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Abstract. Automatic Modulation Classification (AMC) is a rapidly evolving 

technology, which can be employed in software defined radio structures, such as for 

military communication. Machine Learning can provide novel and efficient technology 

for modulation classification, especially for systems working in low Signal to Noise 

Ratio (SNR). For this work, a dynamic modulation classification system without phase 

lock is trialed. The signals are captured with different SNR and duration. Traditional 

Machine Learning based on the mathematical features is compared with Deep Learning 

based on the constellations. Based on these two methods, a hybrid model is provided. 

This model involved the novel Deep Learning at first and the feature classification as a 

supplement, which achieves good performance at low SNR area.  

1. Introduction  

As digital communication systems develop, improving radio spectrum usage efficiency 

becomes vital. To respond to this requirement, Dynamic Spectrum Access (DSA) is a good 

starting point, with spectrum sensing and signal classification. In this case, the modulation 

classification performs a significant role and can be widely employed in a variety of 

applications, such as software defined radio system and radar communication in the military. 

There is a high demand of radio frequency (RF) bands. In the crowded spectrum situation, the 

AMC technology can respond to the requirements, optimizing signal demodulation, information 

extraction and interference detection without limitation from various complex emitters [1][2].   

This work concentrates on modulation classification provided by different methods in the 

machine learning area. With the improvement of the Artificial Intelligence (AI) technology, 

many areas have achieved new progress by this novel area. For the traditional statistical methods 

of machine learning, classification of the modulation types by the statistical features of the 

signals is common. The most suitable model will be selected after the experiments of the 

calculation and comparison among SVM, K-Nearest-Neighbors (KNN), Decision Tree, and so 

on. After that, the Deep Learning working as a subproject of machine learning reached a new 

step, which extracts the essence from the biological information processing system. The 

advantages are also obviously shown in audio recognition, image classification and semantic 

segmentation. In this paper, the theory of the image classification will be utilized, Convolutional 



Neural Network (CNN) of deep learning is introduced and tested. Based on this novel method, 

the feature classification based on machine learning works as a supplement to improve accuracy. 

This new hybrid model detects the modulated signals from -10dB SNR to 20dB SNR.  

In the previous research, Maximum-likelihood decision theory is used as a critical method. 

PSK and QAM signals are distinguished with accuracy of 90% above 9dB SNR [3]. For the 

pattern algorithms, the features of signals are involved in the models, where high order 

cumulants play a critical role in the AMC algorithm. After extracting the efficient features, the 

Support Vector Machines (SVM) is applied in the recognition process. The accuracy can reach 

to 96% around 10 dB SNR for 200 samples [4]. But the probability of correct classification is 

between 50% to 70% at around 0dB SNR, which still needs to be improved. Compared to the 

previous classifiers, the binary hierarchical polynomial classifiers are also proposed with the 

probability of correct classification of 65% [5]. There is still the challenge to optimize the AMC 

system, especially at low SNR.  

This work will introduce the machine learning and deep learning methods. Images are 

captured by the dynamic system and used as training data. In this paper, the CNN model with 

the best accuracy and the high order cumulants will be involved in the hybrid system. The results 

at low SNR will also be analyzed in the following works.  

2. Problem Presentation  

In this section, the model of the signal, the statistical features and the constellations are 

introduced. The statistical features are used for the machine learning models and the hybrid 

model. The constellations of the modulated signals are utilized for the deep learning models and 

the hybrid model.   

2.1. Signal model  

The received signal in baseband is defined with r(t) and it is given by   

   𝑟(𝑡)	=	𝑠(𝑡)	+	𝑛(𝑡)   (1)  𝑠(𝑡) is the original signal which transmit through the additive white Gaussian noise 

(AWGN) channel.   

With the demand of features calculation and analysis, the raw data should be represented 

by in-phase and quadrature components  

   𝑎[𝑖] = 𝑎![𝑖] + 𝑗 ∗ 𝑎"[𝑖]	  (2)  

In this case, signals simulated in software are composed of real part and imaginary part 

representing the characters of their constellation diagrams. All the statistical features and 

constellations are calculated and captured by this model. Furthermore, the data captured by 

hardware is also read as I/Q data. Building the model in this way can simulate the signals 

expected in reality.   

