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Abstract

The Leishmania donovani species complex is the causative agent of visceral leishmaniasis, which cause 20–40,000 fatalities a year.

Here,weconducta screen forbalancingselection in this species complex.Weused384publicly available L.donovaniand L. infantum

genomes, and sequence93 isolates of L. infantum fromBrazil todescribe theglobal diversity of this species complex.We identify five

genetically distinct populations that are sufficiently represented by genomic data to search for signatures of selection.We find that

signals of balancing selection are generally not shared between populations, consistent with transient adaptive events, rather than

long-term balancing selection. We then apply multiple diversity metrics to identify candidate genes with robust signatures of

balancing selection, identifyingacurated setof24geneswith robust signatures. These includezeta toxin,nodulin-like, andflagellum

attachment proteins. This study highlights the extent of genetic divergence between L. donovani complex parasites and provides

genes for further study.

Key words: Leishmania, parasites, balancing selection, genomes, evolution.

Introduction

Intracellular Leishmania parasites cause the neglected infec-

tious disease leishmaniasis in over 80 countries. Visceral leish-

maniasis (VL) is the most severe form of the disease, caused by

Leishmania donovani and Leishmania infantum. Annual cases

of VL are estimated at a minimum of 50,000, with a fatality of

�95% if untreated, and occur primarily in the Indian

subcontinent (ISC), Bangladesh, Sudan, South Sudan,

Ethiopia, and Brazil (World Health Organisation 2020). After

transmission by sand flies, Leishmania promastigotes are taken

up by macrophages and develop into amastigotes which pro-

liferate. These processes require specific adaptations to differ-

ent environments, such as evasion and active modulation of

mammalian host or sand fly vector immune responses (Atayde

Significance

Protozoan parasites of the Leishmania donovani species complex are globally distributed, with major foci in East Africa,

the Indian subcontinent and Brazil. Although global genetic diversity has been described, there has been very little

focus on selective pressures in this species. We used a data set of 477 sequenced isolates to search for signals of
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et al. 2016; Dong et al. 2019). Leishmania species contain

genomes that are primarily diploid and sexually recombining.

Amongst their unusual features are the use of constitutively

transcribed polycistronic genes and supernumerary chromo-

somes with unstable ploidy (Dumetz et al. 2017).

Balancing selection (BS) has been studied in Plasmodium

parasites extensively. In this genus, proteins that interact di-

rectly with host cells maintain high genetic diversity (Mobegi

et al. 2014; Ochola-Oyier et al. 2019; Hocking et al. 2020), as

do proteins that are exported to the surface of erythrocytes

(Jeffares et al. 2007). BS signals are also enriched in solvent-

exposed regions of proteins consistent with selection for in-

creased diversity via a rare allele advantage (Guy et al. 2018).

Given the competitive interaction between Leishmania cells

and host immune cells (Atayde et al. 2016; Dong et al. 2019),

BS may also operate in this parasite if rare (parasite) alleles

provide an advantage to host–parasite interactions. Other

mechanisms of BS, such as heterozygote advantage (over-

dominance) or alleles that confer fitness differentially in the

sand fly vector and the mammal host are also possible. These

processes are expected to generate similar genetic signals

(Charlesworth 2006). In all these scenarios, genomic signa-

tures of BS can highlight genes that are important for trans-

mission, host immune evasion, or ecological adaptation.

Thus far, there have been no published studies of BS in

Leishmania species. Here, we use genome data from 477

clinical isolates from the L. donovani species complex

(L. infantum or L. donovani) from East Africa, the ISC, and

Brazil to identify five populations that are well-represented by

genome data. Using a variety of metrics, we search for signals

of BS within these populations. We identify multiple strong

signatures of BS. Signatures are generally unique to a single

population consistent with adaptive divergence between

populations.

Results

Leishmania donovani Complex Genome Data and
Population Structure

In this study we used population-scale genomic data from

L. donovani species complex covering the main global foci of

East Africa, the ISC, Brazil, and Europe. We utilized 229

L. donovani isolates from the ISC (Imamura et al. 2016),

43 L. donovani isolates from Ethiopia (Zackay et al. 2018),

25 L. infantum isolates from Brazil (Carnielli et al. 2018), and

87 L. donovani isolates from a variety of locations including

Sudan (14 strains), France (6), and Israel (10) (Franssen et al.

2020). Additionally, we sequenced 93 L. infantum isolates

from Piau�ı state, Brazil (fig. 1, supplementary table 1,

Supplementary Material online). This produced a data set

of 477 sequenced isolates from the L. donovani complex,

expanding on the recent analysis of Franssen et al. (2020). To

detect genetic variants in these genomes we mapped reads

from all isolates to the L. donovani BPK282A1 reference

genome, and applied variant calling methods and filtering

to identify single-nucleotide polymorphisms (SNPs) and in-

sertion/deletion polymorphisms (indels). In this data set of

477 isolates, we identify 339,367 SNPs and 14,383 indels.

We used the ADMIXTURE clustering tool (Alexander and

Lange 2011) to assign isolates to populations. This analysis

indicated that this collection can be clustered into between

8 and 11 populations (fig. 1; supplementary figs. 1 and 2,

Supplementary Material online). The majority of these isolates

could be assigned with �99% confidence to one of five rel-

atively well-sampled populations (fig. 1). Principal component

and phylogenetic analysis showed consistent results. These

five populations included two from the Indian subcontinent

(ISC1, ISC2), two from East Africa (EA2 from North Ethiopia/

Sudan, and EA1 which corresponds to a population from

South Ethiopia/Kenya; Gelanew 2010) and a Brazil-

Mediterranean population (BM; also contains isolates from

Honduras and Panama but we refer to this population as

BM from here onwards for brevity). The remaining isolates

were assigned to populations of <6 isolates (n¼ 44).

