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ABSTRACT: The ability to predict heavy rain and floods in Africa is urgently needed to reduce the socioeconomic costs
of these events and increase resilience as climate changes. Numerical weather prediction in this region is challenging, and
attention is being drawn to observationally based methods of providing short-term nowcasts (up to ∼6-h lead time). In this
paper a freely available nowcasting package, pySTEPS, is used to assess the potential to provide nowcasts of satellite-
derived convective rain rate for West Africa. By analyzing a large number of nowcasts, we demonstrate that a simple
approach of “optical flow” can have useful skill at 2-h lead time on a 10-km scale and 4-h lead time at larger scales (200 km).
A diurnal variation in nowcast skill is observed, with the worst-performing nowcasts being those that are initialized at 1500
UTC. Comparison with existing nowcasts is presented. Such nowcasts, if implemented operationally, would be expected to
have significant benefits.

SIGNIFICANCE STATEMENT: A freely available, easy-to-use nowcasting package has been applied to satellite-
retrieved rainfall rates for West Africa, and extrapolations have useful skill at up to 4 h of lead time.
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1. Introduction

There is an urgent need for improved predictions of high-
impact weather in Africa, particularly of heavy rain and
floods. According to the United Nations Office for the Coor-
dination of Humanitarian Affairs, in 2020 alone flooding
affected 1.7 million people in West and Central Africa, with
many regions recording excessive rainfall (UNOCHA 2020).
These floods affect lives and livelihoods, housing, and agricul-
ture. The ability to predict the storms that cause such events
is thus of great importance. Numerical weather prediction
(NWP) is inherently challenging in the tropics where the Cori-
olis force is weak, weather is dominated by moist convection,
and there are relatively few in situ observations for assimila-
tion into models (Žagar 2017; Marsham et al. 2013; Kniffka
et al. 2020; Judt 2020). Vogel et al. (2020) examined state-of-
the-art ensemble predictions of rainfall over tropical Africa
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) and compared them with an extended proba-
bilistic climatology ensemble (Vogel et al. 2018) based on the
years 1998–2017. They found that over tropical Africa only
19% of grid points in ECMWF ensembles showed skill. They
found some improvement in postprocessing the ensembles,

but “over the cores of the oceanic deserts and tropical Africa
skill remains close to zero.”

Given the challenges facing NWP in this region, near-real-
time, observationally based solutions are needed. Nowcasting
is the very-near-term prediction of high-impact weather,
based in the use of near-real-time observations, with typical
lead times of 0 to at most 6 h (Battrick and Mort 1981;
Browning 1982; Wang et al. 2017; Roberts et al. 2021). It pro-
vides a complementary approach to NWP, because nowcast-
ing exploits the availability of observations to provide more
accurate predictions in the very near term than NWP can.
Furthermore, nowcasting can provide information before the
most recent initializations of NWP are available, or at lead
times when model spinup can lead to poor rainfall prediction.

Ideas of nowcasting were developed for ground-based
radar outside Africa (e.g., Golding 1998) and have been used
in other parts of the world too (Bowler et al. 2006; Woo and
Wong 2017). Automated nowcasting systems incorporating
radar data are in place globally}Wang et al. (2017, their
Table 2.3) lists 14 such systems. For sub-Saharan Africa, the
extremely sparse radar coverage outside of South Africa and
the challenges in maintaining radars mean that there is an
opportunity for nowcasting based on retrievals from geosta-
tionary satellites (Roberts et al. 2021). The large, long-lived
storms that provide the bulk of the rainfall to many areas of
West Africa appear particularly well suited to satellite-based
nowcasting, since mature systems are clearly visible from
space and last many hours, or even days (Maranan et al.
2018). One of the earliest indications that satellite data
could be useful in nowcasting was Birkenheuer (1987), who
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investigated the benefits of animations of satellite data. These
animations allowed the forecaster to infer cloud motion}an
intuitive version of the mathematical methods described
below in section 3. Subsequently, nowcasting techniques using
geostationary satellites have received widespread interest
(Mecikalski and Bedka 2006; Bedka et al. 2010; Sieglaff et al.
2013; Line et al. 2016). More recently, studies have investi-
gated the potential of using data assimilation (Otsuka et al.
2019) and machine-learning techniques in satellite nowcasting
(see, e.g., Shi et al. 2017; Lebedev et al. 2019).