Four kinds of modulated signals, BPSK, QPSK, 8PSK and QAM16 are applied in this work. 

There are 100 symbols utilized, sampled by the rate of 50 samples per symbol.  

SNR is also an important index to describe the noise and imitate the signals in the real 
world. And it is defined by  

   𝑆𝑁𝑅 = #$%&'	$)	*+,-./
0.'+.-1&	$)	-$+*& = 20𝑙𝑜𝑔23 8 4!

"
∑|.[+]|#

*9:(|-$+*&|)9	  (3)  



In this work, signals are considered from -10dB to 20dB SNR. According to the previous 

works, focus was on the classification above 10dB SNR [6]. The SNR value less than 0dB 

should also be tested, to improve the performance of distinguishing modulation types. We have 

developed the models from -10dB to 20dB SNR to provide a comprehensive dataset.   

2.2. Statistical features for Machine Learning and Hybrid Model  

The traditional statistical methods of machine learning are proposed in the previous research to 

classify the digital modulations [7]. The features proposed in the literature for artificial 

intelligence technologies are now considered. The statistical models can obtain the results by 

capturing the statistical features among the four modulation types from -10dB to 20dB SNR.  

The useful features are as follows.  

Signal power ratio of in-phase and quadrature part 𝛽  

   𝛽 = ∑ .$# [+]%

∑ .&#[+]%
	   (4)  

Standard deviation of the direct instantaneous phase 𝜎:#  

    𝜎:# = <2
= =∑ 𝜑=>? [𝑖].%[+] @ − B2=∑ 𝜑=>[𝑖].%[+] C?	 (5)  

Where 𝑁 is the number of the samples, 𝜑=>[𝑖] is the instantaneous phase, which is defined 

by 𝜑=>[𝑖] = 	 tan@2 .$[+].&[+] .  

Standard deviation of the signal instantaneous normalized amplitude  𝜎..  

     𝜎.. = <2
= =∑ 𝑎1-? [𝑖]=+A2 @ − B2=∑ |𝑎1-[𝑖]|=+A2 C? (6)  

     𝑎1-[𝑖] = .[+]
B(.[+]) − 1	 (7)  

Standard deviation of the signal normalized amplitude of signal 𝜎0  

   																																		𝜎0 = <2
= =∑ 𝑎0?[𝑖]=+A2 @ − B2=∑ |𝑎0[𝑖]|=+A2 C?	   (8)   

   𝑎0[𝑖] = < .[+]
0.'(.[+]) − 1	 (9)  

Standard deviation can describe the statistical dispersion, which the above three kinds of 

standard deviation results are utilized for describing the signals in the main characteristics of 

phase and amplitude.   

Mixed order moment 𝑣?3 

   𝑣?3 = C'#(D)
C#!# (D) = B(|.[+]|')

B(|.[+]|#)	   (10)   

Mixed order moment is defined by the fourth order moment 𝑀E? and second order moment 𝑀?2  of the signal. This feature employs the Joint Power Estimation and Modulation 

Classification (JPEMC) algorithm, which is associated with the power of signal and noise. This 

feature can reflect the power in another way [7].  

Mean value of the signal samples 𝑋  



   𝑋 = 2
=∑ |𝑎[𝑖]|=-A2 	     (11)  

Normalized square root of signal 𝑋? 

   𝑋? = 4∑ |.[+]|"
()!

= 	 (12)  

This feature can describe the amplitude scale of the signals. 

Maximum value of power spectral density (PSD) 𝛾F.G 

   𝛾F.G = 2
=𝑚𝑎𝑥|𝐷𝐹𝑇(𝑎1-[𝑖])|? (13)  

This feature describes the situation of signals in the frequency domain, by using the 

Discrete Fourier Transform (DFT).  