Our results are generally consistent with previous analysis

(Franssen et al. 2020), indicating that these five populations

have largely independent ancestries. Fixation index (FST) values

range from 0.27 to 0.90 (supplementary table 2,

Supplementary Material online). As has been observed previ-

ously (Gelanew 2010), the two East African populations and

the older ISC population (ISC2) are approximately equidistant

from one another, with FST in the range of �0.3. Larger FST
values appear to be due to genetic divergence from the newly

emerged ISC1 and BM populations. Only 7% of polymorphic

sites are shared between two or more populations. We note

that rare hybrids have been shown to occur between

L. donovani complex populations in both East Africa and

Turkey (Rogers et al. 2014; Cotton et al. 2020). We do not

include L. donovani complex hybrids from Turkey (Rogers

et al. 2014) in our analysis, because hybrid populations may

contain balanced alleles from the parental populations that

give an appearance of BS. This, and the under-sampling of VL-

endemic regions between Europe and India, render our data

unsuited to studying the true extent of global gene flow in this

species, so we do not analyze this further here.

Phylogenetic analysis provides some qualitative insight to

the history of these species (fig. 1C andD). The long-branched

positions of EA1 and EA2 support the relative age of these

populations in East Africa, as does the high genetic diversity in

this region and genetic distance between these populations,

consistent with previous studies (Gelanew et al. 2010, 2014;

Ferreira et al. 2012; Teixeira et al. 2017; Zackay et al. 2018;

Cotton et al. 2020; Franssen et al. 2020). The high nucleotide

diversity of EA1 (table 1) is reflected in the branch lengths in

this clade of the phylogeny. In contrast, the smaller ISC pop-

ulation, identified as ISC1 here (equivalent to the ISC5 group

identified by Imamura et al. [2016]), produces short terminal

Grace et al. GBE
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FIG. 1.—Population structure of the Leishmania donovani complex. (A) ADMIXTURE analysis indicated between 8 and 11 populations, here K¼9.

Crossvalidation error values are available in supplementary figure 1, Supplementary Material online. ADMIXTURE plots for K¼8, 10 and 11 populations

available in supplementary figure 2, SupplementaryMaterial online. (B) Principal component analysis (PCA). Strains are colored as for (A). Isolates in graywere

not confidently assigned to one of the five major populations (BM, EA1, EA2, ISC1, and ISC2) by ADMIXTURE. (C) Unrooted ML phylogeny, based upon an

SNP alignment of 477 sequences with 283,378 variable sites. All visible branches are maximally supported (100% mlBP) unless indicated. The scale bar

represents the number of nucleotide changes per site. Country names in gray indicate origins of isolates that were not confidently assigned to one of the five

major populations. (D) BM ML tree of L. infantum strains, based upon an SNP alignment of 158 sequences with 81,018 variable sites, midpoint rooted.

Ninety-three of these isolates were sequenced in the current work. Scale bar and support are as in (C). A version of this tree with all isolate origins is available

in supplementary figure 3, Supplementary Material online. A single sample isolated in China (Franssen et al. 2020), is the only demographic exception in the

BM sample collection, and is indicative of movement of parasites. Data and tree files are available in supplementary documents, Supplementary Material

online. (E) Locations of samples used in this study. Pie charts show the number of samples from each location that are confidently assigned to one of the five

major populations, with a radius proportional to the number of samples from each location. Gray indicates isolates that were not confidently assigned to one

of the five major populations.
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branches in the phylogeny and lower genetic diversity (table 1

and fig. 2), consistent with previous genomic analyses indi-

cating that is an emergent population (Imamura et al. 2016).

Epidemiological evidence indicates that this population arose

in the 1970s after the malaria elimination program (Dye and

Wolpert 1988; Bhattacharya et al. 2006; Thakur 2007;

Muniaraj 2014; Dhiman and Yadav 2016). The 93 Brazilian

isolates we examined, which are mostly from Piau�ı state in

north west Brazil, cluster within isolates originating from

Mediterranean countries (fig. 1D), consistent with a relatively

recent European introduction of L. infantum into Brazil

(<400years ago; Kuhls et al. 2011). Short branches in the

Brazilian clade (fig. 1C and D), low-genetic diversity and an

abundance of rare alleles (fig. 2) are all consistent with a

previously occurring population bottleneck and an expanding

population (i.e., a founder effect caused by the transportation

of L. infantum to Brazil). In contrast, both East African pop-

ulations and the older population from the ISC2 show higher

genetic diversity, and are likely to have been maintained as

larger populations for longer periods of time.

As well as the very low diversity, the BM and smaller East

African (EA2) populations contain more indel polymorphisms

(table 1), with an SNP:indel ratio of 6:1 and 5:1, respectively,

compared with EA1 (11:1), ISC1 (10:1), and ISC2 (9:1), as

expected for eukaryote polymorphisms, where SNPs typically

outnumber indels (Mullaney et al. 2010; Jeffares et al. 2015).

Extensive variant-calling quality control showed that this ex-

cess of indels is unlikely to be artefactual (supplementary fig.

4, SupplementaryMaterial online). It is possible that this is due

to the accumulation of weakly deleterious indel alleles when

the Brazilian population was established from European

L. infantum populations (Boit�e et al. 2019).

Analysis of L. donovani Species Complex Populations

Genetic diversity summary statistics vary considerably be-

tween populations (fig. 2 and table 1), consistent with these

varied demographic histories in different locations. For

example, the initial population within the ISC (ISC1) has a

normally distributed Tajimas’s D, whereas the Tajimas’s D is

strongly skewed to negative values in the emerging ISC2 pop-

ulation. To select groups of strains that will approximate pan-

mictic populations, we used the ADMIXTURE analysis to

identify isolates that were confidently assigned to one popu-

lation (n¼ 433), rather than being interpopulation hybrids.

