

This is a repository copy of *Dramatic impact of the TiO2 polymorph on the electrical properties of 'stoichiometric' Na0.5Bi0.5TiO3 ceramics prepared by solid-state reaction*.

White Rose Research Online URL for this paper: <a href="https://eprints.whiterose.ac.uk/id/eprint/182414/">https://eprints.whiterose.ac.uk/id/eprint/182414/</a>

Version: Supplemental Material

#### Article:

Yang, F., Hu, Y., Hu, Q. et al. (6 more authors) (2022) Dramatic impact of the TiO2 polymorph on the electrical properties of 'stoichiometric' Na0.5Bi0.5TiO3 ceramics prepared by solid-state reaction. Journal of Materials Chemistry A, 10 (2). pp. 891-901. ISSN: 2050-7488

https://doi.org/10.1039/d1ta09668k

© 2021 The Royal Society of Chemistry. This is an author-produced version of a paper subsequently published in Journal of Materials Chemistry A. Uploaded in accordance with the publisher's self-archiving policy.

#### Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

#### **Takedown**

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.



#### **Supplementary Information**

# Dramatic impact of the TiO<sub>2</sub> polymorph on the electrical properties of 'stoichiometric' Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub> ceramics prepared by solid-state reaction

Fan Yang<sup>1,#,\*</sup>, Yidong Hu<sup>2,#</sup>, Qiaodan Hu<sup>2,\*</sup>, Sebastian Steiner<sup>3</sup>, Till Frömling<sup>3</sup>, Linhao Li<sup>4</sup>, Patrick Wu<sup>4</sup>, Emilio Pradal-Velázquez<sup>4</sup> and Derek C Sinclair<sup>4,\*</sup>

- <sup>1</sup> Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China.
- <sup>2</sup> School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
- <sup>3</sup> Department of Materials and Earth Science, Technical University of Darmstadt, FB Nichtmetallisch-Anorganische Werkstoffe, Alarich-Weiss-Straße 2, D-64287 Darmstadt, Germany
- <sup>4</sup> Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
- \*Corresponding authors.

fanyang 0123@sjtu.edu.cn; qdhu@sjtu.edu.cn; d.c.sinclair@sheffield.ac.uk

# Equally contributed authors.

## 1. Comparison of the electrical conductivity of NBT ceramics sintered with and without binder

Here two methods were used to sinter dense NBT ceramics, including 1) uni-axial cold pressing followed by isostatic pressing at 200 MPa (denoted as "cip") and 2) uni-axial pressing with a 5 wt.% water solution of polyvinyl alcohol (PVA) as binder without isostatic pressing (denoted as "binder"). Fig.S1 compares the bulk conductivity ( $\sigma_b$ ) of Bi-deficient NBT (NB<sub>0.49</sub>T), nominally stoichiometric NBT (NB<sub>0.50</sub>T) and Bi-excess NBT (NB<sub>0.51</sub>T) prepared by the above two methods. These ceramics were all prepared using rutile TiO<sub>2</sub>. Fig.S1 shows use of binder causes a slight decrease of  $\sigma_b$  of NB<sub>0.50</sub>T without changing the  $\sigma_b$ -1000/T relationship. The two sintering methods do not cause the significantly different electrical conductivity of NB<sub>0.50</sub>T prepared using rutile and anatase TiO<sub>2</sub>, and therefore do not influence the major conclusion of this work.

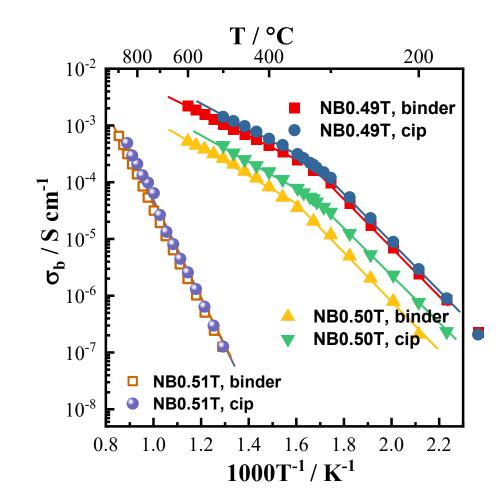



Figure S1. Arrhenius plots for σ<sub>b</sub> of Bi-deficient NBT (NB<sub>0.49</sub>T), nominally stoichiometric NBT (NB<sub>0.50</sub>T) and Bi-excess NBT (NB<sub>0.51</sub>T). All ceramics were prepared by rutile TiO<sub>2</sub>. "cip" represents uni-axial cold pressing followed by isostatic pressing. "binder" represents uni-axial cold pressing with PVA as a binder without isostatic pressing.

