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Abstract

Automatic Modulation Classification (AMC) is a rapidly evolving technology, which can

be employed in software defined radio structures, especially in 5G and 6G technology.

Machine Learning (ML) can provide novel and efficient technology for modulation classi-

fication, especially for systems working in low signal to noise ratio (SNR). In this article,

two dynamic systems not reliant on received signal phase lock and frequency lock are pre-

sented, with both employing ML to classify the modulation types for different received

SNR. The first model is developed from the previous existing literatures, which utilises

constellation images (CI) and image classification technology. Here, modulation types can

be detected in a dynamic way without phase lock and frequency lock. In the second model,

a new method named Graphic Representation of Features (GRF) is proposed, which repre-

sents the statistical features as a spider graph for ML. The concepts are tested and verified

using simulations and RF data using a lab software defined radio (SDR). The results from

the two models are compared. With the GRF techniques an overall classification accuracy

of 59% is observed for 0 dB SNR and 86% at 10 dB SNR, compared to a random guess

accuracy of 25%.

1 INTRODUCTION

Digital communication systems continue to develop, with

improvements to radio spectrum usage efficiency becoming

vital. To respond to this requirement, dynamic spectrum access

(DSA) is an important tool requiring spectrum sensing and

signal classification. In this case, the modulation classification

performs a significant role and can be widely employed in a

variety of applications, such as software defined radio system

and radar communication in the military [1, 2]. There is a high

demand for radio frequency (RF) bands. In a crowded spectrum

situation, the automatic modulation classification (AMC) [3]

technology can respond to the requirements optimising signal

detection and subsequent demodulation when multiple com-

plex/unknown signals are to be handled, or for cognitive radio

primary-user detection. Radio spectrum is a valuable resource,

hence AMC is the way of identifying user activity in a spectrum

and also identifying unused spectrum [4]. It can also be used by

spectrum managers to ensure correct usage of spectrum. AMC
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can also be used by cognitive radio systems to identify the pres-

ence of primary users.

This work concentrates on modulation classification pro-

vided by different methods in the deep learning area. Signals can

appear like noises at very low signal to noise ratio (SNR). The

purpose of this work is to develop the accuracy of classification

in the low SNR area with more efficient methods. With the

improvement of Artificial Intelligence (AI) technology, many

areas have achieved new progress by this novel area [5]. For the

traditional statistical methods of machine learning, classification

of the modulation types by the statistical features of the signals

is common [6]. From this, deep learning (DL), working as a

subproject of machine learning, reached a new step by applying

the essence of biological information processing system [7]. DL

also works as an efficient technique in image classification [8].

In this work, we provide two models using image classification

from DL technology. The main difference between them is the

training dataset. The first model utilises constellation images

(CI) as the dataset and the second model utilises the graphic

IET Commun. 2022;1–12. wileyonlinelibrary.com/iet-com 1
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representation of features (GRF). Based on the previous

research, the CI model can classify the modulation types in a

dynamic system without phase lock and frequency lock at low

SNR levels. Transfer learning (TL) [9] is also introduced as an

efficient AI technology in our model. We use the CI model as a

development of the traditional method [10], to be compared to

the GRF model.

In the second model, the GRF method shows advantages

from both statistical features and image classification. Present-

ing the modulated signals in GRF, they can be fed to the pre-

trained network for the existing advanced image classifiers to

test. To make a fair comparison, the same TL networks are also

applied in this model. For the GRF, spider graphs of the sta-

tistical features provide a new way to classify the signals. Both

models are utilised to detect the modulated signals from −10 to

20 dB SNR.

In previous published research, Maximum-likelihood deci-

sion theory is used as a critical method [11]. PSK and QAM

signals are distinguished with accuracy of 90% above 9 dB SNR

[12]. For the pattern recognition algorithms, the features of sig-

nals are involved in the models, where high order cumulants play

a critical role in the AMC algorithm. After extracting the effi-

cient features, a support vector machine (SVM) [13] is applied in

the recognition process. The accuracy can reach 96 % at 10 dB

SNR for 200 samples [14]. However, the probability of correct

classification is between 50% and 70% at circa 0 dB SNR, sug-

gesting a need for more improvement. Compared to the pre-

vious classifiers, the binary hierarchical polynomial classifiers

are also proposed with the probability of correct classification

of 56% at 0 dB SNR with 1000 symbols [15]. Hence, there is

still the challenge to optimise the AMC system, especially at low

SNR.