This selection resulted in 59 isolates from East Africa (two

populations of 41 and 18), 226 from the ISC (two populations

of 211 and 15), and 127 from BM, of which 93 were newly

sequenced here (table 1). Our assignment of isolates into five

major populations largely agrees with the previous global

analysis of Franssen et al (2020). To characterize BS in these

populations we applied the NCD2 test (Bitarello et al. 2018)

and Betascan1* test (Siewert and Voight 2017) in 10kb win-

dows to each of the five populations. Genomic windows that

were outliers for the Betscan* test, were enriched for low

NCD2 scores and high Tajima’s D values, indicating that these

three metrics were largely complementary (supplementary

fig. 12, Supplementary Material online).

Are Targets of BS Shared Between Populations?

In some circumstances BS can be maintained as populations

or species diverge (Siewert and Voight 2017; Bitarello et al.

2018; M�erot et al. 2020; Wang et al. 2020; Ding et al. 2021).

Given these examples, we examined whether any genes had

maintained BS between populations of the L. donovani spe-

cies complex, indicating long-term BS. To assess this without

relying on shared polymorphisms, we used the Betascan1*

maximum andNCD2minimum scores for each gene, for each

population as a summary statistic (see Materials and

Methods). We find scant evidence for shared BS from

Betascan1* scores. We define Betascan1* outlier genes as

those in the upper 5% of Betascan1* scores for their popu-

lation. There was little overlap in these outliers; 701 genes are

outliers in at least one population, only 42 of these (6%) were

outliers in two or more populations (supplementary table 3,

Table 1

Population Statistics for Leishmania donovani Complex Populations

Population Source No. of Isolates No. of

Nonadmixed

Isolatesa

No. of Private

SNPs

No. of Private

Indels

Nucleotide

Diversity

(p 3 1026)

Tajima’s D Mean Minor

Allele

Frequency

(MAF)b

EA1 East Africa 41 41 3,033 705 424 0.70 0.23

EA2 East Africa 18 18 970 575 87 �0.20 0.14

ISC1 India 225 211 2,689 551 84 �0.23 0.17

ISC2 India 15 15 3,103 716 6.3 �1.04 0.009

BM Brazil, Med. 133c 127 8,886 1,578 28 �1.42 0.02

NOTE.—Tajima’s D and p are mean values for all 10-kb genome windows, calculated within each population.
aIsolates determined as nonadmixed by ADMIXTURE analysis in figure 1.
bMean MAF is the mean minor allele frequency for all SNPs and indels, calculated across 10kb windows of all variants, within each population.
cNinety-three isolates sequenced in this study.
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Supplementary Material online), and only 9 are outliers in

three or more populations (1%). The NCD2 metric identified

more overlap between populations, but long-term BS is still

the exception; 1,627 genes were 5% outliers in at least one

population and only 195 (11%) were outliers in more than

one. However, because the NCD2 metric measures the simi-

larity of allele frequencies to a target frequency (0.5 in our

case; Bitarello et al. 2018), genes that are merely subject to

weaker purifying selection will have elevated NCD2 scores.

Another possibility is that weak polygenic BS operates on a

number of genes, perhaps transiently. This may be the case

for frequency-dependent BS, for example, in exported and

cell surface-located erythrocyte membranes and exported

proteins in Plasmodium falciparum (Volkman et al. 2002;

Jeffares et al. 2007; Claessens et al. 2014). In this scenario,

wemight expect BS targets in one population to predict genes

with higher metrics in other populations, due to a history of

weak BS. For example, if multiple genes are weakly influenced

by BS, they may have elevated signals as a group, even if any

one particular gene is not significant alone. We examined this

using only Betascan1*, because we suspect that the measure

of correlated allele frequency that Betascan utilizes will be less

confounded by weak purifying selection. To examine this, we

examined whether the 10kb regions with the 5% highest

Betascan1* scores in the East African EA1 population were

enriched for high Betascan* scores (compared with the re-

mainder of the genome). We found that outliers from EA1 do

not show significantly elevated Betascan1* scores in any other

population. We repeated this analysis for the 5% highest out-

liers from ISC1 and from BM (again comparing to each other

population; supplementary fig. 18, Supplementary Material

online). In almost all cases, outliers are not shared between

populations. The only enrichment, that indicates common

sites of BS between populations, was between the ISC

BM EA1 EA2 ISC1 ISC2
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FIG. 2.—Population genetic statistics. Upper panel: nucleotide diversity (p)� 10�6, with the box upper and lower limits corresponding to the upper and

lower quartiles of p calculated in 10kb windows; middle panel: minor allele frequency (MAF); lower panel: Tajima’s D.
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populations, where ISC1 outliers predict higher scores in ISC2

(P¼ 2� 10�4; supplementary fig. 18, Supplementary

Material online). Since the ISC1 population has been derived

from ISC2 population relatively recently (Imamura et al. 2016),

we can expect some aspects of the genetic diversity to be

maintained. In summary, signals of BS are generally not

shared between populations of L. donovani.

Identifying Genes That are Subject to BS

To advance research in Leishmania it would be useful to iden-

tify the most likely targets of BS. To achieve the most com-

prehensive detection of BS signatures, we performed both

Betascan* and NCD2 tests with 1, 5, and 10kb windows.

We observed complete overlap between tests using 1 and

10kb windows, with four additional ORF-containing regions

identified with 5kb windows (supplementary table 4 and fig.

