs. UAS. KD, knockdown; UAS, upstream activation sequence.
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Figure 3. Voxelwise volumetric differences in
whole brain and specific brain regions in Pdzd8tm1b

mice determined by high-resolution structural mag-
netic resonance imaging. Significant differences in
volume between Pdzd8tm1b (n = 32 [10 males, 22
females]) and WT (n = 17 [7 males, 10 females]) are
indicated by red (increased volume) and blue
(reduced volume) contour shading on two-
dimensional coronal slice images of the brain. (A)
Absolute brain volume (mm3). (B) Cerebellum: rela-
tive volume (% total brain volume). (C) Olfactory
bulb: relative volume (% total brain volume). (D)
Hippocampus: relative volume (% total brain vol-
ume). (E) Retrosplenial cortex: relative volume (%
total brain volume). (F) Thalamus: relative volume (%
total brain volume). (G) Pallidum: relative volume (%
total brain volume). (H) Superior colliculus: relative
volume (% total brain volume). (I) Corpus callosum:
relative volume (% total brain volume). ****p , .0001
vs. WT. WT, wild-type.
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toward the floor) (Figure 4J) than WT littermates, suggesting
decreased anxiety and increased exploration (43–45).

Long-term Spatial Memory and TBS-Induced LTP
Are Impaired in Pdzd8tm1b Mice

In the Y maze, Pdzd8tm1b and WT mice showed roughly
equivalent levels of spontaneous alternation, a measure of
spatial working memory (Figure S11D). In the Barnes maze, the
performance levels of Pdzd8tm1b and WT mice were similar
over the 4 days of training (Figure 5A–C and Figure S11E, F),
demonstrating intact spatial learning. During the probe trial 24
hours after the last training trial, Pdzd8tm1b mice spent less
time in the target quadrant, target sector, and target hole
annulus and had a lower probability of entering the target hole
than WT mice (Figure 5D–G), indicative of a hippocampal-
dependent spatial memory impairment in Pdzd8tm1b mice.

We next used electrophysiology to examine synaptic plas-
ticity in acute hippocampal slices from Pdzd8tm1b mice.
Experimentally induced LTP of synaptic transmission is a
widely accepted model of synaptic plasticity that involves
molecular and cellular processes engaged during the biolog-
ical consolidation of memories (46). Three different stimulation
protocols to induce LTP at Schaffer collateral–CA1 stratum
radiatum synapses were used: 33 TBS (a maximal stimulation
328 Biological Psychiatry August 15, 2022; 92:323–334 www.sobp.org
that induces saturated LTP), 13 TBS, and 13 HFS (submaxi-
mal). The magnitudes of LTP evoked by 13 TBS and 13 HFS
at 30 minutes after stimulation were comparable between
Pdzd8tm1b and WT slices (Figure 6A, C). However, the LTP
evoked by 33 TBS was diminished in Pdzd8tm1b compared
with WT slices (Figure 6B), indicating that Pdzd8tm1b mice have
a specific deficit in 33 TBS-evoked LTP and are not capable of
generating as much synaptic potentiation as WT mice.

To evaluate presynaptic short-term plasticity at Schaffer
collateral–CA1 synapses in Pdzd8tm1b and WT slices, we used
paired-pulse stimulation with a 50-ms interval between the first
and second pulses. Both genotypes exhibited paired-pulse
facilitation of excitatory synaptic transmission (Figure 6E),
postulated to result from a transient increase in Ca21 levels in
the presynaptic terminal. However, the lower paired-pulse
facilitation of Pdzd8tm1b slices suggests a higher initial prob-
ability of neurotransmitter release associated with the first
pulse or reduced residual Ca21 resulting from altered Ca21

uptake (47).

