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ARTICLE OPEN

Organochlorine contamination enriches virus-encoded
metabolism and pesticide degradation associated auxiliary
genes in soil microbiomes
Xiaoxuan Zheng1, Martin T. Jahn 2, Mingming Sun 1,3✉, Ville-Petri Friman 4✉, Jose Luis Balcazar 5,6, Jinfeng Wang7, Yu Shi8,

Xin Gong 1, Feng Hu1 and Yong-Guan Zhu 9

© The Author(s) 2022

Viruses significantly influence local and global biogeochemical cycles and help bacteria to survive in different environments by
encoding various auxiliary metabolic genes (AMGs) associated with energy acquisition, stress tolerance and degradation of
xenobiotics. Here we studied whether bacterial (dsDNA) virus encoded AMGs are enriched in organochlorine pesticide (OCP)
contaminated soil in China and if viral AMGs include genes linked to OCP biodegradation. Using metagenomics, we found that
OCP-contaminated soils displayed a lower bacterial, but higher diversity of viruses that harbored a higher relative abundance of
AMGs linked to pesticide degradation and metabolism. Furthermore, the diversity and relative abundance of AMGs significantly
increased along with the severity of pesticide contamination, and several biodegradation genes were identified bioinformatically in
viral metagenomes. Functional assays were conducted to experimentally demonstrate that virus-encoded L-2-haloacid
dehalogenase gene (L-DEX) is responsible for the degradation of L-2-haloacid pesticide precursors, improving bacterial growth at
sub-inhibitory pesticide concentrations. Taken together, these results demonstrate that virus-encoded AMGs are linked to bacterial
metabolism and biodegradation, being more abundant and diverse in soils contaminated with pesticides. Moreover, our findings
highlight the importance of virus-encoded accessory genes for bacterial ecology in stressful environments, providing a novel
avenue for using viruses in the bioremediation of contaminated soils.

The ISME Journal; https://doi.org/10.1038/s41396-022-01188-w

As the most abundant biological entities on earth, viruses of
bacteria (bacteriophages referred as viruses from here on) play a
critical role in modulating the ecology of microbial communities
through lytic infection and lysogenic conversion of their bacterial
hosts [1, 2]. Viruses significantly influence the biogeochemical
cycles via the release of organic carbon and nutrients through
host cell lysis, and in addition to core viral genes (i.e., genes
encoding viral structural proteins [3]), they also encode various
auxiliary metabolic genes (AMGs [4, 5]), which contribute the
metabolic capacity and survival of their bacterial hosts. The role of
AMGs has been especially well demonstrated with marine viruses
that encode a diversity of AMGs involved in photosynthesis [6],
translation machinery [7], carbon metabolism [8], phosphate
metabolism [9] and sulfur cycle [10, 11]. Furthermore, sequencing
of whole marine viral communities has revealed a clear involve-
ment of viral AMGs in central carbon metabolism of host bacteria
[10, 12]. Compared with the study of viral communities in marine

ecosystem, the diversity and functional role of viral AMGs in soils
are less well understood.
In soils, viruses reach abundances of up to ~109 per gram of soil

leading to frequent encounters with their host bacteria [13].
Similar to aquatic environments, viruses can regulate host
bacterial densities, leading to indirect changes in the relative
abundance of non-target bacterial taxa likely via release of niche
space [14, 15]. Moreover, over longer time periods, viruses can
coevolve with their host, following fluctuating selection dynamics
[16] or patterns of local adaptation [17]. Viruses are also important
mediators of horizontal gene transfer, promoting the transfer of
antibiotic resistance genes, virulence factors and AMGs [18, 19].
However, these effects are less well understood at viral commu-
nity level. Recent advances in viral purification have enabled a
glimpse into soil viral communities of permafrost peatland [20, 21]
and agricultural ecosystems [22, 23] based on metagenomics.
These studies have demonstrated that viruses may alter the
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biogeochemical nutrient cycling [1, 2] and bacterial adaptation
and evolution by carrying genes linked to carbon and nitrogen
metabolism [20, 21]. Moreover, recent identification of atrazine
chlorohydrolase trzN [24] and arsenic methyltransferase arsM [25]
genes in soil-associated lysogenic viruses suggest that virus-
encoded AMGs could shape bacterial metabolism under pollutant
exposure. Therefore, we hypothesize, that contaminated soil
microbiomes could contain a relatively higher abundance of
viruses carrying AMGs linked to the degradation of pesticides and
xenobiotics due to their potential benefit for the host bacteria.
Pesticide contamination imposes a serious threat to natural

ecosystems and public health globally. China is the leading
producer of organochlorine pesticides (OCPs), which are synthetic
pesticides with vast applications in chemical and agricultural
industries. OCPs are especially notorious due to their high toxicity,
slow degradation and bioaccumulation [26]. Following the
implementation of the Stockholm Convention, hundreds of
pesticide plants in China were closed or re-located, and
contaminated soils around the plants left untreated. As microbial
communities are often capable of degrading OCPs, there is
growing biotechnological interest to identify important genes
and microbial taxa behind pesticide biodegradation. Heavy OCP
contaminations have previously been shown to adversely impact
soil bacterial diversity, composition, and activity [27, 28]. Prolonged
exposure to contaminants has resulted in selection for bacteria
that have evolved their own degradation enzymes, such as
dehalogenases, which protect from the toxic effects of pesticides
[29]. Interestingly, if also viruses can carry and encode such genes,
pesticide exposure could create a strong positive selection for
virus-encoded AMGs associated with pesticide degradation,
potentially shifting soil microbiome community composition [30]
by favoring bacterial and virus taxa that carry these genes.
To address this, we used a combination of metagenomics and

direct experimentation to explore how pesticide exposure affects
the abundance and type of bacterial and virus-encoded AMGs in
the soil of former OCP production factory in Yangtze River Delta
(China). We found that contaminated and clean control soils
harbored very distinct bacterial and viral communities, and
crucially, pesticide exposure was linked to higher diversity and
abundance of virus-encoded metabolism and pesticide degrada-
tion AMGs. The functional activity of one candidate viral AMG, L-2-
haloacid dehalogenase (L-DEX), was experimentally shown to
improve bacterial growth at sub-inhibitory concentrations of
haloacid, which is an important precursor of herbicides and
insecticides. Together, our findings suggest that virus-encoded
auxiliary genes could help bacteria to counteract pesticide stress,
potentially explaining the benefits of virus carriage in stressful soil
microbiomes.