16, Supplementary Material online). As a pragmatic ap-

proach, we sought to identify genes with robust and strong

signatures from multiple metrics. To achieve this, we selected

10kb genomic windows that were in the first or 99th per-

centile of either the NCD2 test or Betascan tests, respectively.

To identify the genes withinNCD2/Betascanwindows that are

likely targets, we calculated nucleotide diversity (p) and

Tajima’s D (Tajima 1989) for each gene, and selected genes

in the 90th percentile of either statistic as well-supported

plausible targets. We then selected genes that were outliers

in both categories (NCD2 or Betascan* and p or Tajima’s D).

This intersection identified 38 genes (supplementary table 4,

Supplementary Material online). We manually vetted these to

remove “hitchhikers,” genes whose high diversity was likely

due to their proximity to a BS “driver” gene, resulting in 24

vetted candidates. We also removed genes with suspicious

read coverage, because gene duplications produce strong

artefactual signals of BS (supplementary fig. 13,

Supplementary Material online). Due to the stringent process

of filtering, this method is not guaranteed to have equal

power to detect BS in the five populations we examine, which

are represented by different numbers of isolates, have differ-

ent levels of nucleotide diversity and different allele frequency

distributions (fig. 2 and table 1).

This screen identified 24 candidate genes (table 2;

justification for vetting genes in supplementary table 4,

Supplementary Material online). Candidate genes in the

EA1 population, where the most were discovered, have nu-

cleotide diversity that is 34-fold higher than the genome-wide

median (fig. 3). Diversity is elevated in genome regions

surrounding these target genes and remains significantly

elevated up to 250kb from the targets. Because the

mean size for chromosomes in L. donovani is 900kb, this

increase in diversity influences a large proportion of the

genome. Furthermore, BS candidates are enriched for high

minor allele frequency (MAF) cosegregating sites and

show higher levels of statistical linkage than genome-wide

distributions, consistent with expectations for genes that are

subject to BS (Charlesworth 2006; supplementary fig. 14,

Supplementary Material online).

Consistent with the lack of evidence for shared BS between

populations, the genes that are BS candidates in the

EA1 population do not show significantly elevated Tajma’s

D values in any other population (supplementary fig. 17,

Supplementary Material online).

To identify these candidates NCD2 and Betscan* tests

were applied in 10kb genomic windows for each population.

Candidate genes that were both 1) outliers for at least one

test (>99.5 percentile) and 2) outliers (95 percentile) for either

Tajima’s D and/or nucleotide diversity (p, calculated within the

gene start-end window). Details of the method are described

in supplementary fig. 6 and text 2, Supplementary Material

online. All comparisons of tests for each population are avail-

able in supplementary figures 7–11, Supplementary Material

online, respectively. Where protein function is “unknown” on

TriTrypDB, we subjected each protein to BLASTp searches to

obtain homology to other known proteins and ascertain con-

servation across trypanosomes.

Candidate Genes for BS in the L. donovani Complex

Our manual vetting of BS candidates retained 24 genes (ta-

ble 2), of which 20 were discovered in the EA1 population.

We did not discover any reliable candidates in the two pop-

ulations that appear to be expanding following a bottleneck

(BM and ISC1). Figure 4 illustrates the variety of robust ge-

netic signatures that implicate four of these genes. All vetted

genes contain similarly robust signatures (supplementary fig.

16, Supplementary Material online).

Several genes caught our attention as interesting targets of

selection. LdBPK_291600.1 encodes a transmembrane pro-

tein containing a nodulin-like domain. Such proteins have

been implicated in membrane transport and iron homeostasis

(Laranjeira-Silva et al. 2018) in Leishmania. The zeta toxin do-

main protein (LdBPK_341740.1; fig. 4) is indicated as a BS

target by both Betascan* and NCD2 metrics in the East

African population EA2. The gene also has high nucleotide

diversity in EA1 (supplementary table 5, Supplementary

Material online). Because the phylogeny of this zeta toxin

gene does not separate EA1 and EA2 isolates, as we would

expect from the genome-scale divergence in figure 1, this

gene may be subject to BS in both species, or may be a recent

instance of between-population introgression. The zeta do-

main is positioned at 744–861aa, with two nonsynonymous

variants resulting in the changes Leu747Thr and Ser752Phe,

respectively, from the reference genome. The zeta toxin is

part of the Type-II toxin–antitoxin (TA) module identified in

prokaryotes, with homologues only recently discovered in

Leishmania (Srivastava et al. 2019). The toxin component of

the TA module acts against cellular processes such as transla-

tion and is neutralized by the antitoxin component in

Grace et al. GBE
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Table 2

Candidates for Genes Subject to Balancing Selection in the Leishmania donovani Complex

Candidate Gene Description Population Tajima’s D Variants (Nonsyn/Synon) Tests NCD2/Beta

LdBPK_161760.1 FLAM3, flagellum attachment protein in

L. mexicana (see Sunter et al. 2019)

ISC2 3.1 12/4 NCD2

LdBPK_341740.1 Zeta toxin protein 1, conserved in trypa-

nosomes (see Srivastava et al. 2019)

EA2 3.3 35/18 Both

LdBPK_363870.1 Mitogen activated kinase-like protein,

conserved in trypanosomes

EA1 3.9 10/9 Both

LdBPK_291600.1 Nodulin-like, conserved in trypanosomes ISC2 3.2 8/9 Both

LdBPK_170210.1 Unknown function, conserved in

Leishmania

EA1 3.0 6/9 Beta

LdBPK_261240.1 FYVE zinc finger containing protein,

conserved in Leishmania

EA1 4.3 9/15 Both

LdBPK_262120.1 Putative kinase domain, conserved in

Leishmania

EA1 3.9 7/23 Both

LdBPK_280190.1 Unknown function, conserved in

Leishmania, contains helix domains

EA1 2.9 12/3 Beta

LdBPK_282030.1 p21-C-terminal region-binding protein,

conserved in Trypanosomes

EA1 1.9 9/6 Both

LdBPK_301540.1 Rad17 cell cycle checkpoint clamp protein

(hypothetical protein on TriTrypDB),

conserved in trypanosomes, involved in

chromatin binding, and DNA repair

(see Nunes et al. 2011)