DISCUSSION

We have identified homozygous PTC variants p.(Y298*) and
p.(S733*) in PDZD8 cosegregating with syndromic ID in two
independent consanguineous families from the Arabian
/journal

http://www.sobp.org/journal


Figure 4. Behavioral differences of Pdzd8tm1b

mice in OF and EPM. (A) Distance traveled (m) by
Pdzd8tm1b (n = 12) and WT (n = 14) mice in 10-minute
intervals in OF, with lines of best fit shown (two-way
repeated-measures analysis of variance, genotype:
F1,24 = 3.037, p = .094; time: F2.44,58.65 = 23.17, p ,

.0001; interaction: F2.44,58.65 = 3.795, p = .021). (B)
Slope of habituation curve of Pdzd8tm1b (20.1625 6
0.07680) and WT (20.3727 6 0.04413) mice (inde-
pendent t test: t24 = 2.458, p = .028). (C) Number of
entries by Pdzd8tm1b (92.67 6 11.28) and WT (58.36
6 8.195) mice to OF inner zone (independent t test:
t24 = 22.508, p = .019). (D) Time (s) spent by
Pdzd8tm1b (104.00 6 21.44) and WT (51.69 6 8.965)
mice in OF inner zone (independent t test:
t24 = 22.710, p = .012). (E) Representative image of
hindlimb jumping by Pdzd8tm1b mouse in OF. (F)
Number of jumps by Pdzd8tm1b (n = 11; 165.9 6
92.78) and WT (n = 12; 12.58 6 6.289) mice in OF
(Mann-Whitney U test: U = 97.00, p = .051). (G)
Percentage of Pdzd8tm1b and WT mice making more
than 10 jumps per 10-minute interval in OF (Fisher’s
exact test, 10–20 min: p = .037; 20–30 min: p = .037;
50–60 min: p = .037). (H) Number of entries to closed
arms by Pdzd8tm1b (17.0 6 1.317) and WT (18.06 6
1.184) mice in EPM (independent t test: t32 = 0.597,
p = .5541). (I) Number of entries to open arms by
Pdzd8tm1b (7.5 6 1.258) and WT (4.056 6 0.5686)
mice in EPM (Welch’s t test: t32 = 22.494, p = .021).
(J) Number of head dips by Pdzd8tm1b (21.81 6 2.91)
and WT (12.33 6 1.06) mice in EPM (Welch’s t test:
t32 = 23.061, p = .006). (K) Total distance traveled
(m) by Pdzd8tm1b (n = 16; 12.69 6 1.27) and WT (n =
18; 11.60 6 0.79) mice in EPM (Mann-Whitney U
test: U = 133, p = .720). Data are plotted as mean 6
SEM. *p , .05; **p , .01 vs. WT. EPM, elevated plus
maze; OF, open field; WT, wild-type.
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Peninsula. Such mutations are by default often considered
loss-of-function events for the protein-coding genes that har-
bor them, in part because of the assumption that the PTC-
containing mRNA is degraded by NMD (36). Because NMD is
less efficient for PTCs in the last exon (48), it is possible that
p.(S733*) located in the last exon of PDZD8 may evade PTC
detection and mRNA degradation. If a PTC-bearing allele does
escape detection by NMD, protein translation would stop
prematurely, and thus no functional full-length PDZD8 protein
would be produced.

The lack of PDZD8 protein in human blood limits our
ability to detect truncated PDZD8 proteins (31). If produced,
truncated PDZD8 would retain the N-terminal TM domain,
anchoring the protein to the ER, and the synaptotagmin-like
mitochondrial lipid-binding domain involved in dimerization
(49). However, it would lack C-terminal regions involved in
interaction with another ER TM protein, protrudin (13,34); the
phospholipids phosphatidylserine and phosphatidylinositol
4-phosphate, associated with the late endosome/lysosome
membrane (13,50); and the late endosomal Rab GTPase,
Rab-7a (34,49,51). As an in-frame PTC, p.(Y298*) is poten-
tially amenable to novel nonsense suppression therapies
aimed at suppressing PTCs to restore deficient protein
function (52).
Biological Ps
To our knowledge, there are no other reports of disease-
causing mutations in PDZD8. Although PDZD8 is one of mul-
tiple genes occasionally hemizygously lost in distal 10q dele-
tion syndrome, in which ID and dysmorphic features are
common (53,54), our finding that syndromic ID is absent from
heterozygotes in families A and B suggests that PDZD8 hap-
loinsufficiency is unlikely to have a major impact. A mutation in
protrudin (ZFYVE27) has previously been identified in spastic
paraplegia (55), while mutations in Rab-7a (RAB7A) have been
identified in Charcot-Marie-Tooth type 2B neuropathy (56–59).