## 2. XRD patterns of NBT ceramics prepared from different reagents

Fig.S2 shows the XRD patterns of NBT ceramics prepared by different reagents. The numbers after NBT represent different combinations of Na<sub>2</sub>CO<sub>3</sub>, Bi<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> reagents from Table 1 in the main text. All NBT ceramics are phase pure with a rhombohedral structure.

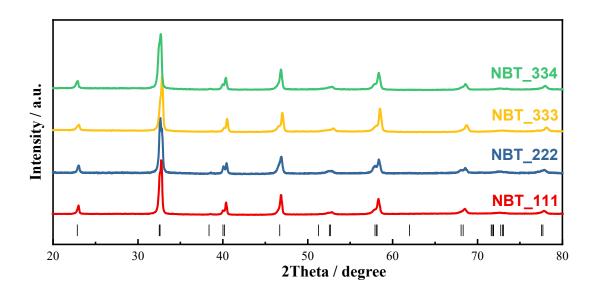



Figure S2. XRD patterns of sintered NBT ceramics prepared by different reagents. The vertical lines below the patterns represent the peak positions for NBT with a rhombohedral structure.

## 3. Full synchrotron XRD patterns in the $2\theta$ range between $15-85^{\circ}$

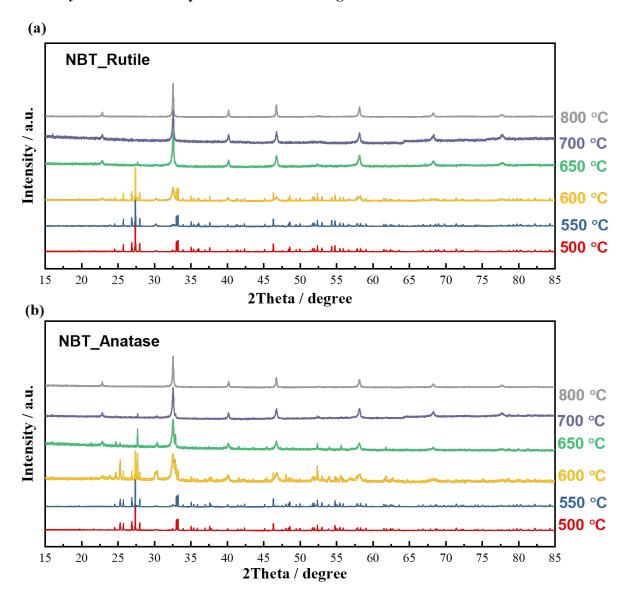



Figure S3. Evolution of the XRD patterns with calcination temperature in the  $2\theta$  range between 15-85. (a) Mixture with rutile  $TiO_2$  and (b) with anatase  $TiO_2$ .