Despite the need and opportunity for satellite-based now-
casting there is very little operational nowcasting in sub-Saha-
ran Africa. The rare examples include the nowcasting work
performed by the South African Weather Service (de Coning
et al. 2015; Gijben and De Coning 2017) and the promising
study of Thiery et al. (2017), who proposed satellite observa-
tions as a means of indicating thunderstorm risks over Lake
Victoria. There is almost no use of automated tools outside of
South Africa (Roberts et al. 2021).

The European Organization for the Exploitation of Meteo-
rological Satellites (EUMETSAT) have developed a number
of satellite-based nowcast products (EUMETSAT 2021;
NWCSAF 2020). Since March 2019 the Global Challenges
Research Fund (GCRF) Science for Weather and Forecasting
Techniques (SWIFT) project has been generating satellite-
based nowcast products for Africa and working with African
centers to support local generation of such products. The
default settings of these satellite-based nowcasts give a for-
ward extrapolation of 60 min, but Hill et al. (2020) found that
they exhibited skill relative to persistence for up to 90 min
and suggested that there was good potential for further skill-
ful extrapolation. Comparison with these already existing
nowcasts is presented in section 5c.

In summary, West Africa is a region where global NWP is
challenging. Although geostationary satellite data have their
own problems (see below, section 2), coverage by such satel-
lites is excellent and the longevity of storms means that now-
casting has the potential to usefully predict storm behavior
into the future, conceivably for several hours. The aim of this
paper is to demonstrate the potential of satellite nowcasting
for West African storms by means of free and self-contained
software, that is both easy and inexpensive to run, and to eval-
uate the limits of useful forward projection that may be
achieved.

This paper is structured as follows. In section 2, the satellite
data are described. Section 3 presents the pySTEPS software
and optical flow method, with some example nowcasts;
section 4 describes the verification algorithm. The data selection
and quality control of the satellite data are given in section 5,
and results are given in section 6. These include a statistical sum-
mary of the pySTEPS nowcasts performed for this paper and
comparison with the existing nowcasts described above.

2. Description of the CRR dataset

Convective rain rate (CRR; Hernanz and Lahuerta 2019) is
a satellite-derived product that represents an estimate of con-
vective rainfall from a combination of the infrared (10.8 mm),

water vapor (6.2 mm), and visible (0.6 mm) wavelength
channels from the Meteosat Second Generation (MSG)
Spinning Enhanced InfraRed Imager (SEVIRI) instrument
(SEVIRI 2021; NWCSAF 2020). Essentially, the CRR algo-
rithm reflects the empirical relationship that the higher and
thicker the detected clouds, the higher the probability and
intensity of precipitation (Hernanz and Lahuerta 2019).
With a temporal resolution of 15 min and a spatial resolu-
tion of approximately 4 km, CRR has been found to be a
useful product by African forecasters (Hill et al. 2020). It is
produced in near–real time, has skill in identifying rainfall
events in near–real time (Hill et al. 2020), is distributed pre-
computed on the EUMETCast Africa service, and is a prod-
uct that can be processed by the software used in this paper
(see section 3).

Forward extrapolations of CRR are already available (Jann
2017; Hill et al. 2020). In the original Nowcasting Satellite
Application Facility (NWCSAF) extrapolation algorithm,
the position of a pixel at the next time step is determined by
the atmospheric motion vector (AMV) interpolated onto
the pixel grid. Then the new position of the pixel, P2, is
extrapolated with the AMV that had been retrieved at posi-
tion P1. A trajectory is produced by repeating the above
procedure. The smoothed trajectory field is then applied to
the rain rate field. Assumptions made within this NWCSAF
framework include (i) the interpolated AMV at a pixel grid
is produced by an inverse displace weighted interpolation
scheme, (ii) the AMV used for the next position of a pixel is
assumed to be persistent, (iii) the displacement field is sup-
posed to be temporally invariable in producing the trajec-
tory, and (iv) the trajectory field is smoothed. The
recommended maximum lead time for these NWCSAF
extrapolations is 60 min (Hill et al. 2020).