Our work introduces two AMC systems with DL technology.

The first system is tested directly using the received CI. The

second proposed system utilises the GRF, which benefits

from the statistical features and image classification with DL.

In both systems, convolutional neural networks, GoogleNet

[16], SqueezeNet [17] and Inception-v3 [18] are trialled and

compared. The main difference between the two systems is

the training data and use of GRF. We develop the recognition

images by extracting the statistical features for the GRF, whilst

the constellation graphs are captured from the received signals

directly. By using pre-existing neural networks aimed at generic

image classification, we leverage this existing technology but

repurpose it for modulation classification and thereby also

assess its suitability.

There are four key contributions of this work. For our

first contribution, we make the assessment of TL using the

pretrained neural network for constellation recognition. The

good usage of the TL reduces the complexity of calculation

and improves the accuracy of modulation classification. The CI

model uses the TL with constellation images without phase lock

or frequency lock. For our second contribution, we develop

and assess the novel method named graphic representation of

features (GRF) to indicate the statistical features of modulation

types, represented graphically and used as image classification

data. This method takes the advantages of both statistical char-

acterisation and image classification. As our third contribution,

we compare the simulated data and lab collected data in our sys-

tem. Our final contribution is the overall assessment of generic

DL image classifiers as applied to communications AMC

usage.

In the following parts, we will introduce the two system mod-

els, classification methods, and finally discuss results and perfor-

mance.

2 SYSTEM MODEL AND PROBLEM
DESCRIPTION

In this section, the model of the received signal, the constella-

tions and the statistical features are introduced. The constella-

tions of the modulated signals are utilised for the DL model.

The statistical features are extracted in graphical form for the

GRF method.

2.1 Signal model

The received signal in baseband is defined by r(t) and it is given

by (1):

(t ) = s(t ) + n(t ) (1)

Here, (t) is the original signal which transmits through the

additive white Gaussian noise (AWGN) channel, and n(t) repre-

sents the noise applied to the signals.

For the demands of features calculation and analysis, the raw

data should be represented by convention using in-phase and

quadrature components (I/Q), (2).

a [i] = aI [i] + j∗aQ [i] (2)

Hence, the signals are composed of a real part and imaginary

part, representing the characters of their constellation diagrams.

All the statistical features and constellations are calculated and

captured by this model. Furthermore, the data captured by lab

test hardware is also read as I/Q data [19].

The four kinds of modulated signals investigated and applied

in this work are: BPSK, QPSK, 8PSK and QAM16. There are

100 symbols utilised, sampled at the rate of 50 samples per

symbol.

SNR is also an important metric to describe the noise and

represent the signals in the real world, here defined by (3):

SNR =
power of signal

variance of noise
= 20log10

⎧
⎪⎨⎪⎩

√
1

N

∑|a [i]|2
std (|noise|)

⎫
⎪⎬⎪⎭

(3)

In this work, signals are considered from −10 to 20 dB SNR.

Note that the focus of previous works was on the classifica-

tion above 10 dB SNR [20]. SNR values less than 0 dB are
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FIGURE 1 Lab signals collected from SDR without phase and frequency lock (a) BPSK, (b) QPSK, (c) 8PSK, (d) QAM16

very important and should also be tested, to improve the per-

formance in distinguishing between modulation types. We have

developed our models from −10 to 20 dB SNR to provide a

comprehensive dataset.

2.2 Modulation constellations

For the DL model, the main principle applied is that of image

classification. In applying DL, the modulated signals are trans-

ferred to the CI representations. We feed the network significant

datasets, which are captured by increasing number of samples in

each constellation. Figure 1 shows the constellations collected

from the lab as examples of the four modulation types (BPSK,

QPSK, 8PSK, QAM16) at 10 dB SNR.

Initially, for the CI model which we developed from the tradi-

tional method using constellations, our main contribution is we

remove the requirement for phase and frequency lock. We gen-

erate the constellation data using a lab signal generator (Agilent

E4437B) and collect it using an SDR (Ettus E310). The SNR

effects and constellations can be observed in Figure 1, which

also shows the received data rotation. In a dynamic system, this

kind of data is not easy to train in the neural network especially

at low SNR level.

To detect these kinds of constellations, we divided the data

into small groups which can be observed in Figure 2. To

improve the accuracy of classification, we also gradually increase

and plot the samples from 200 to 500 samples in each small

group which can be observed in Figure 3.