Cumulants  

   𝐶?3 = 𝐸[𝑎?[𝑛]]	 (14)  

   𝐶?2 = 𝐸[|𝑎[𝑛]|?]	 (15)  

   𝐶E3 = 𝑀E2 − 3𝑀?3? 	 (16)  

   𝐶E2 = 𝑀E2 − 3𝑀?3𝑀?2 (17)  

   𝐶E? = 𝑀E? − |𝑀?3|? − 2𝑀?2? 	 (18)  

   	 𝐶HI = 𝑀HI − 6𝑀?3𝑀E3 − 9𝑀E?𝑀?2 + 18𝑀?3? 𝑀?2 + 12𝑀?2I 	 (19)  

   𝐶J3 = 𝑀J3 − 35𝑀E3? − 28𝑀H3𝑀?3 + 420𝑀E3 − 630𝑀?3E 	 (20)   𝑀#KL,# could be defined by 𝐸[𝑎[𝑛]#𝑎[𝑛]∗L]. Cumulants and moments are widely used in 

variety of classification, especially for the high-order cumulants, which can avoid the influence 

from the AWGN [9] [10]. Cumulants are proposed to represent the moments in an alternative 

way and the moments can measure functions quantitively. When the higher order cumulants of 

the received signals are calculated, the part of the Gaussian noise is zero and the signals are 

independent [11].   

Kurtosis K  

   𝐾 = [ B[(.@B[.])']B[(.@B[.])#]#[	 (21)  

Kurtosis is a feature which can describe the steepness or flatness of the distribution of 

signals.   

Skewness  

   𝑆 = [ B[(.@B[.])*]
B[(.@B[.])#]*/#[ (22)  

Skewness can describe the position of the tapering side of the distribution, which is also 

the third central moment. Both the abilities of kurtosis and skewness are to confirm the shape 

of the signals [6].  

Ratio of peak-to-rms, PR   

     𝑃𝑅 = F.G|.|#
!

"
∑ (.[+])#"
()!

	 (23)  

Ratio of peak-to-average, PA 

   𝑃𝐴 = F.G|.|
!

"
∑ .[+]"
()!

	 (24)  



These two features aim to describe the shape of different signals in detail, which is not 

clear to observe.  

Several of these techniques are utilized in the traditional machine learning. To develop the 

hybrid model, the feature variables as supplements should be stable and clear to classify the 

modulation types.   

2.3. Constellations of modulation format for Deep Learning and Hybrid Model  

For the Deep Learning model and the first part of the hybrid model, the main principle is image 

classification. To be applied by the Deep Learning, the data of modulated signals are transferred 

to the constellation images. The Fig1 shows the constellations as examples of the four 

modulations at 20dB SNR.   

   

Figure 1 Constellation of Modulated Signals with noise at 20dB SNR  

We assume that the systems providing the signals have phase and symbol lock. The SNR 

effects and constellations are directly observed from Fig 1, which indicates the CNN should 

give a high accuracy of classification at 20dB SNR. These constellations are captured in JPG 

format and stored with the labels of the modulation names. To get the efficient constellation 

images for the Deep Learning, the axes are limited from -4 to 4 of both directions. In this way, 

the sampled dots can stay in the main part of the images and the constellation images can have 



the same specification. There are 1200 images captured to feed the Deep Learning models. All 

the constellation images are used as dataset. 70% of the images are utilized for training, and the 

rest of images are for the validation process. The models will adjust the parameters to achieve 

the best performance based on the results of each experiment.  

3. Classification Method  

In this section, the classification methods are introduced. Machine Learning models are based 

on the statistical features from the modulated signals. The Deep Learning models achieve the 

classification according to the constellation images. Both of these two methods have limitations 

of the classification, the hybrid model is developed by combining them both.  

3.1. Machine Learning  

For the Machine Learning methods, the statistical features needed to be analyzed and selected 

to work in the model. Based on the formula of features from section2.2, the features from four 

kinds of modulation types are calculated.   

  
Figure 2 Features of four kinds of modulated signals at 10dB SNR  

  

Fig 2 has shown the statistical features of the four modulated signals at 10dB SNR. To show 

the characters of all the features in one graph, some of the features are displayed in logarithmic 

form, such as 𝜎.., 𝑋?, 𝛾F.G, which is a clear way to apply the data with magnitude difference. 

According to the following graph, it is obvious that 𝛽, 𝜎:#, 𝜎0 and 𝑋? cannot help to classify 

the modulations (BPSK, QPSK, 8PSK and QAM16). These four features remain constant 

around the fixed values.   