To assess PDZD8 function in cognition, we undertook a
comparative study using targeted interference of PDZD8
orthologs in two model organisms. CG10362-KD fruit flies with
KD of the PDZD8 ortholog showed intact learning and short-
term memory in the aversive olfactory conditioning and
courtship conditioning assays. However, when tested 48 hours
after training in the courtship conditioning assay, CG10362-KD
males showed deficient long-term courtship-based memory,
consistent with interference of PDZD8 impairing long-term
memory formation or recall.

Pdzd8tm1b mice with a PTC (p.F333Nfs1*) exhibited
decreased preweaning viability. Surviving Pdzd8tm1b mice
showed spontaneous repetitive hindlimb jumping, a stereo-
typed motor behavior with potential relevance to lower-order
ychiatry August 15, 2022; 92:323–334 www.sobp.org/journal 329
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Figure 5. Performance of Pdzd8tm1b (n = 15) and
WT (n = 10) mice in Barnes maze. (A) Latency (s) to
first head entry to escape hole (Friedman’s analysis of
variance, Pdzd8tm1b: c2

3 = 19.88, p , .0001; WT:
c2

3 = 21.30, p , .0001. Mann-Whitney U test, day 1:
U = 79.50, p = .80; day 2: U = 85.50, p = .56; day 3:
U = 78.00, p = .868; day 4: U = 98.00, p = .216). (B)
Primary path length (m) (Friedman’s analysis of vari-
ance, Pdzd8tm1b: c2

3 = 11.32, p = .01; WT: c2
3 =

23.88, p , .0001. Mann-Whitney U test, day 1:
U = 60.00, p = .42; day 2: U = 76.00, p = 1.00; day 3:
U = 83.00, p = .68; day 4: U = 92.00, p = .367). (C)
Number of errors. (Friedman’s analysis of variance,
Pdzd8tm1b: c2

3 = 10.50, p = .015; WT: c2
3 = 9.39, p =

.024. Mann-WhitneyU test, day 1:U = 48.50, p = .144;
day 2: U = 72.00, p = .892; day 3: U = 67.50, p = .683;
day 4: U = 94.00, p = .311). (D) Time (s) spent by
Pdzd8tm1b (39.76 6 4.983) and WT (53.45 6 3.273)
mice in target quadrant (Welch’s t test: t22.24 = 2.296,
p = .031. One-sample t test,Pdzd8tm1b vs. chance [20]:
t14 = 3.965, p = .0014;WT vs. chance [20]: t9 = 10.22, p
, .0001). (E) Time (s) spent by Pdzd8tm1b (11.39 6
2.088) and WT (21.96 6 2.579) mice in target sector
(independent t test: t23 = 3.223, p = .004. One-sample t
test, Pdzd8tm1b vs. chance [4]: t14 = 3.540, p = .0033;
WT vs. chance [4]: t9 = 6.965, p , .0001). (F) Time (s)
spent by Pdzd8tm1b (6.587 6 1.643) and WT (12.35 6
2.3) mice within target hole annulus (Mann-Whitney U
test:U = 36.00, p = .031). (G) Left, entry probability (%)
of Pdzd8tm1b (13.64 6 2.359) and WT (27.8 6 3.086)
mice into the target hole annulus (independent t test:
t23 = 3.69, p = .001). Right, heat maps of mean entry
probability (%) of Pdzd8tm1b (right) and WT (left) mice.
Data are plottedasmean6SEM. *p, .05; **p, .01 vs.
WT. T, target sector; WT, wild-type.
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human motor stereotypies, such as hand flapping, common in
ASD (1). High levels of jumping behavior have been reported in
Shank2 null (60), Sh3rf2 haploinsufficient (61), Camk2a-E183V
(62), and Nlgn2 overexpression (63) mice that model genetic
risk factors for ASD and in the C58 inbred strain described as a
mouse model of autism (64). Approximately 10% of children
with ID show or develop autistic symptoms (65), including all
affected individuals in families A and B.