In neural networks with the dataset in the form of constella-

tions, the constellations are captured in JPG format and stored

with the labels of the modulation names. To obtain efficient CI

for the DL, the sampled data are represented in small groups. In

this way, the sampled dots and hence modulation-defining tra-

jectories can be represented clearly, whilst avoiding the need of

phase lock and symbol lock. This also allows the progression of

the symbols to be captured, representing characteristic changes

in the vector due to modulation symbol change separate to any

phase lock issues. In our implementation, 2000 images were cap-

tured to feed the DL models. All the images are used as a dataset,

with 70% of the images utilised for training, 20% of images for

the validation process and the remaining 10% used for testing:
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FIGURE 2 Constellations of signal samples in small groups (a) BPSK, (b) QPSK, (c) 8PSK, (d) QAM16

Proportions as used by others [21]. Each DL model uses ten

times iterative experiments. During these experiments, the mod-

els are trained to adjust the new dataset by getting feedback from

the experiment results.

2.3 Statistical features used for the spider
graph representation

The common statistical methods of machine learning are pro-

posed in the previous research, for classifying digital modula-

tions [22]. The features proposed in the literature for artificial

intelligence technologies were thus considered. The statistical

models can obtain the results by capturing the statistical fea-

tures from the four modulation types, from −10 to 20 dB SNR.

The useful features are discussed below.

The signal power ratio of the in-phase and quadrature part, β
is extracted by (4):

𝛽 =

∑
n

a2
Q

[i]

∑
n

a2
I

[i]
(4)

The standard deviation of the direct instantaneous phase, 𝜎dp,

is extracted by (5):

𝜎dp =

√√√√√ 1

N

(∑
an[i]

𝜑2
NL

[i]

)
−

(
1

N

∑
an[i]

𝜑NL [i]

)2

(5)

Here, N is the number of the samples and 𝜑NL[i] is the

instantaneous phase which is defined by 𝜑NL [i] = tan−1 aQ [i]

aI [i]
.

The standard deviation of the signal instantaneous nor-

malised amplitude, 𝜎aa, is extracted by (6) and (7):

𝜎aa =

√√√√√ 1

N

(
N∑

i=1

a2
cn [i]

)
−

(
1

N

N∑
i=1

|acn [i]|
)2

(6)

acn [i] =
a [i]

E (a [i])
− 1 (7)
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FIGURE 3 Constellations of BPSK with increasing samples (a) BPSK with 200 samples, (b) BPSK with 300 samples, (c) BPSK with 400 samples, (d) BPSK

with 500 samples

The standard deviation of the signal normalised amplitude of

signal, 𝜎v , is extracted by (8) and (9):

𝜎v =

√√√√√ 1

N

(
N∑

i=1

a2
v [i]

)
−

(
1

N

N∑
i=1

|av [i]|
)2

(8)

av [i] =

√
a [i]

var (a [i])
− 1 (9)

The standard deviation can describe the statistical dispersion,

with the above three types of standard deviation results utilised

for describing the signals in the main characteristics of phase

and amplitude [23].

The mixed order moment of signals, v20, is extracted by (10):

v20 =
M42 (y)

M 2
21

(y)
=

E
(
|a [i]|4

)

E
(
|a [i]|2

) (10)

The Mixed order moment is defined by the fourth order

moment M42 and second order moment M21 of the signal. This

feature employs the Joint Power Estimation and Modulation

Classification (JPEMC) algorithm [20], which is associated with

the power of signal and noise. This feature can represent the

received power.

The mean value of the signal samples, X, is extracted

by (11):

X =
1

N

N∑
n = 1

|a [i]| (11)

The normalised square root of signal, X2, is extracted by (12):

X2 =

√∑N

i=1
|a [i]|

N
(12)

The normalised square root of signal can describe the ampli-

tude scale of the signals.
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The maximum value of power spectral density (PSD) is

defined as 𝛾max , (13):

𝛾max =
1

N
max|DFT (acn [i])|2 (13)

Parameter 𝛾max relates to the power spectrum of signals in the

frequency domain, using the discrete Fourier transform (DFT).

The Cumulants of signals are extracted by (14)–(20):

C20 = E
[
a2 [n]

]
(14)

C21 = E
[
|a [n]|2

]
(15)

C40 = M41 − 3M 2
20

(16)

C41 = M41 − 3M20M21 (17)

C42 = M42 − |M20|2 − 2M 2
21

(18)

C63 = M63 − 6M20M40 − 9M42M21 + 18M 2
20

M21 + 12M 3
21

(19)

C80 = M80 − 35M 2
40
− 28M60M20 + 420M40 − 630M 4

20
(20)

Mp+q,p can be defined by E [a[n]p
a[n]∗q]. Cumulants and

moments are widely used in a variety of classification tech-

niques, especially the high-order cumulants, which can reduce

the influence of additive white Gaussian noise (AWGN) [24].