RESULTS
Characterization of the study site
Both bacterial and viral communities were recovered from three
clean control (C1–C3) and six OCP-contaminated soil samples
(S1–S6) from a formerly active OCP factory in the Yangtze River
Delta (China) in the summer of 2018 (for experimental design and
further info, see Supplementary Fig. 1 and Supplementary Table 1).
Control samples were collected from nearby fallow fields outside
the immediate factory area, and as no pesticides were detected,
these soil samples are referred from here on as “clean” samples
(Supplementary Table 2). The study site has a 30-year history of
OCP production with the main contaminants being chloroben-
zene, dichlorobenzene and nitrochlorobenzene. The factory was
closed in 2007 and soils left untreated without bioremediation.
According to the United States Environmental Protection Agency
(EPA), the concentrations of toxic compounds within factory site
were higher than the Screening Levels of residential soil or
industrial soils (Supplementary Fig. 2a and Supplementary Table 2).

As a result, the six OCP soil samples were categorized to “light”
(S1–S3, total pesticide content varying form 281.3 ± 21.4 to 509.8
± 28.7 mg kg−1), and “heavy” (S4–S6, total pesticide content
varying from 1083.7 ± 40.4 to 4595.8 ± 344.0 mg kg−1) contami-
nated samples.

Overview of bacterial communities in clean and OCP-
contaminated soils
In order to characterize the impact of OCP contamination on soil
bacterial communities, we investigated the relative abundance of
different bacterial taxa between clean and OCP-contaminated soil
microbiomes (Supplementary Table 3). We identified 29,902 and
8,371 bacterial taxa in clean and OCP-contaminated soils,
respectively and the bacterial rarefaction curve slope was similar
(Supplementary Fig. 2b and Supplementary Table 3- “Taxonomy”).
Clean soils were dominated by Proteobacteria (34.7%), Acidobac-
teria (22.5%), Verrucomicrobia (13.4%), and Actinobacteria (12.2%),
accounting for 82.8% of the total bacterial diversity. In contrast,
while the relative abundances of Proteobacteria (49.2%) and
Actinobacteria (36.5%) increased in OCP-contaminated soils, the
abundances of Acidobacteria (2.8%) and Verrucomicrobia (0.5%)
clearly decreased (all phyla together representing 88.5% of the
total bacterial diversity, Fig. 1a). Notably, three times more
bacterial taxa were enriched in OCP-contaminated soils (gray
dots in Fig. 1b, 27 bacterial taxa) as compared to those that
showed decreased relative abundances (orange dots in Fig. 1b, 9
bacterial taxa). Positively affected taxa included Paraburkholderia,
Streptomyces and Nocardiodes genera (Fig. 1b) and negatively
affected Candidatus and Bradyrhizobium genera (LDA Score > 3.8;
Fig. 1a, b). OCP exposure was also associated with a reduction in
the total number of bacterial taxa, and lowered community
richness (i.e., lower ACE, Chao1, Richness) but higher community
evenness (i.e., higher Shannon, Simpson and Pielou indexes;
Fig. 1c and Supplementary Fig. 2c). As a result, OCP exposure
clearly changed bacterial community composition in soil micro-
biomes (NMDS analysis: Adonis R2= 0.99, p < 0.05; Fig. 1d), while
no difference was observed between light and heavy contami-
nated soils (Stress value= 1e−04 < 0.05; Fig. 1d; also verified with
UPGMA analysis, Fig. 1a, c, d).

Overview of viral communities in clean and OCP-
contaminated soils
Based on transmission electron microscopy (TEM), tailed and non-
tailed viruses were the main virus types detected in all soil
samples (Supplementary Fig. 3a). To assess the diversity and
functioning of viral communities, a total of 19,292 viral contigs (>1
kb) were obtained using metagenomic sequencing (Supplemen-
tary Table 4- “Contigs”). A higher number of viral contigs was
recovered from OCP-contaminated (n= 13,905) compared to
clean soils (n= 5,387). Contigs clustered into 18,458 vOTUs and
rarefaction analysis showed that the discovered viral diversity
saturated in both clean and contaminated samples, which
indicates that our sequencing depth was adequate for capturing
most common viruses in both samples (Supplementary Fig. 3b).
vOTUs representing long sequences of more than 10k bp (n=
4,572) were further compared to viral NCBI RefSeq v85 genomes.
This approach allowed to identify 909 viral clusters (VCs) with
approximate genus level classifications (Fig. 2a; Supplementary
Table 4- “Virus taxonomy” and “Network_data_1”). Clean soil viral
communities (Network Density= 0.021) had a more compact
network structure than NCBI RefSeq genomes (Network Density=
0.016), while OCP-contaminated soil viral communities had
relatively more dispersed networks (Network Density= 0.006).
However, both clean (Clustering coefficient= 0.637; Avg. number
of neighbors= 23.379) and contaminated (Clustering coefficient
= 0.632; Avg. number of neighbors= 17.311) soil viral commu-
nities had lower clustering coefficients and average number of
neighbors than NCBI RefSeq database network (Clustering
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coefficient= 0.815; Avg. number of neighbors= 35.502; Supple-
mentary Table 4- “Network_data_1_parameters”). Furthermore,
viral communities from the clean and OCP-contaminated soils and
NCBI RefSeq database clearly fell into in 163,473 and 354 VCs,
respectively. Notably, our viral samples shared only 39 VCs with
the NCBI RefSeq database, indicating that currently culturable
viruses cover only a small fraction of the contaminated soil viruses
(Fig. 2a). While 96 VCs were shared between clean and OCP-
contaminated viral communities, 351 VCs were exclusively
detected only in OCP-contaminated soils (Fig. 2a). Overall, OCP-
contaminated soil viral communities were more diverse (i.e.,
higher Chao1 and Richness indexes), and more even (i.e., higher
Shannon, Simpson and Pielou indexes; Fig. 2b and Supplementary