The NWCSAF CRR extrapolations have been recently
evaluated against the high-quality microwave-only Integrated
Multi-satellitE Retrievals for Global Precipitation Measure-
ment (IMERG) satellite rainfall product in Hill et al. (2020).
They found that the skill of NWCSAF CRR extrapolations is
similar to the skill of the CRR retrievals themselves: there is
considerably higher skill than climatology, but there is a large
difference in skill between day, when information from visible
channels is available, and night.

Data selection and quality control

The CRR dataset was subject to the following criterion: for
each of the initialization start times of (0000, 0300, … , 2100
UTC) there must exist three frames prior to the start of the
nowcast, spaced 15 min apart, with no missing frames. Missing
frames are associated with the failure of the NWCSAF satel-
lite retrieval and are spaced randomly in time. For example, if
the 0515, 0530, and 0545 UTC frames are available on a given
day then the 0600 UTC nowcast is possible; if, however, the
0845 UTC frame is missing on that day, then the 0900 UTC
nowcast cannot be included. Thus, the number of possible
nowcasts varies according to initialization time, and these are
shown in Table 1. Data were considered from 1 November
2019 until 11 October 2020, and the number of nowcasts
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available per month is shown in Table 2. The CRR data are in
the Network Common Data Form (netCDF) format (Unidata
2021) and, like Hill et al. (2020), we use the latest version of
the NWCSAF CRR algorithm over a 1500 (east–west) 3

1200 (south–north) gridpoint domain. This covers from Cam-
eroon in the southeast to Morocco in the northwest (see the
domain in Figs. 2 and 4, described in more detail below).

3. Description of pySTEPS optical flow method

The nowcasting initiative pySTEPS (Pulkkinen et al.
2019a,b; GitHub 2020) is free, open-source, community-
supported Python-based code that supports a variety of radar
and satellite formats, and includes verification tools. The
modular system allows several options to establish the motion
of tracked features (discussed below). The work shown here
uses pySTEPS version 1.4.1 with the optical flow technique.
Essentially, this takes a sequence of images and, from the
change in intensity between images, calculates the motion
flow vectors. A key assumption of the optical flow method is
that, for a given pixel at time t and position x(t), y(t) with
intensity I(x, y), the brightness constancy constraint equation
holds:

I
x

U 1
I
y

V 1
I
t

� 0, (1)

where U and V are the optical flow velocity components in
the x and y directions, respectively. For two successive images
at a given target pixel, the spatial derivatives of the intensities
can be calculated, as can the time derivative of intensity (the
difference between frames). This leaves (1) with two
unknowns, U and V, resulting in an underdetermined system.
The Lukas–Kanade approach (Lucas and Kanade 1981;
OpenCV 2021) assumes that the pixels immediately surround-
ing the target pixel all move together. Thus, taking the nearest
neighbors to the target pixel, this would then produce nine
equations in two unknowns}an overdetermined system. To
resolve this, the least squares method is applied to find the
best solution for U and V. The above method is ideally
designed for situations in which features move slowly, ideally
by one pixel. The pySTEPS implementation of Lucas–Kanade
uses the “pyramid” method whereby the underlying data are
subjected to various degrees of coarsening}this deals with
cases in which features may move rapidly, that is, by more
than one pixel (Bouguet 2000). As part of the Lucas–Kanade

implementation, the motion vectors are interpolated onto
regions where there is no precipitation (OpenCV 2021)}the
“dense” Lucas–Kanade algorithm. The Lucas–Kanade method
was chosen for this study because it is conceptually simple and
is also the fastest and least computationally intensive method
(Pulkkinen et al. 2019b). It is worth mentioning that Pulkkinen
et al. (2019b) found that the choice of optical flow method had
a minimal effect on the skill of nowcasts they considered. Note
that this method advects existing precipitation and does not
create, or remove, precipitation.

The optical-flow-based nowcasting method is as follows:

1) A sequence of images (typically three), spaced equally and
sequentially in time, is taken as the training data and is
read into pySTEPS.

2) The Lucas–Kanade optical flow method is applied, and
the motion vectors are determined.