Cumulants are the coefficients of Maclaurin series of the gen-

erating function. They are proposed to represent the moments

and the moments can measure functions

quantitatively [25]. When the higher order cumulants of the

received signals are calculated, the effect of the Gaussian noise

is removed and the signals are independent [26].

The Kurtosis of signals, K, is extracted by (21):

K =

||||||||

E
[

(a − E [a])4
]

E
[

(a − E [a])2
]2

||||||||
(21)

Kurtosis is a feature which can describe the steepness or flat-

ness of the distribution of signals [27].

The Skewness of signals, S, is extracted by (22):

S =

|||||||||

E
[

(a − E [a])3
]

E
[

(a − E [a])2
]3∕2

|||||||||
(22)

FIGURE 4 DL system with CI (a) system structure, (b) structure of

neural network

Skewness can describe the position of the tapering side of

the distribution, which is also the third central moment. Both

the Kurtosis and Skewness are used to assess the shape of the

signal’s distribution.

The ratio of peak-to-RMS, PR, is extracted by (23):

PR =
max|a|2

1

N

∑N

i=1
(a [i])

2
(23)

The ratio of peak-to-average of the signal, PA, is extracted by

(24):

PA =
max |a|

1

N

∑N

i=1
a [i]

(24)

The two features, PA and PR, further aim to describe aspects

of the shape of different signals in detail.

In the next section, we test the above statistical features using

the collected data, to find the appropriate and necessary features

to build the GRF system.

3 CLASSIFICATION METHOD

In this section, the classification methods are introduced. The

first DL model achieves the classification based on the CI. To

represent and support detection of the dynamic signals, the
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FIGURE 5 DL system with GRF

training dataset includes many constellations in different situa-

tions. The second DL model is based on the GRF images from

the modulated signals. The spider graphs are developed from

the statistical features of the collected data, which can describe

the characteristics in a stable way. In both models, we trained

with four different structured CNNs to find the one with best

accuracy at low SNR levels.

3.1 Deep learning with CI

In this section, four CNN models are introduced, a simple

CNN developed from the Iris case [28] with multiple layers,

the SqueezeNet model [17], the GoogleNet model and the

Inception-v3 model [29]. The last three models are pretrained

networks, which are used for TL. The DL system with CI is

shown in Figure 4a. We pre-process the signals and obtain the

constellations, which are sent to the CNN.

As Figure 4(b) shows, an example of a simple CNN structure

can consist of convolutional layers and dense fully connected

layers. The characteristics of the signals can be captured by the

convolutional layers and the feature map can be produced by

these layers. Subsequently, the features can be learned by the

sequential layers. Finally, the results of the classification are out-

putted.

3.1.1 CNN

This model is created as a development from the Iris recog-

nition case. There are fifteen layers in total. Three convolu-

tional layers are followed by the batch normalisation layers and

ReLu layers. Two max-pooling layers are set between the other

three blocks, which can down-sample the input data and reduce

the risk of overfitting. The convolutional layers can capture the

physical features of the images by the filters, such as the pro-

file and grayscale of the images. In this way, the convolutional

layer is significant in being able to influence the classification of

the images. The batch normalisation layers can normalise the

input channel. The ReLu layers calculate the threshold for the

elements [30].

3.1.2 Transfer learning models

The SqueezeNet has 68 layers, and its coefficients of the net-

work are 227-by-227 pixels [17]. The GoogleNet has 144 lay-

ers and is pretrained to classify the images into 1000 cate-

gories and 365 places. The input image size is 224-by-224 pix-

els [16]. The Inception-v3 has 315 layers and was trained by

over a million images to classify into 1000 categories [18]. The

input size is 299-by-299 pixels. Images need to be modified in

FIGURE 6 Features of the tested modulated signals at 10 dB SNR
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FIGURE 7 Spider Graphs of modulated signals

at 10 and 0 dB SNR (a) BPSK, (b) QPSK, (c) 8PSK,

(d) QAM16
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size before feeding to models, to fit the input size criteria. The

final learning layers are modified, to provide only four outputs,

corresponding to each of the modulation types. In our exper-

iments, 70% of images are used as training and the rest are

used as validation. We rotate the images in −90◦ to 90◦ steps

(representing constellation phase errors) and rescale images

from 1 to 1.5 randomly (representing amplitude variations),

which can help improve the amount of training data and avoid

overfitting [10].