Fig. 3c). Similar to bacterial communities, clean and OCP-
contaminated soil viral communities had distinct community
structures, while no differences between light and heavy
contamination levels was found (Fig. 2c and Supplementary
Fig. 3d). Although the majority of viruses could be assigned to
known viral families using vConTACT 2.0 classification and
majority-rules approach, 14% of these were novel viruses
(Supplementary Fig. 3e and for details see Methods). Specifically,
the number of novel vOTUs was higher in contaminated (16.1%;
2,197 of 13,656 sequences) compared to clean soils (8.7%; 421 of
4,842 sequences). The relative abundance of unannotated viruses
was also higher in OCP-contaminated (14.4% in average)
compared to clean soils (6.0% in average). Siphoviridae was the
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Fig. 1 Differences in bacterial communities in clean and OCP-contaminated soils. a Relative abundance of the top 10 abundant bacteria
phyla in clean (C1–C3) and OCP-contaminated (S1–S6) soils. The left Y-axis shows UPGMA clustering based on Bray–Curtis distances. b Linear
discriminant analysis comparing bacterial abundance differences between clean and OCP-contaminated soils at phyla to genera levels (from
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legend below the cladogram). c Differences in alpha diversity between clean (C1–C3), and OCP-contaminated soils (Light contamination:
S1–S3; Heavy contamination: S4–S6). d NMDS analysis comparing differences in community composition between clean (C1–C3) and OCP-
contaminated soils (Light contamination: S1–S3; Heavy contamination: S4–S6). ANOVA followed by Tukey’s multiple comparisons test was
used to compare difference between groups.
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most dominant family in both clean (92.0% in average) and OCP-
contaminated (62.2% in average) soils, while Podoviridae (F2,6=
269.2, p < 0.0001) and Myoviridae (F2,6= 48.8, p= 0.0002) had
higher relative abundances in OCP-contaminated soils irrespective
of the contamination level. Notably, five viral families (Schitovir-
idae, Demerecviridae, Chaseviridae, Fuselloviridae, and Pleolipovir-
idae) were exclusive to OCP-contaminated soils, while three viral
families (Microviridae, Rudiviridae, and Paulinoviridae) were only
found in clean soils, respectively (Fig. 2d). Together, these results
suggest that OCP-contaminated soils were associated with distinct
bacterial and viral communities.

OCP-contaminated soils had a higher number of broad host
range viruses
To investigate potential associations between viruses and bacteria,
we pooled light and heavy OCP-contaminated soil viral commu-
nities and compared them with the clean soil samples. Based on
the tRNA matches and clustered regularly interspaced short
palindromic repeats (CRISPR) spacer linkages (see Methods), we
could link 30 bacterial host taxa to their respective viruses in
contaminated soils, in contrast to 4 host taxa links observed in
clean soils (Fig. 3). More specifically, Streptomyces, Rhodoplanes
and Deinococcus maricopensis bacteria in clean soils, and
Nocardioidaceae, Rhizobiaceae in Sphingopyxis sp. PAMC25046
bacteria in OCP-contaminated soils, were associated with different
viral contigs from various VCs (Fig. 3). Interestingly, viruses with
broad host ranges (viral contigs associated with multiple host
taxa) were only detected in OCP-contaminated soils: 14 out of the
total 26 viral contigs observed in OCP-contaminated soils were
associated with a total of 23 bacterial taxa, mainly including
Nocardioidaceae and Rhizobium. Among these viral contigs,
Siphoviridae accounted for a large proportion (25/35). Moreover,
two viral contigs (CON_VIRSorter_k127_175791 and CON_VIRSor-
ter_k127_2868179) showed generalism (potential polyvalent

phages), being associated with several host bacterial families
(Fig. 3 and Supplementary Table 5). Additional information on
host-virus associations was derived by querying matching viral
sequences in JGI public database. Overall, we were able to link
10,932 bacterial host records representing 19 bacterial phyla with
4,041 viral contigs and the relative abundance of predicted
bacterial hosts was positively correlated with their relative
abundance (Supplementary Fig. 4). However, no potentially new
virus-host links were found based on comparison with previously
reported literature [20] or NCBI Genbank and JGI Viral Sequence
databases. Together these results suggest that viruses were
associated with a higher number of bacterial hosts in OCP-
contaminated compared to clean soils.

Virus-encoded auxiliary genes are involved in both
metabolism and pesticide degradation
To explore the contribution of viruses for the ecology of bacterial
communities, we compared the functional annotations of both
bacterial and viral sequences in clean and OCP-contaminated soils.
Based on the KEGG database annotations [31], the abundance
distribution of bacterial functional genes was similar regardless of
whether they originated from clean or OCP-contaminated soils
(Fig. 4a, Supplementary Table 3- “KEGG annotation of bacteria” and
Supplementary Table 6), and were mainly annotated under
“Metabolism” and “Genetic and environmental information proces-
sing” categories (Fig. 4a). Most of the viral genes (about 50% of
predicted open reading frames (ORFs)) could only be annotated as
“unclassified and poorly characterized” using KEGG database, while
other genes (about 17.5% of ORFs) belonged mainly under
“Replication and repair”, “Cell growth and death”, and “Human
disease” categories (Supplementary Table 7- “KEGG annotation of
virus”). Annotated viral genes were often predicted to be involved in
bacterial metabolism (Supplementary Fig. 5a). To investigate this in
more detail, we compared bacteria- and virus-encoded carbohydrate-
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active enzymes using a CAZy database [32] (Supplementary Table 3-
“CAZy annotation of bacteria” and Table 7- “CAZy annotation of
virus”). Overall, the number of annotated viral and bacterial CAZy
subfamilies was higher in OCP-contaminated soils (Wilcoxon rank sum
test; viruses: p= 0.01, bacteria: p= 0.03), with glycoside hydrolases
(GH), glycosyl transferases (GT) and carbohydrate-binding modules
(CBM) being the most often annotated functional groups (Supple-
mentary Fig. 5b, c). To assess the role of viruses for bacterial
metabolism, viral genes involved in nutrient transformation and
pesticide degradation were selected and fitted into relevant
metabolic pathways in soil bacterial communities [33] (Supplementary
Table 7- “Summary of selected genes”). While the diversity (F2,9=
6.427e−005, p> 0.05) and relative abundance (F2,9= 8.811e-006, p>
0.05) of genes linked to metabolism (carbon (C), nitrogen (N),
phosphorus (P) and sulfur (S)) did not differ between clean and OCP-
contaminated soils (Fig. 4b), virus-encoded metabolic genes were
more diverse and abundant in OCP-contaminated (35 gene
categories) compared to clean soils (22 gene categories) (Fig. 4b