3) The retrieved structures are propagated according to the
constraints imposed by the temporal separation, the flow
vectors, and the brightness constancy equation in (1). At
this point (if historical data are used), the nowcast can be
compared with retrievals and the skill level can be
calculated.

We stress that all of the above procedures are routine (and
routines) in pySTEPS, and no additional choices of parame-
ters/options were made, other than selecting the Lucas–
Kanade algorithm. Each 6-h nowcast used in this paper took,
typically, 30 s to produce on a domestic laptop. No further
tuning or use of ensembles/random noise has been included.
This is so as to (i) lower the number of degrees of freedom
and increase the generality and reproducibility of the study,
(ii) determine the usefulness of the method in its “base state,”
and (iii) provide a benchmark against which future modifica-
tions to the method may be evaluated.

4. Verification

PySTEPS includes a suite of verification algorithms (Pulkkinen
et al. 2019b). In this study, the fractions skill score (FSS) is used
(Roberts and Lean 2008). The FSS method is designed to pro-
vide a verification at different spatial scales and at different rain
rates. This is a nearest-neighbor type approach. For each pixel

TABLE 1. The number of possible nowcasts for each
initialization time.

Initialization No. of nowcasts

0000 UTC 253
0300 UTC 236
0600 UTC 199
0900 UTC 191
1200 UTC 230
1500 UTC 262
1800 UTC 256
2100 UTC 235

TABLE 2. The number of possible nowcasts for each month.

Month and year No. of nowcasts

Nov 2019 167
Dec 2019 188
Jan 2020 109
Feb 2020 84
Ma 2020 205
Apr 2020 174
May 2020 158
Jun 2020 188
Jul 2020 203
Aug 2020 188
Sep 2020 160
Oct 2020 38
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in the domain, surrounding points within a given square of
physical length L, in kilometers, (hereinafter referred to as the
“scale”) are considered. The number of rain points in the now-
cast square is compared with the number of rain points in the
corresponding observed (or in this case, retrieved) square.
This is done for every pixel, and a skill metric is constructed
that depends upon the length scale L. When there is no rain in
both the nowcast (or equivalently, the last frame of the train-
ing data) and the corresponding CRR frame in the verifica-
tion, then the FSS is undefined. For full details, see Roberts
and Lean (2008).

In this approach a nowcast may have low skill at small
scales but reasonable skill at larger scales. From another per-
spective: given a level of skill required, this effectively selects
the scale at which this is possible. We have considered scales
of 8, 16, 32, 64, 128, and 256 km. The FSS is an appropriate
measure for the West African region. Although a nowcast
having skill at small scales would be highly desirable, a now-
cast that has skill at larger scales is welcome and useful also,
in view of the difficulties facing forecasters in this region. The
FSS is a standard module in pySTEPS, and using this metric is
helpful for potential users who may have limited software/
computing facilities.

Typically, the threshold for a useful forecast is taken to be
FSS. 0.5. From Roberts and Lean (2008) a more appropriate
target for a useful FSS is FSS . 0.5 1 f0/2 where f0 is the frac-
tional coverage of CRR (i.e., the proportion of pixels in the
domain where CRR . 0). This is halfway between a random
forecast and a forecast with perfect skill. Thus, in general, the
target for a useful forecast threshold will be slightly higher
than 0.5. For ease of interpretation, all FSS referred to from
now on will have the fractional coverage factor subtracted,
and so the useful forecast threshold in what follows can be
taken to be 0.5.

In this study the CRR data have been used as both training
(providing the motion vectors) and verification fields. Ideally,
verification would be performed against an independent

dataset, such as rain gauge data. Such data are sparse}see,
for example, the report of the World Meteorological Organi-
zation Systematic Observations Financing Facility (SOFF
2021), making such a verification unfeasible. Verification
against NWP was thought to be problematic, due to the chal-
lenges associated with NWP in this region (see section 1
above). Given that Hill et al. (2020) showed that CRR has
useful skill in both retrieval and extrapolation, the CRR data
were used as the validation dataset. Thus, in what follows, we
are (in strict terms) assessing the skill of the extrapolation
algorithm and not the value of the underlying CRR product.
The CRR data have inherent problems, as discussed above
(section 2). Further work is needed for an independent verifi-
cation of the ability of CRR to capture true rainfall rates, and
the authors are investigating this.