Across the 1-hour open field test, Pdzd8tm1b mice demon-
strated reduced habituation—a decrease in response to a
stimulus as it becomes familiar—postulated to reflect a deficit
in information acquisition (66). In the Barnes maze, Pdzd8tm1b

mice demonstrated reduced memory of the escape hole
location in the probe trial, indicative of long-term spatial
memory impairment. Our finding that interference of PDZD8
orthologs resulted in long-term memory deficits in mice and
fruit flies provides cross-species substantive evidence linking
PDZD8 disruption and cognitive impairment.

In parallel with their hippocampal-dependent spatial mem-
ory impairment, Pdzd8tm1b mice showed diminished LTP
evoked by 33 TBS, a maximal induction protocol, in acute
hippocampal slices, suggesting that LTP may saturate at lower
levels in Pdzd8tm1b mice. The magnitudes of LTP evoked by
the 13 TBS and 13 HFS protocols were, however, not
different between genotypes. This suggests that Pdzd8tm1b

mice do not have a global impairment in synaptic function but
a subtle hippocampal disruption revealed only when the
330 Biological Psychiatry August 15, 2022; 92:323–334 www.sobp.org
number of TBS trains is increased or performance on a
cognitively demanding task, such as the Barnes maze, is
assessed. The reduction in synaptic plasticity at 4 to 6 weeks
suggests that plasticity deficits may occur throughout devel-
opment, and thus learning in the adult may be affected via
cumulative synaptic deficits as well as directly.

The ER constitutes a large and important source of Ca21 for
various neuronal signaling processes. Ca21 is mobilized from
intracellular ER stores upon activation of ryanodine receptors
enriched in the dentate gyrus and CA3/4 fields of the hippo-
campus and/or inositol trisphosphate (IP3) receptors enriched
in hippocampal CA1 pyramidal cells (67,68). Synaptic plasticity
in LTP induction paradigms comparable to our 33 TBS pro-
tocol is dependent on the activation of group I metabotropic
glutamate receptors (mGluR1 and mGluR5), which results in
the stimulation of phospholipase C, leading to IP3-mediated
Ca21 mobilization from the ER (69–72). Ca21 mobilized from
ER stores transiently reaches concentrations high enough to
open the mitochondrial Ca21 uniporter at ER-mitochondria
contacts, promoting rapid mitochondrial Ca21 import (73).

In mouse cortical layer II/III pyramidal neurons, synaptic
stimulation was shown to induce robust ER Ca21 release and
mitochondrial Ca21 uptake in proximal dendrites (15), in which
IP3 receptors are found (67). This effect was abolished by
antagonism of mGluR1, consistent with the known role of
mGluR activation in triggering efficient Ca21 release from ER
stores (74). KD of Pdzd8 has been shown to decrease
/journal
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Figure 6. Analysis of hippocampal (long-term
potentiation) in Pdzd8tm1b mice. (A) Normalized
change in fEPSP (% baseline) induced by 13 TBS in
Pdzd8tm1b (131 6 4%; n = 11) and WT (136 6 6%;
n = 8) mice. (B) Normalized change in fEPSP (%
baseline) induced by 33 TBS in Pdzd8tm1b (131 6
4%; n = 15) and WT (156 6 7%; n = 16) mice. Scale
bars = 0.3 mV and 10 ms in (A) and (B). (C)
Normalized change in fEPSP (% baseline) induced
by 13 HFS in Pdzd8tm1b (145 6 7%; n = 10) and WT
(135 6 6%; n = 12) mice. Insets: representative
traces before (WT, light blue; Pdzd8tm1b, pink) and
after (WT, blue; Pdzd8tm1b, red) the induction proto-
col. Scale bars = 0.2 mV and 10 ms. (D) Facilitation
of fEPSP (% baseline) at 30 minutes after 13 TBS,
33 TBS, and 13 HFS. (E) Paired-pulse ratio of
Pdzd8tm1b (1.48 6 0.03; n = 43) and WT (1.63 6
0.04; n = 39) mice with 50-ms stimulus interval.
Representative traces of WT (blue) and Pdzd8tm1b