and Supplementary Table 6). Specifically, denitrifying norD and norQ
genes [34], and hydrogen sulfide metabolism-related, cysD, cysH
genes [10] (which also have been found in human and environmental
systems recently [35]), were only detected in viruses exposed to OCP-
contamination but not in clean soils. Similarly, the number and
relative abundance of carbon-cycle associated genes were found in
higher numbers in the viral genomes of OCP-contaminated soils
(OCP-contaminated soils: n= 27 with a total relative abundance of
9.60%; clean soils: n= 19 with a total relative abundance of 2.53%;
Fisher’s exact test, p= 0.0001, Fig. 4b). Of the 136 bacterial genes
linked to pesticide degradation, two gene categories were exclusively
encoded by viruses found in OCP-contaminated soils. These included
aldehyde dehydrogenase (ALDH) and L-2-haloacid dehalogenase
(EC:3.8.1.2), which are responsible for the transformation of chlor-
obenzene and chloroalkene, respectively (see the next result section).
Interestingly, relative abundances of pesticide degradation genes
were positively correlated with carbon metabolism genes in both
viral and bacterial communities (Pearson|r| > 0.6 and p < 0.05)
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consistent with CAZy signatures (Supplementary Fig. 6a, b). Even
though a relatively small number of functional genes were shared
between bacteria and viruses (Fig. 4c), virus-encoded genes
covered a range of bacterial metabolic activities and pesticide
degradation pathways. We thus compared the changes in viral
AMGs and core functional genes (genes linked to viral replication
and viral structure) between clean and OCP-contaminated soils
(see Methods for details, Supplementary Table 8). The mean AMG
abundances were significantly greater with viruses compared to
bacteria (Paired t-test, p < 0.001; Supplementary Fig. 6c) irrespec-
tive of the level of pesticide contamination (F2,210= 0.018, p > 0.05;
Supplementary Fig. 6d). Moreover, the diversity of viral AMGs was
higher in OCP-contaminated compared to clean soils (ANOVA
followed by Tukey’s multiple comparisons test, F2,6= 14.52, p=
0.005), and the abundance of viral AMGs was significantly higher in
heavy compared to light OCP-contaminated soils (ANOVA followed
by Tukey’s multiple comparisons test, F2,6= 4.93, p < 0.05; Supple-
mentary Fig. 7a). The AMG differences were more pronounced at
the contig versus VC level (Supplementary Fig. 7b), indicating that
AMG transfer may be more frequent between viruses that are
phylogenetically closely related. Together, our findings demon-
strate that genes linked to both bacterial metabolism and pesticide
degradation were enriched in viral metagenomes in OCP-
contaminated soils.

Functional validation of virus-encoded genes in pesticide
degradation
The presence of two genes encoding aldehyde dehydrogenase
(ALDH) and L-2-haloacid dehalogenase (L-DEX, EC:3.8.1.2) in viral
genomes was confirmed using a more refined analysis

(Supplementary Fig. 8a and Supplementary Table 9). Specifically,
CheckV (v 0.8.1) [36] and VIBRANT (v 1.2.0) [37] were used to check
the integrity of the viral genome and location of these genes
regarding nearby viral genes. Both genes were flanked by viral
hallmark genes on both sides (VIRSorter category 2; genes linked
viral replication and structure that could be identified with high
confidence), indicating a strong evidence for viral origin (Fig. 5a
and Supplementary Table 9-“Gene information”). Aldehyde
dehydrogenase (ALDH) encoded by CON_VIRSorter_k127_
1409233 was assigned by DRAM-v (v 1.2.0) [38] as “MK”, which
suggests it is a known auxiliary metabolic gene. However, DRAM-v
did not recognize L-2-haloacid dehalogenase (L-DEX) as an AMG
even though this gene was given an auxiliary score of 2, which
means that dehalogenase degradation does not belong to usual
metabolic processes. One reason for this might be that it has not
received much attention in previous studies and is missing from
DRAM-v database (Supplementary Table 9-“DRAM-v information”).
A promoter (p= 0.0005) and a Rho-independent terminator
(score=−14.3) were located around ALDH. Similar with L-DEX, a
promoter (p= 0.001) and a Rho-independent terminator (score=
−13.5) were found upstream and downstream of this gene.
Moreover, we found two potential Rho-dependent terminators
within the L-DEX gene that could have affected the transcription
of this or other potentially overlapping viral genes (Supplementary
Table 9 – “Gene information”). Together, our findings suggest that
the identified ALDH and L-DEX genes were of viral origin and likely
under positive selection as they were only found in contaminated
soils.
L-2-Haloacid dehalogenase (L-DEX) belongs to the haloacid

dehalogenase-like (HAD) hydrolases, and catalyzes the hydrolytic
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dehalogenation of L-2-haloacids, which is an important precursor
for the synthesis of pesticides, including Hexachlorocyclohexane
(HCH) and D-2-hydroxyacids [39]. In addition, one of its substrates,
2-chloropropionic acid, is also a commonly used broad-spectrum
herbicide. Phylogenetic analysis showed that the virus-encoded
protein was evolutionarily distinct from the most bacterial HAD
reference sequences, and shared the closest similarity with
Mycolicibacterium (41.86% protein similarity, 48% coverage)
recovered from S1 sample in our metagenomic dataset. Mycoli-
cibacterium has previously been reported as a typical pesticide
degradation genus [40] and had an average abundance of 0.93%
in OCP-contaminated soils (Supplementary Fig. 8b, Supplementary
Table 9- “L-DEX BLASTp query”; a much higher relative to clean
soils with 0.30% relative abundance, Supplementary Table 3-
“Taxonomy”). We found that the L-2-haloacid dehalogenase
encoded by the virus comprised all the active sites (12 out of
12) of the HAD_L2-DEX conserved domain model (cd02588), and
its catalytic core residues were highly conserved across the entire
HAD phosphatase family, which aggregates into four signature
motifs (Supplementary Fig. 8c). The first Asp of motif I is the
essential Asp (D) nucleophile, and a conserved Ser (S) of motif II
helps to orient the substrate for nucleophilic attack by forming a
hydrogen bond with its transferring phosphoryl group. Motif III
takes a conserved Lys (K) residue as core structure, which stabilizes
the negative charge of the reaction intermediate together with
Thr(T) of motif I. Together with the Asp (D) residues of motif I, the
motif IV, acidic Asp (D) residues are involved in the coordination of
Mg2+ (Supplementary Fig. 8c). In addition, the structural model
prediction of virus-encoded L-2-haloacid dehalogenase at Phyre2
[41] showed 100% confidence (Supplementary Fig. 8a and
Supplementary Table 9). The identified virus-encoded L-2-
haloacid dehalogenase may thus represent a novel halogenic
acid dehalogenase.