5. Results

a. Example nowcasts

Figures 1 and 2 show the motion vectors and retrieved and
nowcast CRR fields at various lead times for the 15 August
2020 at 0000 UTC. In this example there is little or no growth
of convection and the large structure seen over central West
Africa propagates somewhat south of westward across the
continent at a near-constant velocity (see the retrieved rain
rates in Figs. 2a–c). As can be seen from the motion vectors,
this structure is stretched in the north–south direction, and
the resulting nowcast structure is larger than that in the
retrieval. Although there is some observed decay in this
feature after 6 h, the nowcast CRR envelops the retrieved
CRR. In this example, the optical flow method captures
the observed motion very well. For all scales considered
(8–256 km), the FSS never falls below 0.6 at a threshold of
1 mm h21, even at 6-h lead time. This was the best nowcast
(in terms of FSS) of all those included in this study. To give
some context, the mean of all nowcasts at 6-h lead time and a

FIG. 1. The motion vectors for the 0000 UTC 15 Aug 2020 nowcast. For purposes of clarity,
motion vectors are shown every 40 grid points. CRR is also shown at lead time = 0 h.
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scale of 8 km was between 0.15 and 0.25 (see Fig. 5 below and
related discussion).

In contrast, several days later at 1200 UTC 18 August 2020,
the nowcast is relatively poor (Figs. 3 and 4). After 1 h the
retrieved and nowcast CRR bear some resemblance. After

2 h, convective intensification is apparent in the retrievals.
Although the detected winds are broadly similar to those in
Fig. 1, the subsequent widespread initiation and growth of
convection apparent after 6 h caused a disparity between the
retrievals and the nowcast. In this case, even after 2 h, the

FIG. 2. An example of a good nowcast, 0000 UTC 15 Aug 2020: (left) the observed (i.e., satellite retrieved) CRR and (right) correspond-
ing nowcasts for (a) 1-, (b) 2-, and (c) 6-h lead time. Note the shaded area in (c), where data are not available (since the flow is east–west,
indicated by the red arrow).

B UR TON E T A L . 449APRIL 2022

Unauthenticated | Downloaded 03/16/23 03:09 PM UTC



FSS is less than 0.5 for all scales, because the optical flow
method cannot capture the growth and initiation of convec-
tion (see section 3). The CRR rain-rate retrieval algorithm
does not perform as well at nighttime, as mentioned in section 2.
However, any deficiencies would apply equally to all times in
this nowcast, and so the results here are at least self-consistent:
we are not comparing with an independent measurement (e.g.,
rain gauges). Note, however, that a forecaster in an operational
setting would not look at this type of plot in isolation. A fore-
caster would use it in combination with other satellite and NWP
products. Given the time of year and time of day, in combina-
tion with the observed initiation of deep convection and wide-
spread high convective available potential energy, a forecaster
would certainly expect a significant risk of these small cells
growing to larger organized systems, and of further initiation, as
is in fact observed.

The above “good” and “poor” nowcasts were selected as
extreme cases of the nowcasting performance, and the majority
of nowcasts lie somewhere between these two extremes. This can
be shown by examining the statistics of the available nowcasts.
As seen above the method can produce variable results depend-
ing upon the amount of convective genesis and/or growth. Thus,
evaluating the method over many successive instances will dem-
onstrate both the general applicability of the method and will
highlight any diurnal/seasonal variations in FSS.

b. FSS statistics

Figure 5 shows the mean and standard error of FSS, separated
by initialization time, for the small (8 km) and larger (64 km)
scales. There is mean skill greater than 0.5 out to about 90 min
for 8-km scale and to about 2.5 h for 64-km scale. This scale
dependence is explored further in the next section.

There is a significant diurnal signal in the FSS, with the low-
est FSS being associated with an initialization time of 1500
UTC. The prevalence of convective initiation/growth from
1500 UTC onward is responsible for reducing the skill for this
initialization time (Duvel 1988; Mohr 2004; Laing et al. 2011;
Crook et al. 2019). This is confirmed by the 1200 UTC

initialization nowcast, which starts off with similar skill to the
other earlier initializations, then becomes poorer after 3 h, that
is, after 1500 UTC. At the 64-km scale, the 1200 UTC nowcast
recovers somewhat toward the end of the nowcast. For both
the 8- and 64-km scales, the 1800 UTC nowcast behaves simi-
larly to the better-performing nowcasts. This is consistent with
the most intense period of convective initiation, in the period
1500–1800 UTC. In contrast, convection-permitting NWP
can give their best performance at these times (see, e.g.,
Woodhams et al. 2018). This is also the time of day when the
land surface is most predictable (Klein and Taylor 2020).