The classification results from SVM, KNN and Decision Tree are compared. SVM is a 

supervised model that makes the classification between two groups. It can be used to classify 

the modulation types step by step. KNN is a supervised and non-parametric method, which need 

to set the value of k at first, the input consists of the k closest training examples in the feature 

space, the output is the class membership. The decision tree consists of a structure with different 

nodes which works as a condition and check if the input data are satisfied. All of them are classic 

statistical methods to make decisions between the four types of modulation using features. But 

the calculation results from the signals fluctuate when the SNR varies, making decisions 

difficult.    

3.2. Deep Learning  

In this session, four CNN models are introduced. A simple CNN developed from the Iris case 

with several layers, SqueezeNet model, GoogleNet model and Inception-v3 model [12]. The 

last three models are pretrained networks, which are used for Transfer Learning. As Fig 3 shown, 

an example of a simple CNN structure can consist of two convolutional layers and two dense 

fully connected layers. The characters of the signals can be captured by the two convolutional 

layers and the feature map can be produced by these two layers. After that the features can be 

learned by the two sequential layers. At last, the results of the classification are outputted.  

  
Figure 3 Structure of CNN  

3.2.1.  CNN. This model is created by developing from the Iris recognition case. There are 

fifteen layers in total. Three convolutional layers are followed by the batch normalization layers 

and ReLu layers. Two max pooling layers are set between the other three blocks. The 

convolutional layers can capture the features of the images by the filters. The batch 

normalization layers can normalize the input channel. The ReLu layers calculate the threshold 

to the elements.  

3.2.2.  Transfer Learning Models. The SqueezeNet has 68 layers and its coefficients of the 

network were already pretrained to classify 1000 categories. The input image size is 227-by-

227. The GoogleNet has 144 layers. It was pretrained to classify the images into 1000 categories 

and 365 places. The input image size is 224-by-224. The Inception-v3 has 315 layers and it was 

trained by more than a million images to classify into 1000 categories. The input size is 299-



by-299. Images need to be resized before feeding to models. The last learnable layers are 

modified, to provide only 4 outputs, corresponding to each of the modulation types.   

In these experiments, 70% of images are used as training and the rest are used as validation. 

The augmented image datastore is applied to rotate the images from -90 degrees to 90 degrees 

(representing constellation phase errors) and rescale images from 1 to 1.5 randomly, which can 

help improve the amount of training data and avoid overfitting.   

3.3. Hybrid Model  

According to previous research, the hybrid method is provided. The deep learning is utilized at 

first, the statistical features of the signals are applied to the second process for the classification.   

  

  
Figure 4 Predictions of 16QAM at -3dB SNR    Figure 5 Structure of Hybrid Model  

  

Figure 4 illustrates the probability of the predictions when the Inception-v3 model detects 

the signals at -3dB SNR. It is obvious the system cannot classify the QAM16 from the BPSK 

and QPSK, so the statistical features must be involved to detect the proper detected signals.  

The proposed structure of the hybrid model is shown in Figure 5. The structure of deep 

learning is the model that gets the best classification results from the four CNN. We can see the 

results at low SNR are not accurate enough. Based on the traditional Machine learning method, 

the features which can obviously help distinguish the modulation types are chosen to help 

classify as continue. Feature classification requires the statistical features from the modulated 

signals.  

4. Results  

This section indicates the results from different classification methods. The Inception-v3 model 

approves the best results in the deep learning part. It shows the transfer learning can perform 

better with the pretrained coefficients. To improve the performance of the system, the hybrid 

model will use the features from the statistical features and be compared to the deep learning 

model.  



4.1. Deep Learning for images classification  

Form Table 1, the results are shown from the four CNN models. The CNN developed with Iris 

case performs worse than traditional machine learning methods. It cannot indicate the CNN is 

unsuitable for detection because the structures and coefficients of the CNN can influence a lot 

in the classification system. The other three models are CNN as well, but they have more 

complicated structures and they are pretrained by millions of images. Although the images 

applied for pretraining are not the constellation of modulated signals, they can also help the 

models to classify the images by modifying the coefficient again and again.  