EA1 4.0 8/14 Both

LdBPK_302020.1 Unknown function, conserved in

Leishmania

EA1 3.7 3/6 Both

LdBPK_311120.1 emp24/gp25L/p24/GOLD family, con-

served in trypanosomes, involved in

golgi vesicle transportation

EA1 2.9 4/2 Both

LdBPK_311710.1 Unknown function, conserved in

Leishmania

EA1 3.8 8/9 Both

LdBPK_311170.1 Unknown function, conserved in

Leishmania, adenylate cyclase regula-

tory protein-like

ISC2 3.1 8/2 Both

LdBPK_312260.1 Unknown function, conserved in

Leishmania

EA1 4.3 20/6 Both

LdBPK_312550.1 2Fe–2S iron–sulfur cluster binding do-

main, only conserved in L. donovani

and L. infantum, cofactor, implicated in

redox metabolism (see Kumar et al.

2019)

EA1 4.3 15/4 Beta

LdBPK_330840.1 Nuclear LIM interactor-interacting (NLI)

factor-like phosphatase, conserved in

Leishmania

EA1 4.8 27/17 Both

LdBPK_350960.1 Unknown function, conserved in

trypanosomes

EA1 2.6 3/4 Both

LdBPK_361900.1 Ras-like small GTPase, conserved in

Leishmania

EA1 3.7 6/3 NCD2

LdBPK_363830.1 Unknown function—shares >40% simi-

larity with tectonic/cilia protein, con-

served across trypanosomes (see Dean

et al. 2016)

EA1 3.8 6/8 Both

LdBPK_365550.1 Glutathione S-transferase domain con-

taining protein, conserved in

trypanosomes

EA1 3.8 7/3 Both

(continued)
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favorable conditions. Sharing similar functional domains and

activity with the E. coli homologue (Srivastava et al. 2019),

L. donovani zeta toxin may therefore also be implicated in

stress response and/or virulence (Rocker and Meinhart 2015).

The FLAM3 gene (LdBPK_161760.1) encodes a flagellum

attachment zone protein essential for host interaction (Sunter

et al. 2015, 2019; An and Li 2018). Our strict criteria have

indicated this gene as under BS only in the ISC population

ISC2, but it also have high nucleotide diversity in four of the

five populations (supplementary table 5, Supplementary

Material online). The FLAM3 protein contains a clustered mi-

tochondria (CLU) domain and a domain of repeats (Sunter

et al. 2015). The majority of variants in ISC2 occur between

these domains, with none fallingwithin the CLU domain (sup-

plementary table 6, Supplementary Material online).

Discussion

Here, we sequenced 93 strains of L. infantum from Brazil,

contributing to aworldwide collection of L. donovani complex

isolates along with previous analyses (Imamura et al. 2016;

Carnielli et al. 2018; Zackay et al. 2018; Franssen et al. 2020).

Our analysis of this population is consistent with these previ-

ous studies, showing that the L. infantum population in Brazil

contains very little genetic diversity (Carvalho et al. 2020;

Schwabl et al. 2021). A consistent observation in analysis of

this species complex is that populations from East Africa,

India, and Brazil are substantially genetically differentiated, a

result that we reiterate here (fig. 1). In this study of BS, we also

show that signals of selection largely differ between

populations.

Relatively few studies have attempted BS screenings in

parasites (reviewed byWeedall and Conway 2010). Our study

uses the Betascan* (Siewert and Voight 2017) and NCD2

(Bitarello et al. 2018) metrics that have been developed re-

cently and have been shown to outperform classic metrics

under models of BS, such as Tajima’s D (Tajima 1989).

These analytic tools, and the use of multiple populations

should produce an analysis at least as sensitive as previous

screens for BS searches within parasites such as

Plasmodium, producing up to 25 candidate genes (Tetteh

et al. (2009), 6 genes; Amambua-Ngwa et al. [2012], 25

genes; Nygaard et al. [2010], 19 genes).

The 24 candidate genes uncovered here possess varying

functions within the L. donovani species complex. The

flagellum attachment gene FLAM3 is a striking candidate con-

sidering the importance of the protein in parasite cellular

structure, proliferation, and differentiation (Hayes et al.

2014; Sunter et al. 2019; Halliday et al. 2020). Furthermore,

candidate genes LdBPK_311120.1 and LdBPK_361900.1,

which encode a member of the emp24/gp25L/p24/GOLD

family and a ras-like GTPase, respectively, may influence traf-

ficking of virulence factors, and subsequently interaction with

their host. ras-like GTPases may contribute to attenuation of

VL via the TOR pathway in L. donovani (Zhang et al. 2014).

Given the lack of detailed studies of the majority of these

candidates in the L. donovani species complex, studies of

the cell biology of these proteins will be useful next steps.

Our analysis suggests that the performance of Betascan*

and NCD2 BS tests are dependent on the changes of popu-

lation demography within this species complex. This is partly

due to our pragmatic screening criteria that required >5 var-

iants per genomic window (Betascan*, NCD2) and >5 var-

iants per gene (Tajima’s D and p metrics). The low-diversity

Brazil and ISC1 populations contain far fewer regions that

satisfy these criteria. However, strong population bottlenecks

would enhance the loss of polymorphic sites by drift, ablating

strong BS signatures. For example, 99% of 1kb genomic

windows in our BM population contain <5 segregating sites,

which will reduce the scale of Betascan* and NCD2 metrics.