The activity of virus-encoded L-2-haloacid dehalogenase (L-
DEX) was further validated experimentally. The synthesized gene
L-DEX was cloned into pET-32a (+) plasmid, and chemically
transformed into the acceptor E. coli for expression. Upon
activation of virus-encoded L-DEX in E. coli, we were able to
detect a 30.9-kDa protein (including a 12.6-kDa protein with N-
6*His tag) and 18.3-kDa protein in western plot analysis (Fig. 5b).
The degradation activity of the purified protein was investigated
experimentally by testing if the virus-encoded L-DEX could break
down two haloacid precursors, monochloroacetate (MCA) and S
(L)-2-chloropropionic acid (S-2-CPA), leading to detoxification of
the environment. In support for this, L-DEX expressed in E. coli
cells could reduce the concentrations of MCA and S-2-CPA by
13.8% and 11.0% after 5-h incubation, respectively (ANOVA
followed by Tukey’s multiple comparisons test, MCA: F2,9=
44.23, p < 0.0001; S-2-CPA: F2,9= 44.53, p < 0.0001). Further, MCA
and S-2-CPA concentrations showed 60.0% and 37.8% decline
after 24-hour incubation with the protein, respectively (ANOVA
followed by Tukey’s multiple comparisons test, F2,9= 150.30, p <
0.0001; S-2-CPA: F2,9= 37.97, p < 0.0001; Fig. 5c and Supplemen-
tary Fig. 9a). Moreover, even though the presence of L-DEX
plasmid did not change the minimum inhibitory concentration
(MIC) of E. coli (8 mM MCA and 11 mM S-2-CPA) (Fig. 5d and
Supplementary Fig. 9b), it allowed improved growth at subinhi-
bitory S-2-CPA concentrations (ANOVA followed by Tukey’s
multiple comparisons test, F8,30= 9.49, p < 0.0001). Moreover,
the expression of virus-encoded L-DEX in E. coli allowed
bacterium to enter the exponential phase faster than without
the plasmid at sub-MIC 10 mM S-2-CPA concentration (ANOVA
followed by Tukey’s multiple comparisons test; F20,66= 4.07, p <
0.0001, Fig. 5e; F20,66= 2.43, p= 0.0037, Supplementary Fig. 9c).
Together, these result show that viral-encoded L-2-haloacid
dehalogenase formed an active protein that was beneficial for
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bacteria by breaking down pesticides and improving the growth
of L-DEX plasmid containing E. coli cells.

DISCUSSION
While bacterial and virus metagenomes have been extensively
studied in aquatic systems [42, 43] and in the human gut [44, 45],
soil ecosystems remain less well explored. We employed
metagenomic sequencing of soil microbiomes [46] to demon-
strate clear associations between pesticide contamination and
bacterial and viral community diversity, composition and function-
ing. Specifically, we found that OCP-contaminated soils had
distinct bacterial communities, including a higher relative
abundance of taxa previously linked to pesticide degradation,
such as Paraburkholderia, which have been found to degrade
single- and multi-ring aromatic hydrocarbons [47], and Strepto-
myces and Nocardiodes that are considered the most representa-
tive genera of organic pesticide degrading bacteria [48]. Moreover,
the viral communities of OCP-contaminated soils were more
diverse, contained a high number of unique viral taxa and had a
higher number of predicted host bacterial taxa associations, which
could be indicative of relatively stronger virus-bacteria co-
dependencies. In support for this, bacterial genes linked to
metabolism and pesticide degradation were enriched in OCP-
contaminated soil viral metagenomes, while no effect on these
gene abundances were observed in bacterial metagenomes.
Previous studies conducted in marine [12, 49, 50] and soil
[21, 51, 52] ecosystems, have identified a variety of auxiliary
metabolic genes in bacterial and virus metagenomes based on in
Pfam, KEGG, and CAZy databases. Here we show that pesticide
degradation could be one driver enriching virus-encoded AMGs in
soil microbiomes. Likely explanation for this is that these viral
AMGs are likely to be beneficial for bacteria by alleviating the toxic
effect of pesticides [53] or by helping to acquire energy through
pesticide degradation [54]. For example, high CAZyme abun-
dances observed in OCP-contaminated soils suggest that viruses
could regulate carbon cycling in addition to lysing host cells (i.e.,
“viral shunt”) [13, 52, 55, 56], potentially affecting bacterial
nitrogen, phosphorus, and sulfur metabolism [1] and pesticide
degradation via microbial (co)metabolism [57]. To further test the
potential role of virus-encoded AMGs for pesticide degradation,
we bioinformatically identified and cloned virus-encoded L-2-
haloacid dehalogenase to E. coli. The purified proteins were active
at degrading monochloroacetate (MCA) and S(L)-2-chloropropio-
nic acid (S(L)-2-CPA) haloacid precursors. Furthermore, L-DEX
plasmid carriage improved E. coli growth at sub-MIC pesticide
concentrations. Together, this functional validation suggests that
virus-encoded auxiliary genes that help bacteria to survive under
pesticide stress. In the future, it would be interesting to compare
several contaminated and clean soils to explore if identified
phage-encoded functions are unique to industrial sites or if these
genes can also be discovered in natural soils. This would help to
address if these functions have evolved only recently due to
human pesticide manufacturing or if they have more distant
evolutionary origin. Furthermore, experimental evolution
approaches could be used to directly test if pesticide exposure
could shift bacteria-phage interactions along with the parasitism-
mutualism continuum, turning antagonistic viruses to beneficial
“endosymbionts” via provision of fitness benefits in stressful
environments.
In conclusion, our results highlight the importance of viral

communities for the bacterial ecology in soil microbiomes.
Moreover, we show that viruses could provide a novel tool for
bioremediation of contaminated soils. As organochlorine pesti-
cides are notoriously highly toxic, slow at degrading and often
accumulate in food chains, identifying functional biodegradation
genes and associated microbial taxa has a great biotechnological
interest. We suggest that viruses could provide a novel tool for

bioremediation of contaminated soils by providing important
AMGs for their host bacteria.

METHODS
Site description and sample collection
Bulk soil samples were collected nearby a closed pesticide factory located
at Jiangsu province, China (N’120.228193, E’31.758075). The soil had been
subjected to continuous exposure of organochloride pesticides (OCPs)
between 1975 and 2007 due to extensive pesticide production and lack of
sewage treatment facilities. The site was left in natural state and recovery
after the closure of the factory in 2007. According to the preliminary
background investigation, the overall area of the site is ~169,620 m2, with
40,708m2 area categorized as OCP-contaminated are according to the
national soil environmental quality risk control standard (GB15618-2018).
Due to the high annual OCP production (more than 20,000 tons in 2006),
the site is mainly contaminated by chlorobenzene, dichlorobenzene and
nitrochlorobenzene with concentrations ranging from 281.3 ± 21.4 to
4595.8 ± 344.0mg kg−1. The factory is located at the Yangtze River Delta,
which has the highest number of pesticide production plants nationally,
and thus well represents a typical Chinese chemical plant that were
operational during the past decades. Six soil samples were collected from
areas with varying pesticide contents in the soil (S1–S6). Based on the
preliminary site investigation in 2019 (Supplementary Fig. 1), three clean
control soil samples (C1–C3) without pesticide exposure were collected
from the nearby fallow land, which located ~1.5 km away from the former
pesticide factory. At each sampling area, 2 kg soil was collected randomly
from five aliquots at the depth of 0-20 cm with three composite replicates.
Soil samples were stored in sterile 1-L polypropylene Falcon tubes at 4 °C
and transported to the laboratory before storage at −80 °C prior to
analysis. While storage at −80 °C may have increased virus mortality, this
effect was the same for all the samples and did not create systematic bias
to our results.