3.2 Graphical representation of features
(GRF)

For the DL with GRF, the statistical features need to be analysed

and selected to work in the model. GRF is a new method to

plot the statistical characteristics graphically. In this method, we

calculated the data from the dynamic receiving system without

phase and frequency lock, to indicate the signal characteristics

in a stable way. By using the images with GRF, we can use the

pretrained network with existing advanced image classifiers. The

classification system can be observed in Figure 5. The received

signals are analysed and extracted as the spider graphs, which

efficiently represent the graphical features.

Based on the formulas of features from Section 2.3, the fea-

tures from the four kinds of modulation types were calculated.

Figure 6 shows the statistical features of the four modulated sig-

nals at 10 dB SNR. To show the characteristics of all the features

in one graph, some of the features are displayed in logarithmic

form, such as 𝜎aa, X2, 𝛾max , which is a clear way to visualise the

magnitude data differences. According to Figure 6, it is obvious

that β, 𝜎dp, 𝜎v and X2. cannot help to classify the modulations

(BPSK, QPSK, 8PSK and QAM16) - these four features remain

constant around fixed values.

Figure 7 indicates how the selected statistical features are

applied in the spider graph. Based on the previous analysis,

we choose twelve features of the modulated signals. We use

the features as the axes of the graph, each modulation type

can then display the values on the graph. The spider graphs

make the statistical features into a single visual representation.

For the different magnitudes of the feature values, a log func-

tion is employed where appropriate. As seen in Figure 7, at 10

and 0 dB SNR levels, each modulated signal shows a differ-

ent form of representation. After collecting the graphs, all the

image forms are used for our neural network based on image

classification.

4 EVALUATED PERFORMANCE

This section presents the results from the different classification

methods. All the detecting systems are based on the DL technol-

ogy. The previously described systems use MATLAB simulation

data and lab data collected from an SDR. In both systems, dif-

ferent DL structures are compared. MATLAB simulation data

and lab measured data are tested in this section.

FIGURE 8 General accuracy of DL with CI over different SNR levels (all

modulation types)

The lab equipment used was an Agilent E4437B signal gen-

erator and Ettus Research E310 SDR. We baseband-modulated

the RF signals using a PN15 sequence. The symbol rate used

was 100 ksps and the sample rate was 2 MHz.

4.1 Deep learning with CI

In Figure 8, the results are shown from the four CNN mod-

els. The CNN developed using the Iris case performs worse

than other traditional DL methods. This is likely due to the

structures and coefficients of this CNN variant being potentially

very sensitive and thus significantly influencing the classification

system.

The three other models are also forms of CNN, but they have

more complicated structures, and are pretrained by millions of

generic images. Although the images applied for pretraining are

not the constellations of modulated signals, they can also help

the models to classify the images by modifying the coefficient

iteratively and repeatedly.

Figure 8 shows the general accuracy of each DL model at dif-

ferent SNR levels. The data are also collected in two ways: Sim-

ulation in MATLAB and lab signals from the Ettus SDR. When

in the low SNR area, both sources of the data have significant

noise. That is why the accuracy of both are quite similar and

low. From Figure 8 we can find the Inception-v3 compared to

the CNN, SqueezeNet and GoogleNet shows best performance

over the whole detection range.

Figure 9 presents examples for the classification results from

DL with CI at 10, 0,−10 dB SNR. Figure 9 also shows the prob-

ability of modulation recognition. Based on the results provided

in Figure 8, we tested the data in the Inception-v3 model. At

10 dB SNR, the classification is valid according to Figure 9a. In

general, the random guess detection rate would be 25% (since

there are four possible modulation types). This model also pro-

vides accuracy at −10 dB SNR slightly higher than that from a
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FIGURE 9 Accuracy of DL with CI (Lab data). (a) Confusion matrix of

recognition at 10 dB SNR, (b) confusion matrix of recognition at 0 dB SNR,

(c) confusion matrix of recognition at −10 dB SNR

FIGURE 10 General accuracy of DL with GRF over different SNR levels

(all modulation types)

random guess. We use the simulated data as a reference in the

previous experiment to choose the best neural network struc-

ture, so Figure 9 utilises the data collected from Ettus SDR, rep-

resenting real-world signals. From Figure 9a–c, we can also see

the details of each prediction.