This could result in a loss of power to detect long-term BS.

Only two populations (EA1 and ISC2) appear to have relatively

stable population sizes and sufficient nucleotide diversity to

identify BS candidates using our pragmatic methods (table 1).

More complex methods that employ population models to

detect BS are available (DeGiorgio et al. 2014; Cheng and

DeGiorgio 2019, 2020). We chose not to employ these be-

causewe do not believe that L. donovani complex populations

are sufficiently understood to bemeaningfully modeled at this

stage. For example, there is no accurate estimate of the re-

combination rates or mutation rates in these populations, nor

estimates of divergence between L. donovani and L. infantum

in terms of generations since it is not clear how many gen-

erations per year Leishmania species undergo in natural con-

ditions. Our approach was to divide the samples into multiple

populations and exclude potential between-population

hybrids, with the expectation that this would alleviate some

of the issues resulting from population structure.

We conclude that BS targets are generally not conserved

between populations of the L. donovani complex. rather than

Table 2 Continued

Candidate Gene Description Population Tajima’s D Variants (Nonsyn/Synon) Tests NCD2/Beta

LdBPK_366210.1 Unknown function, conserved in

Leishmania

EA1 4.1 6/8 Both

LdBPK_300960.1 Hypothetical protein, conserved in

Leishmania

EA1 4.2 10/10 Beta

LdBPK_312990.1 Clathrin and VPS/zinc finger RING-type EA1 4.3 14/11 Both
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a lack of power. The differentiation of BS targets is most likely

due to differentiated processes (or history) of selection, rather

than a lack of power to detect targets in some populations.

Several observations led us to this view. Tajima’s D is not at all

correlated between populations (data not shown), but this

might be expected if most genes are dominated by drift.

The high FST between populations, and relatively few shared

polymorphisms are consistent with this. The initial 24 candi-

date BS genes that were discovered in the EA1 population, did

not have statistically higher Tajima’s D (as a group) in any

other population (supplementary fig. 17, Supplementary

Material online), so this set is not enriched for BS elsewhere.

We also examined whether Betascan* outlier genes in EA1,

ISC1, or BM were enriched in any other population (supple-

mentary fig. 18, Supplementary Material online). In general,

outliers in one population were not enriched for Betascan*

scores in any other population, the only exception was ISC1

outliers were enriched in ISC2. Given the relatively recent der-

ivation of ISC1 from ISC2 in the 1970s (Imamura et al. 2016),

some maintenance of diversity is to be expected.

It is possible that other evolutionary changes caused some

of the signals we observe, including introgression events, par-

tial selective sweeps or transient heterozygosity excess that

can occur as a consequence of adaptation (Sellis et al.

2011). Local adaptation can also lead to an appearance of

within-population diversity and/or excess heterozygosity

(Wood et al. 2008; Eizaguirre and Lenz 2010; Ellison et al.

2011; Keller et al. 2011), particularly when the distribution of

local “niches” is not well understood, which is generally the

case with Leishmania. It is possible, for example, that multiple

variants exist within these genes as adaptations to regional

differences in host or sandfly cellular/extracellular environ-

ments. Parasite genes may vary with regional variations in

HLA loci that affect susceptibility to VL (Blackwell et al.

2020). In any case, the candidate genes we identify warrant

further study.

It is possible that BS of single-copy genes is not the most

important mechanism that maintains diversity within the

L. donovani complex, or protozoan parasites generally. The

effects of multicopy gene families encoding RIFIN, STEVOR,

and PfEMP1 variant surface antigens in pathogenesis of

Plasmodium parasites are well-described (e.g., Claessens

et al. 2014; Wahlgren et al. 2017). These genes are typically

removed from BS screens, because multicopy genes will

produce artefactual signals of BS when analyzed with

current bioinformatics methods (supplementary fig. 15,

Supplementary Material online). Although variants in dupli-

cated regions or multiple copies of genes may allow the par-

asite to maintain diversity, it is an open question whether this

diversity is maintained by neutral processes or BS.

At present we regard our candidate genes as “likely sus-

pects” for BS, rather than experimentally proved examples.
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FIG. 3.—Diversity is significantly elevated in BS target regions. On the left we show the distribution of nucleotide diversity (p) genome-wide for the EA1

population (GW) and the distribution for the 500kb around all the 20 vetted BS targets discovered in the EA1 population. On the right, the filled circles show

themedian p (for all BS targets) every 10kb up and downstream to 500kb from the targets. Circles are red where the diversity at this distance is significantly

higher than the genome-wide distribution and black otherwise (Wilcoxon signed rank tests <1.5 � 10�4, using both up- and downstream p values). The

distribution of nucleotide diversity values for target genes is shown using box and whisker plots at 50kb intervals.
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FIG. 4.—Candidate genes showmultiple genetic signatures of balancing selection. We show Betascan*, NCD2, Tajima’s D, nucleotide diversity (p), and

minor allele frequency (MAF) in a 250kb window around four candidate genes. The location of the candidate gene is indicated by a vertical gray bar. The

population-specific 90th percentile for eachmetric is shown as a horizontal dashed line, scores that are above this are drawn in darker shades, or plottedwith

a filled dot for MAF. Panel titles indicate the chromosome, gene start and end coordinates, and gene ID. Genes and populations where BS detected are; (A)

NLI interacting factor-like phosphatase LdBPK_330840.1 (EA1); (B) mitogen activated kinase-like protein LdBPK_363870.1 (EA1); (C) putative Zeta toxin

LdBPK_341740.1 (EA2); (D) hypothetical protein LdBPK_311170.1 (ISC2). Similar plots are shown for all candidate genes in supplementary figure 16,

Supplementary Material online.
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There are various biological scenarios that could produce sig-

nals of BS. Perhaps the simplest is frequency-dependent rare

allele advantage or overdominance within human/mamma-

lian hosts. In this case, experimental support for these targets

would require demonstration that host cell populations pro-

duced different responses to different alleles of the proteins.