Determining soil physicochemical properties and pesticide
contents
Soil samples were grounded through 2-mm sieve and analyzed for soil
physico-chemical properties [58], including soil Ph, cation exchange
capacity (CEC), soil organic matter (SOM), total nitrogen (TN), total
phosphorus (TP) and available sulfur (Supplementary Table 2). The
pesticide contents were determined according to methods described by
Sun et al. [59] and Ye et al. [60]. Briefly, pesticide determination procedures
were carried out with an accelerated solvent extractor system (ASE-200;
Dionex, USA) by extracting into dichloromethane, followed by GC-MS
analysis (Agilent GCMS 6890N-5973 N, USA).

Bacterial metagenomic sequencing and analysis
FastDNA Spin kit for soil (MP Bio) was used to extract the total DNA from all
soil samples following manufacturer’s instructions. Extracted DNA samples
were sent to Shanghai Personal Biotechnoloy Co., Ltd. (Shanghai, China) for
high throughput sequencing. Nine libraries of 400 bp insert-size fragments
were constructed for whole-genome shotgun approach, and paired-end
(PE, 2 × 150 bp) sequencing was carried out on a HiSeq X platform
(Illumina, San Diego, CA, USA). After quality screening conducted by
Cutadapt (v1.2.1) [61], a total of ~8.8 billion clean reads (~0.8 billion per
clean soil samples and ~1.06 billion per pesticide-contaminated soil
samples) were obtained and used for de novo assembly by Megahit (v
1.2.6) (https://hku-bal.github.io/megabox/) [62] with k-mer~ parameter
setting [27, 127] (Supplementary Table 1). Open reading frames (ORFs)
were predicted using MetaGeneAnnotator [63], followed by redundancy
elimination by using CD-HIT (v 4.8.1) [64] based on 90% sequence similarity
and 90% coverage. High quality reads were mapped to the contigs using
BWA (v 0.7.17, BWA-MEM algorithm) [65] with default parameters, and the
obtained contig abundance and gene TPM (Transcripts Per Kilobase of
exon model per Million mapped reads) values were calculated by Soap.
coverage (v 2.7.9, http://soap.genomics.org.cn/) and a custom script
(https://github.com/EnvGen/metagenomics-workshop/blob/master/in-
house/tpm_table.py), respectively. Further bacterial taxonomy annotation
was carried out using the lowest common ancestor (LCA) algorithm in
MEGAN 5 [66] based on NCBI-NT reference database via BLASTn
(Nucleotide collection, ftp://ftp.ncbi.nih.gov/blast/db/, v2016-6-19, E-
value ≤ 10−5; Supplementary Table 3). Bacterial 16S rRNA gene sequences
were downloaded from Silva (https://www.arb-silva.de/) and NCBI
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database to construct phylogenetic in MEGA 7 [67], which was visualized in
iTOL [68]. Bacterial gene function annotations are described later in the
methods along with viral gene function annotations.

Virus DNA extraction and sequencing
Virus DNA was extracted following methods described by Trubl et al. [69]
and Adriaenssens et al. [70] with following modifications. Briefly, sub-soil
samples (300 g) were homogenized through 0.25 mm-sieve, and mixed
with 1 liter 1% (w/w) of potassium citrate buffer (10 g L−1 C6H5K3O7, 1.92 g
L−1 Na2HPO4·12H2O and 0.24 g L−1 KH2PO4; pH= 7). The mixture was first
incubated at 4 °C for 15min, then sonicated (100W, 47 kHz) on ice for 3
min with 30 s of manual shaking at every minute. After first centrifugation
(7,000 rpm, 10min), the supernatant was transferred to another tube and
centrifuged again at 7000 rpm for 15min. The yielded supernatant was
filtered sequentially through 0.45-μm and 0.22-μm filters (Anpel hydro-
philic PTFE syringe filter, China) to remove remaining non-virus like
particles. The extract was enriched by using tangential flow filtration
technology (TFF, Sartorius Vivaflow50 30,000 MWCO PES, USA). Virus
samples were examined for purity and morphology under transmission
electron microscope by 1% uranyl acetate staining (FEI Tecnai G2 Spirit Bio
TWIN, USA) (Supplementary Fig. 1). The virus DNA extracts were treated
with DNase I [TaKaRa Recombinant DNase I (RNase-free) 2270A]: RNase A
(Takara Ribonuclease A 2158) mixture in 2:1 ratio at 37 °C for 30min to
remove non-encapsulated DNA fragments. The presence of bacterial DNA
was examined by 16S rRNA gene PCR. The solution was then used for virus
DNA extraction using Takara MiniBEST Viral RNA/DNA Extraction Kit Ver.5.0,
and viral DNA concentrations were determined using Qubit 3.0
fluorometer (Invitrogen, Waltham, Massachusetts).
The extracted virus DNA was subjected to whole-genome amplification

(KAPA HiFi HotStart ReadyMix) to meet the metagenome sequencing
requirements. It should be noted that this method could have introduced
unavoidable but small sequencing bias. The nine amplification products
were sent for metagenomic sequencing, and each library of 400 bp insert-
size fragments yielded 150 bp paired-end reads using a HiSeq 4000
platform (Illumina, San Diego, CA, USA).

Virus identification
After quality control with Cutadapt (v 1.2.1), a total of ~9.6 billion clean
reads (~1.06 billion per sample) were used for de novo co-assembly of viral
sequences [20, 21, 71] to address potential virome between clean and
OCP-contaminated viromes using Megahit with k-mer ~ parameter setting
[27, 127] (Supplementary Table 1). A total of 487,689 contigs > 1 kb
recovered form clean (126,119) and contaminated (358,573) soils were run
through VirSorter (v 1.0.5) [72] to identify viral contigs. As described in
previous protocol by Paez-Espino et al. [46], viral contigs were divided in
categories 1, 2, 4, and 5 using VirSorter (v 1.0.5) and included for viral
annotation, leaving 19,855 contigs from clean (5,550) and contaminated
(14,305) soils, which were taken forward to for next step of the analysis as
follows. Briefly, viral contigs with length >5 kb were further processed by
vHMMs pipeline using 3 distinct filters criteria: 1) viral contigs had at least 5
hits to viral protein families, while the total number of genes covered by
KEGG Orthology (KO) [31] of the contig was <20%; and the total number of
genes covered with Pfams (v 31.0) [73] ≤40%; 2) the number of viral
protein families on the contig were equal or higher than the number of
Pfams; 3) the number of viral protein families was equal or higher than
60% of the total genes. Viral contigs longer than 5 kb that met at least one
of the three filtering criteria listed above were filtered out. Finally, A total of
19,292 viral contigs from clean (5387) and contaminated (13,905) soils
were included for further analysis.