#### 4. Particle size distribution

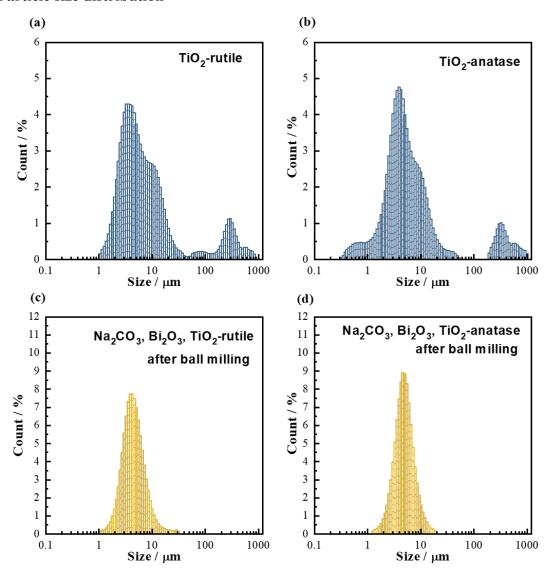



Figure S4. Particle size distribution of (a) raw rutile TiO<sub>2</sub>, (b) raw anatase TiO<sub>2</sub>, (c) ball-milled and sieved mixture of pre-dried Na<sub>2</sub>CO<sub>3</sub>, Bi<sub>2</sub>O<sub>3</sub> and rutile TiO<sub>2</sub>, and (d) ball-milled and sieved mixture of Na<sub>2</sub>CO<sub>3</sub>, Bi<sub>2</sub>O<sub>3</sub> and anatase TiO<sub>2</sub>.

## 5. Evolution of Bi<sub>2</sub>O<sub>3</sub>, Bi<sub>12</sub>TiO<sub>20</sub> and NBT fractions during solid-state reaction

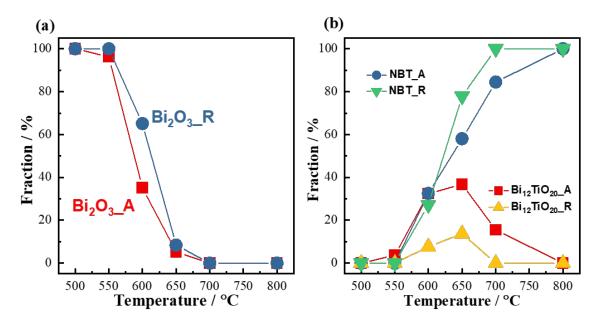



Figure S5. Evolution of the fraction parameter of Bi-containing phases during solid-state reaction when rutile and anatase TiO<sub>2</sub> are used as reagents. (a) Bi<sub>2</sub>O<sub>3</sub>, (b) Bi<sub>12</sub>TiO<sub>12</sub> and NBT.

#### 6. Impedance spectroscopy of NBT R<sub>0.5</sub>A<sub>0.5</sub>

Impedance data for NBT\_R<sub>0.5</sub>A<sub>0.5</sub> are presented in Nyquist (Fig.S6a) and Bode (M"-logf, Fig.S6b) plots. Z\* plots for NBT\_R<sub>0.5</sub>A<sub>0.5</sub> at 500 ° C show two poorly resolved arcs and a low-frequency spike corresponding to an electrode effect. The electrode spike is characteristic of ionic conduction behavior. With increasing temperature, the two arcs gradually merge into one suggesting a different activation energy for the two responses. M"-logf plots at lower temperatures, e.g., 300 ° C, show a broad peak, suggesting an inhomogeneous electrical microstructure for NBT\_R<sub>0.5</sub>A<sub>0.5</sub>. The M"-logf peak height increases with increasing temperature suggesting a reduced relative permittivity with increasing temperature between 300 – 700 ° C. The inhomogeneous electrical microstructure agrees with the random distribution of large and small grains, as shown in Fig.6c.

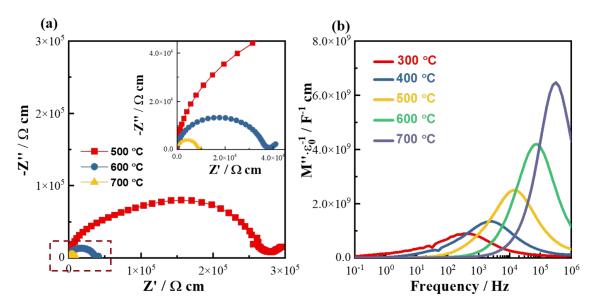



Figure S6. Impedance data for NBT\_R<sub>0.5</sub>A<sub>0.5</sub>. (a)  $Z^*$  plots at 500, 600 and 700 ° C and (b) M"-logf plots at 300-700 ° C at increments of 100 ° C. The inset figure in (a) is an expanded view of the rectangular region.