  

Table 1 Validation Accuracy of Deep Learning Models  

Model Name  Validation Accuracy  

CNN from Iris case  36.90%  

SqueezeNet  55.83%  

GoogleNet  56.11%  

Inception-v3  63.33%  

  

The Inception-v3 compared to the SqueezeNet and GoogleNet shows best accuracy of 

63.33%. The training dataset is the images of four modulated signals from -10dB SNR to 20dB 

SNR. And the Accuracy is calculated from detect the four modulation types from -10dB SNR 

to 20dB SNR.  

  

  

(1) Predictions based on CNN from Iris model  

  

(2) Predictions based on SqueezeNet  



  

(3) Predictions based on GoogleNet  

     

(4) Predictions based on Inception-v3  

Figure 6 (1)-(4) Prediction of four deep learning models  

  

Figure 6 is the examples for the QAM16 detection at 0dB SNR and 5dB SNR by the simple 

CNN model, SqueezeNet, GoogleNet and Inception-v3 model. The validation accuracy of 

Inception-v3 is only higher than the CNN model based on the Iris case by 10 percent. The CNN 

model developed from Iris model shows a good classification ability at 0dB SNR, but it cannot 

promise accuracy at 5dB SNR. For the higher SNR, the Inception-v3 have a robust classification 

capability. Considering the validation accuracy and stability of the classification at the same 

time, we decided to choose the Inception-v3 as the most outstanding one from the four models.  

When the SNR is more than 10 dB, the predictions of the classification goes nearly 100%. 

Deep learning has shown its advantages by the results. Based on these, to improve the 

classification accuracy of low SNR area, we use the feature classification as a supplement.  

4.2. Hybrid model for images classification and feature classification  

According to the section 4.1, we find the Inception-v3 provides the best results from the four 

kinds of CNN structures over all SNR. From Figure 2 we can find the high order cumulants 

perform well. The high order cumulants are employed for the hybrid system as the second 

classification process. The Kurtosis and Skewness can describe the shape of the signals. But as 

the training data, the signals were varied from -10dB to 20dB SNR, which means the features 

also changed dramatically. The dynamic changes will increase the complexity of the 

classification system. So only 𝐶?3, 𝐶?2, 𝐶E3, 𝐶E2, 	𝐶E?, 𝐶HI, 𝐶J3 are employed.   

  
 



Table 2 Compared Accuracy between CNN and Hybrid Model  

SNR Level  Accuracy of Inception-v3  Accuracy of hybrid model  

-5dB  52.6%  75.3%  

-3 dB  29.5%  63.5%  

0 dB  37.5%  67.7%  

5dB  79.0%  88.5%  

10 dB  96.7%  97.3%  

20 dB  99.2%  99.7%  

  

Table 2 shows the compared results of Inception-v3 and hybrid model. The accuracy was 

improved especially at low SNR area. The hybrid model explores signals at the low SNR area 

and the accuracy is more than 60% by training the whole SNR range data. The accuracy at -5dB 

SNR is higher than the accuracy at -3dB SNR because we capture the constellation images by 

the scale of the axis from -4 to 4 and the images are full of the random noise pixels compared 

to the constellations of other modulation types. At the -3dB SNR, all the four kinds of 

modulation types have lots of noisy pixels around the focus on the middle part of the 

constellation, which is more complicated to classify at this period.  

5. Conclusion  

This work compared the different classification methods for AMC, finding the Inception-v3 

network provided the best results at SNR levels from -10dB SNR to 20dB SNR. To improve 

the situation at low SNR, the hybrid model is provided based on the advantages of deep learning 

and traditional machine learning. The new hybrid model involved the novel image classification 

to classify the constellation at first and the features classification as a supplement. The accuracy 

provided by the hybrid model at -3dB SNR increase from 29.5% to 63.5% compared to the 

Inception-v3. In this way, the hybrid model utilized the constellation to avoid the complex 

calculation and several features to improve the performance of previous image classification.  

The deep learning technology could still be improved further by detecting the images of 

the Time-Frequency domain at the same time instead of changing the coefficients of the CNN 

system.  
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