Viral protein clustering and distribution
All 19,292 contigs (>1 kb) with 95% identity and 80% coverage were
clustered into 18,458 viral populations (vOTUs) using ClusterGenomes (v
1.1.3), and 4,572 vOTUs larger than 10 kb were used for protein clustering
using vConTACT (v 2.0) equipped with NCBI bacterial and archaeal viral
RefSeq v85 database using default parameters [74]. Briefly, all-to-all protein
sequence alignments were performed with DIAMOND 0.9.10 [75] to group
proteins into clusters (default parameters, cut-offs of 10−5 on E-value and
50 on bit score). Similarity scores were determined based on the number of
shared protein clusters between contigs. Contigs with bit scores >1 were
processed for further clustering. After formation of the Markov algorithm
clustering protein ensemble group, the viral clusters (VCs) were defined
using ClusterONE (CL1) and overlapping VCs in the network were

subdivided using distance-based hierarchical clustering. As a result, 4,572
vOTUs observed in the soil were divided into 909 viral clusters
(Supplementary Table 4- “Contigs”, “Viral taxonomy” and “network_-
data_1”). The network visualization and analysis were conducted using the
“Network Analysis” function in Cytoscape3.7.1 [76] (http://cytoscape.org;
Supplementary Table 4- “network_data_1_parameters”). We also analyzed
viral community diversity and composition using vOTU approach [77].
Briefly, 19,292 detected contigs were grouped into vOTUs (>1 kb, with
greater than 95% identity and 80% coverage, based on perl script
“ClusterGenomes” from https://bitbucket.org/MAVERICLab/stampede-
clustergenomes/src/master/) and used for analyzing the alpha and beta
diversity of viral communities. Viral taxonomy annotations were assigned
using vConTACT (v 2.0) (>10 kb) by applying a majority-rules approach as
previously described [78], where a viral population was adopted into a viral
family if >50% of the proteins were assigned to the family with a Viral
RefSeq Virus database using a BLASTp bitscore ≥50 (Supplementary
Table 4- “Viral taxonomy”). Total of 273 of 4,572 vOTUs with length greater
than 10 kb were successfully annotated and the rest of the vOTUs (15,781
of 18,458 vOTUs) were assigned through majority-rules approach. In total,
86% of vOTUs (15,841 of 18,548) could be assigned taxonomically at family
level (Supplementary Fig. 3c).

Virus-host linkage analysis
Three methods were used to analyze putative virus-host linkage
(Supplementary Table 5): 1) Trna sequences were recovered from viromes,
and aligned against all genomes in our soil metagenomes with ARAGORN
(v 1.2.38) using BLAST (100% coverage and 100% sequence identity) after
deleting self-hits and duplicates [46]; 2) CRISPR spacer and repeat elements
were recovered from bacterial metagenomic PE reads with CRASS (v 1.2.1)
[79]. According to the comparison results with viral contigs via BLASTn
(100% nucleotide identity, mismatch ≤1 and E-value ≤ 10−5), the target
spacer sequence was selected, then the repeat sequence from the same
region was compared with contigs from bacterial genomes via BLASTn (E-
value threshold of 10−10 and 100% nucleotide identity) [20]. As the two
approaches obtain reliable but limited virus-bacteria relations, the third
approach was used to reflect more broad conditions, by submitting viral
sequences to JGI Viral Sequence Database (https://img.jgi.doe.gov/cgi-bin/
vr/main.cgi) to match similar viral and putative host bacterial genomes via
BLASTn (E-value threshold of 10−5, ≥95% sequence identity) [46].

Bacterial and viral gene annotation
Non-redundant proteins of bacterial and viral genomes were annotated
using KEGG (kobas3.0.3) [31] and CAZyme (cazydb.07312018.fa) [32]
databases (Supplementary Tables 3 and 7), and viral proteins annotated by
KEGG (kobas3.0.3) and Pfam (v 31.0) [73] were also used for viral genome
identification and annotation (see Virus identification). Functional bacterial
genes linked to carbon, nitrogen and sulfur metabolism and pesticide
degradation were identified according to the metabolic pathways mapped
by viral KEGG orthologs. Phosphorus metabolic genes were identified
according to the utilization of phosphorus (included pathways: organic
phosphorus mineralization, inorganic phosphorus hydrolysis, inorganic
phosphorus solubilization, and inorganic phosphorus synthesis). Co-
occurrence networks of viral and bacterial genes were visualized in Gephi
(v 0.8.2) [80] based on Pearson correlation coefficients.
The viral origin of the pesticide degradation genes was validated by

analyzing respective contigs in more detail VIRSorter2 (v 2.2.3, default
parameters) [81], CheckV (v 0.8.1, default parameters) [36], VIBRANT (v
1.2.0, default parameters, t virome= true) [37] and DRAM-v (v 1.2.0) [38]
was used to validate annotations of pesticide degradation genes. For
DRAM-v, default parameters was used for AMG identification and obtained
AMG flag was assigned as follows [38]: V - viral, M - metabolism flag, K -
known AMG, E - experimentally verified AMG, A - viral host attachment and
entry, P - peptidases for viral use, F - near the end of the contig and B – a
set of consecutive genes (≥3) with metabolism flag “M”. Above data of
pesticide degradation genes was shown in Supplementary Table 9-“Gene
information” and “DRAM-v information”. Sigma-70 transcriptional promo-
ter was recognized by SAPPHIRE (p < 0.05, https://sapphire.biw.kuleuven.
be/index.php) [82], FindTerm (energy threshold value <−12.0, http://www.
softberry.com/berry.phtml?topic=findterm&group=programs&subgroup=
gfindb) [83] and RhoTermPredict (RUT site C/G ratio>1 with regularly
spaced cytosine residues within the window (every 11–13 nt), and
palindromic score >6) [84] were used to predict the Rho-independent
and Rho-dependent terminators, respectively. For phylogenetic analysis,
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the top 20 most similar protein sequences from NCBI RefSeq database and
9 protein sequences from bacterial dataset to our viral L-2-haloacid
dehalogenase gene were retrieved using BLASTp. Protein sequences from
local bacterial dataset were selected with a threshold of identity ≥ 40%,
coverage ≥40% and E-value < 10−5. After alignment with ClusterW, MEGA
7 [67] was used to construct a maximum likelihood tree (n= 500
bootstraps), and visualized in iTOL. Protein models of pesticide degrada-
tion genes were constructed using Phyre2 [41], and viral contig maps were
constructed using Easyfig (v 2.2.4) [85].
To explore the variance in viral gene functions in association with