Another possibility is that overdominance is caused by alleles

whose fitness differs in sandfly and human hosts. Technically,

this is more challenging to test, but could be achieved by

tracking genotype frequencies of segregating F2 populations

within laboratory passages between sandfly and mammalian

models. Finally, signals of BS can be caused by fine-scale clines

of alleles with differential fitness across different environ-

ments (Westram et al. 2021). In our case, these could be

sand fly or human host genotypes. Evidence for this scenario

would require fine-scale localized genetic data.

In summary, our description of diversity in the L. donovani

species complex provides insight into the global populations

of this parasite. We show that these populations are geneti-

cally divergent, with independent signals of BS. Our discovery

of a handful of genes with robust signatures of BS provides

candidate genes for the study of host–parasite and host–vec-

tor interactions.

Materials and Methods

Ethics

Samples from Brazil were obtained as part of a broad study

for genomic studies in the Laboratory of Leishmaniasis at the

Institute of Tropical Medicine Natan Portella, approved by the

Research Ethics Committee of the Federal University of Piau�ı

(approval ID number 0116/2005). All methods were per-

formed according to the approved guidelines and regulations.

A written informed consent was obtained from all study par-

ticipants or their legal guardians.

Strain Culture and Genome Sequencing

Bone marrow aspirates were obtained from the routine diag-

nosis of patients admitted to the Natan Portella Tropical

Diseases Institute in Teresina-PI, Brazil. Aspirates were inocu-

lated into a mixed culture medium NNN (Neal, Novy, Nicolle)

containing 2ml of Schneider’s medium supplemented with

10% fetal bovine serum, 2% urine and penicillin 10,000 U/

ml, and streptomycin 10mg/ml. The positive isolates in mixed

media were expanded in Schneider’s liquidmedium under the

same conditions mentioned above. Extraction of DNA from

the parasites was performed after washing to remove culture

medium, using Qiagen Blood and Tissue kit was used accord-

ing to the manufacturer’s recommendation.

Genome sequencing was performed on Illumina HiSeq

2500 machines (or similar) to produce paired end 150nt

reads. The majority (95%) of the samples were sequenced

to provide mapped read coverage of �30� (mean 97�,

minimum 19�). Raw sequencing reads were submitted to

NCBI’s sequencing read archive under the BioProject acces-

sion PRJNA702997.

Sequence Analysis/Variant Calling

Publicly available L. donovani complex data were downloaded

in FASTQ format from the European Nucleotide Archive (ENA:

https://www.ebi.ac.uk/ena). Full list of strain names/ENA num-

bers in supplementary table 1, SupplementaryMaterial online.

The L. donovani reference genome (strain BPK282A1) was

downloaded from TriTrypDB (version November 2019).

Strain reads were mapped to the reference using bwa

v.0.7.17 (Li and Durbin 2009), converted to bam, sorted,

indexed, and duplicates removed with SAMtools v.1.9 (Li

et al. 2009).

For each strain, SNPs and indels were called using The

Genome Analysis Toolkit (GATK) HaplotypeCaller v.4.1.0.0

(Depristo et al. 2011) using the “discovery” genotyping

mode Freebayes v.1.3.2 (https://github.com/ekg/freebayes)

accepting calls with a minimum alternative allele read count

�5. We accepted calls discovered by both methods, merged

all VCFs and regenotyped with Freebayes. The regenotyped

VCF was sorted with Picard SortVcf (https://broadinstitute.

github.io/picard/) and indexed with GATK IndexFeatureFile.

SNP hard-filtering was performed with BCFtools (https://sam-

tools.github.io/bcftools/) on biallelic variants only, to remove

sites with any of the following: DPRA< 0.73 or> 1.48; QA or

QR< 100; SRP or SAP> 2,000; RPP or RPPR> 3,484; PAIRED

or PAIRPAIREDR < 0.8; MQM or MQMR < 40. As chromo-

some 31 is generally supernumerary, we specified DPB <

3,0401 or > 121,603 to be removed, and for remaining

chromosomes, DPB < 182,99 or > 73,197 (<0.5� or >2�

median DPB). Biallelic indels were filtered to remove sites with

any of the following: DPRA < 0.73 or > 1.48; QA or QR <

100; SRP or SAP > 2,000. VCF annotation was performed

with the snpEff v.4.3 package (Cingolani et al. 2012) using

the default Leishmania_donovani_BPK282A1 database in-

cluded with the software. SnpSift filter with the option

“ANN[*].EFFECT has ‘missense_variant’” was used to extract

nonsynonymous sites.

With this variant filtering we observed a correlation be-

tween MAF and read coverage at SNP sites (supplementary

fig. 13, Supplementary Material online). Modeling showed

that duplications resulted in a systematic bias against calling

rare alleles. We therefore removed any SNP/indel sites where

the mean variant coverage within the ADMIXTURE-defined

population was�1.5� larger than the median coverage (cor-

responding to triploid sites in a generally diploid chromo-

some), or �1.25� larger than the median coverage for

chromosome 31 (corresponding to tetraploid sites in a gen-

erally triploid chromosome). We also removed sites where

coverage was highly variable, by excluding sites in the upper

5th percentile of the coverage standard deviation (SD). In each

Candidates for Balancing Selection in Leishmania donovani GBE
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population this filtered �5–7% of sites. Mapping coverage

was ascertained by SAMtools bedcov for each gene in the

multipopulation Variant Call Format (VCF) file. After this fil-

tering, the correlation between MAF and read coverage was

either far less significant or removed completely. This filtering

retained 10,377 out of a possible 10,778 sites in population

ISC1; 9,781 out of a possible 10,227 sites in population ISC2;

40,127 out of a possible 41,957 sites in EA1; 11,757 out of a

possible 12,365 sites in EA2, and 26,884 out of a possible

28,281 sites in BM.