4.2 Deep learning with GRF

The high order cumulants were employed for this system, as the

second classification process to be trialled. The Kurtosis, Skew-

ness, PR, and PA can describe the shape of the signals. Accord-

ing to Figure 6 the standard deviation of the signal instantaneous

normalised amplitude, 𝜎aa and the maximum value of power

spectral density, 𝛾max can also help to classify the modulation

types. In the training data, the signals were varied from −10 to

20 dB SNR, which caused the features to also change dramat-

ically. These changes of the appropriate features result in the

spider graph having different shapes for different modulation

types, as expected.

Figure 10 shows the general results of GRF with different

neural network structures. Two kinds of training data are col-

lected and employed in the same network and the results are

compared: (1) from MATLAB simulation and (2) the SDR plat-

form in the lab. At low SNR levels, both measurement and sim-

ulation produce similar accuracy. Compared to the probability

of a random guess (25%), the detection accuracy is significantly

better for the GRF DL approach. The Inception-v3 model also

shows the best classification ability.

The accuracy was improved (especially at low SNR which

reaches over 50 % with Inception-v3 model) by training with

the whole SNR range of data. The prediction results of the four

kinds of modulation types at 10, 0 and −10 dB SNR are shown

in Figure 11. We utilise the data collected from Ettus SDR, rep-

resenting real-world signals in Figure 11.
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FIGURE 11 Accuracy of DL with GRF (Lab data). (a) Confusion matrix

of recognition at 10 dB SNR, (b) confusion matrix of recognition at 0 dB SNR,

(c) confusion matrix of recognition at −10 dB SNR

TABLE 1 Detection accuracy of DL with GRF

Model name Detection accuracy

DL with CI 65.1 %

DL with GRF 69.3 %

TABLE 2 Comparison of detection accuracy at 0 dB SNR

Model name Detection accuracy

SVM [14] 50%

Binary Hierarchical polynomial classifier [15] 56%

This work: DL with GRF 59%

There is still a limitation for the proposed techniques here.

The features need to use a log function, or other pre-processing,

to make the value fit the graph for imaging, which will influ-

ence the classification. However, we propose this to be a minor

issue.

5 DISCUSSION

From Figure 8, when the SNR is more than 10 dB, the detection

accuracy of constellation-based classification achieves close to

100%. However, from Figure 10, the detection accuracy of DL

with GRF is not as good as CI model at high SNR levels. After

comparing Figures 8 and 10, we also find key results in low SNR

area. The detection accuracy of CI classification increases from

around 35% at−10 dB SNR to 50% at 0 dB SNR. However, the

detection of accuracy of DL with GRF increases from 52% at

−10 dB SNR to 59% at 0 dB SNR. DL with GRF has shown its

advantages by our results here, for low SNR use cases. Hence,

to improve the classification accuracy in low SNR, we can use

the GRF classification as a supplement to CI recognition.

Table 1 shows the detection accuracy of different systems

over all the tested SNR range. From this, we can find the DL

system with GRF has the highest accuracy 69.3%. But from Fig-

ure 8, the Inception-v3 model with constellations can achieve

near 100% for SNRs greater than 10 dB SNR and so this model

provides the best results in the high SNR area. The DL method

with the GRF performs well in our general results, especially for

low SNR. Table 2 compares the detection results at 0 dB SNR

between the GRF model and previous published works [14, 15].

There is an improvement of accuracy in our work. Note that in

our systems we also explore below 0 dB SNR, which others do

not.

These methods are all based on image classification, but with

different datasets: CI and GRF. The GRF system has an effi-

cient use of statistical features, requiring only twelve features

yet achieving 69.3% detection accuracy overall (and significantly

better at lower SNR, as discussed above) with the random guess

accuracy of the system being 25%. The TL systems detect the

constellation dataset directly which reduces the mathematical

complexity.
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6 CONCLUSIONS

In this work, we discussed different classification models based

on DL, applied to modulation recognition in the dynamic

receiving system without phase and frequency lock. Firstly, we

developed the traditional method: Classification with CI. After

that, we presented the GRF method. Both methods show their

advantages. In high SNR scenarios, the Inception-v3 with con-

stellation model reaches the highest accuracy. But for low SNR

levels, the GRF provides the superior accuracy. Therefore, for

our future work, we are exploring a hybrid approach which

could combine the advantages of both techniques to achieve

better overall performance over a wide SNR range.
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