pesticide stress, predicted viral proteins annotated by Virus Orthologous
Groups database (VOGDB, vog203, http://vogdb.org/) and Pfam database
for screening out core functional genes (COREs) and auxiliary metabolic
genes (AMGs) were used, respectively (Supplementary Table 8). Genes
linked to viral replication (Xr) and viral structure (Xs), such as capsid,
integrase, and holin associated genes, were defined as “core functional
genes”, which would be more concerned with the proliferation process of
the virus itself than with hallmark genes. Hallmark genes also include
genes commonly identified as the viral source while functions are hard to
classify or functions unknown by VOGDB. Proteins involved in nutrient
transformation and pollutant degradation were defined as auxiliary
metabolic genes [50, 86, 87]. Finally, a total of 28,686 core functional
genes from 261 groups and consisted of 3,310 AMGs belonging to 229
Pfam families were used for downstream analysis. A log10 transformation
was used to better visualize the relative abundances of viral core functional
genes and AMGs in Supplementary Fig. 7a.

L-DEX Gene synthesis and protein expression validation
To confirm functioning of virus-encoded AMGs for pesticide degradation
we chose one commonly observed candidate gene: the gene encoding L-
2-haloacid dehalogenase (L-DEX, EC:3.8.1.2) from CON_VIRSor-
ter_k127_2354611, which is involved in degradation of L-2-haloacids.
The gene was synthesized by PCR-based accurate synthesis (PAS) and then
cloned into pET-32a (+) plasmid, which was transferred into E. coli
TOP10 strain. The positive clones were screened by LB agar plates with 50
μgmL−1 Ampicillin and the target gene was verified by PCR sequencing.
The recombinant plasmid pET-32a (+)-LDEX was transformed into E. coli
ArcticExpress (DE3) and the protein expression was induced with 0.5 mM
IPTG at 37 °C for 4 h. After cell lysis by sonication (400W, with each 4 s
being interrupted by 8 s, total 20 min) and centrifugation, the target
protein L-2-haloacid dehalogenase existed in the form of inclusion body.
After the solubilization of the purified inclusion bodies, the target protein
fraction was purified using Ni-IDA affinity column (Novagen) and examined
by 12% SDS–PAGE. The qualitative and quantitative protein expression was
determined by Western Blot.

Protein activity verification
The activity of purified virus-encoded L-2-haloacid dehalogenase was
determined by measuring the amount of Cl− that was produced after
monochloroacetate (MCA, CAS: 79-11-8) and S(L)-2-chloropropionic acid (S
(L)-2-CPA, CAS: 29617-66-1) reaction as follows. Briefly, 1 M MCA or S-2-CPA
was added to 1mL Glycine-NaOH Buffer (100mM, pH= 10.0) and
configured into a reaction system with a final concentration of 10mM.
Then 10 μg virus-encoded L-2-haloacid dehalogenase (0.5 μgmL−1) was
added, and the reaction ran at 37 °C for 5 h and 24 h followed by addition
of 10 μL H3PO4 (85%, w/w) to terminate the reaction (four replicates per
treatment). Treatments without enzyme, and with inactivated enzyme
(enzyme inactivated at 99 °C for 10min) were used as negative controls.
Spectrophotometric method of mercury sulfocyanide was used to
determine the Cl- generated in the reaction at 480 nm using EnSight™
Multimode Microplate Reader (PerkinElmer, Singapore), and the residual
amount of the substrate in the reaction was determined indirectly.
The toxic effect of MCA and S-2-CPA on bacteria was determined in the

absence and presence of phage-encoded L-DEX. The minimum inhibitory
concentration (MIC) of two substrates against the donor strain E. coli
ArcticExpress without L-DEX gene (named “E. coli”), E. coli ArcticExpress
with L-DEX plasmid (named “E. coli+ L-DEX”), E. coli ArcticExpress with
L-DEX plasmid induced by 0.4 mM IPTG (named “E. coli+ L-DEX+ IPTG”)
were first determined. Specifically, LB liquid medium with a final
concentration of 6-10mM MCA and 9-13 mM S-2-CPA were mixed with
bacterial broth (OD 0.6-0.8) as a ratio of 100:1 and incubated at 37 °C for
12 h. The bacterial growth was recorded as turbidity at 600 nm (OD600)
using UV spectrophotometer (LabTech UV8100B, China) and minimum
concentration (MIC) determined as complete inhibition of bacterial growth.

Based on these results, bacterial growth curves were quantified also at sub-
MIC MCA (7mM) and S-2-CPA (10mM) concentrations for 24 h at 37 °C,
respectively.

Data statistical analysis
Data statistics and visualization in this study were performed using
GraphPad Prism 8.0 (https://www.graphpad.com/) and R (v 3.6.2) (https://
www.r-project.org/). The microbial rarefaction curve and alpha and beta
diversity analyses (including alpha index, UPGMA and NMDS), were
conducted using vegan and ggplot2 packages in R. The interpretation
degree (R value) and significance (p value) between the samples were
calculated based on Adonis analysis. For example, Adonis R2= 0.99
indicates that grouping based on the contamination vs. no contamination
explained a 99% of between sample variance and p < 0.05 value indicates
high statistical significance. Stress value <0.05 in NMDS based on
Bray–Curtis distance indicates that the NMDS analysis results have good
conformity and that the distance between samples in reduced
2-dimensional space corresponds with the actual multivariate distance
between the samples. Unweighted pair group method with arithmetic
mean (UPGMA) is also used to cluster the samples, which is a simple
hierarchical clustering method based on pairwise similarity matrix (or a
dissimilarity matrix). Pearson correlation between genes was calculated
using psych package, leaving the correlation with a threshold of |r| > 0.6
and p < 0.05 to generate the network via Gephi (v. 0.8.2) [80]. LEfSe analysis
was performed using online platform Galaxy (https://huttenhower.sph.
harvard.edu/galaxy/). A combination of ANOVA, Tukey’s multiple compar-
isons test, T-tests, and non-parametric Fisher’s exact and Wilcoxon
rank sum tests were used for the statistical analysis using Graphpad
Prism 8.0.

DATA AVILABILITY
The bacterial and viral raw metagenome sequence data generated in this study are

archived at Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2017,

https://bigd.big.ac.cn/gsa) and National Genomics Data Center [88], Beijing Institute

of Genomics (China National Center for Bioinformation), Chinese Academy of

Sciences, under accession number PRJCA003886. In addition, 19,292 viral contigs

have been deposited in the Genome Warehouse (https://bigd.big.ac.cn/gwh) under

accession numbers GWHBCHI00000000. All data are publicly accessible and can be

download from https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA003886.
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