The standard errors of the mean in Fig. 5 show that the now-
casts initialized at 1500 UTC are lower than those initialized at
other times of day. This can be seen in the fact that the means
for the 1500 UTC initialization are, for lead times greater than
45 min, not contained within the error bars of any other initiali-
zation time, suggesting a statistically significant difference.

If used operationally, there would be no simple means to
estimate the likelihood that a given nowcast has skill}so FSS
distribution plots can be constructed to show the probability
of obtaining a useful forecast based upon a given rain rate
threshold and a given feature scale. For example, Fig. 6 dis-
plays the distribution for 1 mm h21 threshold and at a scale of
8 km. It can be seen that there is a 50% chance that the FSS
will be higher than 0.5 at a lead time of between 1 and 2 h.

If we define a lead-time metric Ty(p, s) where s is the fea-
ture scale (km) and p is the percentage of nowcasts with
FSS $ 0.5, then Ty(51, s) will give a lead time for which the
majority of nowcasts had at least a skill score of 0.5}this is
the lead time for which the majority of nowcasts were useful.
For brevity, we denote this by TY(s). In practice, because the
frames are separated in time by discrete amounts of 15 min,
and it is unlikely that the FSS at a given time is exactly 0.5,
TY(s) is calculated as the mean of average of the longest lead
time for which the condition is not satisfied and the shortest
lead time for which the condition is satisfied. Values of this
useful lead time are shown in Fig. 7 for several FSS thresh-
olds. Overall, the figure shows useful skill at around 3 h for a

FIG. 3. As in Fig. 1, but for the 1200 UTC 18 Aug 2020 nowcast.
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64-km scale for thresholds of 1–10 mm h21. For a 256-km scale,
Useful skill is over 4 h (for thresholds of 1 and 5 mm h21), and
over 3.5 h for a threshold of 10 mm h21.

c. Comparison with NWCSAF extrapolations

As mentioned in section 2, NWCSAF already provide
extrapolations of CRR. In this section we compare the

NWCSAF extrapolations with the present pySTEPS extrapo-
lations. As in Hill et al. (2020), 90-min extrapolations are
considered.

As before, the dataset is limited by completeness (not all
90-min, uninterrupted NWCSAF nowcasts were present in
the catalog)}a total of 765 synchronized pySTEPS and
NWCSAF nowcasts were available. To compare these two

FIG. 4. As in Fig. 2, but for an example of a poor nowcast, 1200 UTC 18 Aug 2020.
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datasets, the NWCSAF extrapolations were processed by the
pySTEPS verification module (i.e., the motion advection step
was omitted). In general, the FSS for pySTEPS (denoted by
FSSP) and the FSS for NWCSAF (FSSN) are very similar for
the 90-min lead-time period. However, there are differences,
with FSSP being generally higher than FSSN.

Denote the difference between any two given nowcasts as
DFSS = FSSP 2 FSSN. Figure 8 shows the percentage of all
cases for which DFSS . 0 for a scale of 8 km and a threshold of
1 mm h21, and for the range of initialization times. The appar-
ent trend is for NWCSAF to perform similarly to pySTEPS at
the first 15-min nowcast but subsequently the pySTEPS now-
casts have higher skill. The majority of pySTEPS nowcasts have
higher skill for all initialization times for lead times greater than
or equal to 30 min. There are differences in response between
the initialization times}for example, the percentage of cases
where DFSS . 0 is greater for 1200 UTC than for 0900 and 1500
UTC.