(red) slices. Scale bars = 0.2 mV and 100 ms. Data
are plotted as mean 6 SEM. *p , .05 vs. WT. fEPSP,
field excitatory postsynaptic potential; HFS, high-
frequency stimulation; TBS, theta burst stimulation;
WT, wild-type.
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proximity of the ER and mitochondria (14) and decrease
mitochondrial Ca21 import evoked by synaptic stimulation,
leading to significantly elevated cytosolic Ca21 levels despite
unchanged ER Ca21 release (15). The effect of this on Ca21

buffering and adenosine triphosphate synthesis by mitochon-
dria at the synapse is likely to compromise neuronal and
synaptic functioning (75). PDZD8 loss of function may have
had similar effects following 33 TBS in Pdzd8tm1b hippocam-
pal slices. Such an impairment of hippocampal neurophysi-
ology that supports spatial memory in Pdzd8tm1b mice is
consistent with the high expression of Pdzd8 in the mouse
hippocampus (15,76). In common with other
Biological Ps
neurodevelopmental disorders, the cognitive impairment
associated with PDZD8 disruption is therefore likely to repre-
sent a synaptopathy resulting from synaptic dysfunction (9).

Adult Pdzd8tm1b mice exhibited decreased absolute brain
volume, likely related to their decreased body size, which
affected the cerebrum but not the cerebellum and olfactory
bulb. Normalizing the volume of each region to absolute brain
volume revealed multiple regions with altered relative volumes
in Pdzd8tm1b mice, including the corpus callosum and hippo-
campus. The relative reduction of the corpus callosum repli-
cates the corpus callosal hypoplasia of the affected female
(A.IV.5) in family A. The relative expansion of the hippocampus
ychiatry August 15, 2022; 92:323–334 www.sobp.org/journal 331
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is comparable to that observed in other mouse models of
neurodevelopmental disorders exhibiting cognitive deficits.
The heterozygous Arid1b knockout mouse model of Coffin-
Siris syndrome, a syndromic ID, exhibits body weight and
growth rate deficits, reduced total brain volume but hippo-
campal enlargement, and deficits in novel object recognition
(77). The heterozygous Chd8 mutant mouse model of ASD
exhibits an increase in hippocampal volume that is correlated
with deficits in contextual fear conditioning (27). Deciphering
how PDZD8 disruption affects the tightly orchestrated and
intricate processes that determine brain structure will require
additional studies.

To summarize, PDZD8 is an ER TM protein required for the
extraction of lipids from the ER to late endosomes and lyso-
somes (13,49) and mitochondrial Ca21 uptake following syn-
aptic transmission–induced Ca21 release from ER stores (15).
Our data demonstrate the involvement of homozygous loss-of-
function mutations in PDZD8 in syndromic ID. This knowledge
will benefit affected families through genetic counseling and
carrier screening and facilitate the genetic diagnosis of other
patients. Disrupting the orthologous gene resulted in long-term
memory deficits in fruit flies and brain structural alterations,
long-term memory deficits, and impaired hippocampal neuro-
physiology in mice, replicating aspects of the human pheno-
type and demonstrating a critical role for PDZD8 in brain
development and synaptic plasticity. We can use these models
to decipher precisely how PDZD8 disruption affects neuro-
development and synapse function, thus providing insight to
the pathophysiological mechanism and potential treatment of
this lifelong disability.
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