It is not clear why this is the case, and without further
detailed knowledge of the NWCSAF algorithm, it is not possi-
ble to say. One possible explanation may be the difference in

data used to calculate the atmospheric motion vectors. The
NWCSAF algorithm identifies “tracers” (features) in up to
seven SEVIRI channels (Pereda 2019). The atmospheric
motion vectors are determined by the advection of these
tracers in successive retrievals, as described in section 2.
The slight difference in skill between pySTEPS and
NWCSAF extrapolations might be explained by the fact
that pySTEPS identifies features in one field only}a
derived product (CRR).

Values of DFSS themselves are shown in Fig. 9. Consistent
with the above, the differences between the two approaches
are negligible at 15 min (with a tendency for negative DFSS at
this time) but after that DFSS is positive and increases linearly
(approximately) with time for all initialization times. The rate
of increase of DFSS is approximately constant across all initiali-
zation times. After 90 min, DFSS is typically 0.04. Further
work would be needed to determine the precise reasons for
these small differences between the pySTEPS and NWCSAF
approaches.

In summary, it can be said that the optical flow method
with no enhancements performs as well as (and usually has

FIG. 6. The percentage of nowcasts having a given FSS minimum
for various lead times. The feature scale is 8 km.

FIG. 5. FSS as a function of lead time for a feature scale of (a) 8 and (b) 64 km and for various initialization times (see
legend). Error bars display the standard error of the mean.

FIG. 7. The dependence of useful forecast time TY(s) upon scale
size, for scales of 8, 16, 32, 64, 128, and 256 km. FSS thresholds are
shown in different colors.
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more skill than) the NWCSAF extrapolation, especially for
lead times greater than 15–30 min.

6. Summary

PySTEPS with optical flow has been applied to satellite-
derived CRR over West Africa. Particularly good nowcasts
can be achieved when there is little initiation or growth of
convection and rainfall changes at a given location are due to
the horizontal motion of existing storms. Extrapolation-based
nowcasting is less skillful when initiation and growth are
strong.

We have shown that useful nowcasts can be produced, typi-
cally up to ∼2 h on the smallest scales (on the order of 10 km)
at 1 mm h21 and over ∼4 h on the larger scales (on the order
of 200 km) at 5 mm h21. For thresholds of 10 mm h21, useful
forecasts can be produced up to 3.5-h lead time at the larger
scales.

At all scales studied, there was diurnal cycle evident in the
FSS. With very few exceptions, the worst-performing 6-h
nowcasts are those that are initialized at 1200 and 1500 UTC:
this is the time of day when development and growth of new
convective cells is at its daily maximum, and this behavior is
not captured in the optical flow method.

Comparison with NWCSAF 90-min extrapolations shows a
good agreement, with pySTEPS nowcasts having generally
higher FSS than the NWCSAF nowcasts. The use of the
method, without further intervention or additional data,
shows that there could be a potential to use pySTEPS for
operational nowcasting over West Africa. Such work as pre-
sented here could supplement existing products used by fore-
casters in Africa. Further tuning may be possible, either to
pySTEPS algorithms, or via the addition of NWP products.
While this is beyond the scope of this short note, the authors
intend to investigate this in future work. In addition, we have
not compared the extrapolation skill with that of NWP or
with higher-quality rainfall data as in Hill et al. (2020), and we
are actively pursuing this as a further means to characterize
the potential benefit of this work.

Given the difficulties facing NWP for Africa and the gen-
eral unpredictability of convective storms, nowcasting solu-
tions are urgently needed, and African forecast centers are
beginning to use satellite-based nowcasting to provide alerts
to stakeholders (Roberts et al. 2021). In this paper we have
been able to demonstrate extrapolation of satellite-derived

FIG. 9. The mean difference between FSSP and FSSN as a function of lead time, for various ini-
tialization times (labeled in red text). The error bars denote the standard error of the mean.

FIG. 8. The number of cases for which the pySTEPS FSS (FSSP)
is greater than the NWCSAF FSS (FSSN) as a function of lead
time, for various initialization times. The dashed black line is the
mean of all cases.

B U R TON E T A L . 453APRIL 2022

Unauthenticated | Downloaded 03/16/23 03:09 PM UTC



CRR in a nowcasting algorithm for West Africa. These
extrapolations can have useful skill for at least 2 h and even 4
h on larger scales, using a standard forward projection algo-
rithm. We are currently working to implement these solutions
and provide products and tools to the African weather
services.
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