To validate the variant filtering we produced a de novo

assembly of the MHOM/BR/06/MA01A L. infantum isolate

from Brazil (Carnielli et al. 2018), mapped Illumina reads

from the same isolate to the assembly, and called SNPs and

indels as above. All calls should be heterozygous sites, or

errors. Initial variant calling identified 4 SNPs and 23 indels,

after filtering no SNPs or indels remained, consistent with a

very low false positive call per strain. The MHOM/BR/06/

MA01A de novo assembly will be described elsewhere.

Briefly, the assembly was produced using Oxford Nanopore

Technology (ONT) reads to 110� coverage, assembled with

Canu v.1.9 (Koren et al. 2017), polished once usingONT reads

using Nanopolish v.0.9.2 (Loman et al. 2015), and thrice with

Illumina reads using Pilon v.1.22 (Walker et al. 2014).

Phylogenetic Analysis

VCF containing all variants from all 477 isolates was converted

to PHYLIP format using vcf2phylip (available at https://github.

com/edgardomortiz/vcf2phylip/tree/v2.0). This produced an

alignment of 283,378 sites. IQ-TREE v.1.5.5 (Nguyen et al.

2015) was used to perform maximum likelihood (ML) phylo-

genetic analysis with the model GTR þ ASC, which includes

ascertainment bias correction, with 1,000 bootstrap replicates

and 1,000 UFBOOT (Hoang et al. 2018) approximations to

produce ML support values. The resulting tree was visualized

with Figtree v.1.4.4 (available at http://tree.bio.ed.ac.uk/).

Treefiles are available in supplementary material posted to

FigShare online.

Population and Diversity Analysis

For all population analyses we utilized only biallelic SNPs,

pruning linked sites (r2 > 0.5) in 2kb windows with a step

size of 1 with PLINK v.1.9 (Purcell et al. 2007) using the option

–indep-pairwise 2kb 1 0.5. This produced 194,351 SNPs from

the initial 353,301 (158,950 variants removed). ADMIXTURE

v.1.3 (Alexander and Lange 2011) was run, unsupervised,

with K¼ 1–12. Principal component coordinates were pro-

duced with PLINK v.1.9.

Prior to BS tests performed on the five populations (EA1,

EA2, ISC1, ISC2, BM), mixed ancestry strains were removed

from population VCFs. Population-specific VCFs were filtered

with VCFtools v.0.1.15 (Danecek et al. 2011) to remove sites

that were fixed within a population (option –mac 1). Repeat

regions (see below) were also filtered out of VCFs at this

stage. Tajima’s D, p, and MAF were calculated on unpruned

variants using VCFtools. Tests for BS used biallelic SNPs and

indels from each population. Copy-number variant and dupli-

cated genome regions were removed from this analysis, as

these regions will produce biases in allele frequencies toward

common alleles, producing artifactual signals of BS (supple-

mentary text 1 and fig. 5, Supplementary Material online).

Variant calling for multicopy regions was beyond the scope

of this study.

Repeat regions were determined as follows. Intergenic

coordinates in L. donovani were extracted from the annota-

tion .gff, downloaded from TriTrypDB (version November

2019) with BEDtools v.2.27.1 (Quinlan and Hall 2010) com-

plement with default parameters. Intergenic regions were

then extracted from the genome using BEDtools getfasta.

Repeat regions in L. donovani were identified by nBLASTing

v.2.7.1 (Altschul et al. 1990) intergenic regions against the

rest of the genome, disregarding redundant hits and those

<200nt in length. Resulting coordinates were converted to

bed format for filtering out of the VCF. This filtering removed

401 sites in the ISC1 population; 446 in ISC2; 1,830 in EA1;

608 in EA2, and 1,387 in BM.

BS Tests

The NCD2 test used Equation 1 provided by Bitarello et al.

(2018), using windows of 1, 5, and 10kb with step sizes of

0.5, 2.5, and 5kb, respectively. Ten kilobase pairs of window

sizes were used in this study as sizes of 1 and 5kb largely

returned windows without scores (but see Identifying Genes

that are Subject to BS). A list of fixed differences between

L. donovani populations (total 285 isolates) and the nonad-

mixed BM L. infantum population (127 isolates) was used in

the analysis for NCD2: Fixed difference sites were encoded as

MAF¼ 0. Fixed differences were determined using bcftools

isec called on VCFs of all L. donovani populations and

L. infantum containing fixed variants, resulting in 76,284 fixed

difference sites. Our target frequency of 0.5 (tf) and

Equation 2 of Bitarello et al. (2018) were used to generate

Ztf-IS scores, with the exception of using the SD for each

number of informative sites (IS) rather than simulated SD. P

values for each window were calculated by assigning a rank

based on Ztf-IS score and dividing by the total number of

scanned windows.

The Betascan1* test (Siewert and Voight 2017), using de-

fault parameters, using the file format generated from the

variants using glactools (Renaud 2018; available at: https://

github.com/grenaud/glactools) We performed the test on

each individual population.

Betascan1* and NCD2 scores were calculated in windows

around each variant site. To obtain values for each gene, we

used the maximum Betascan1* score for all variants within

the gene and the minimum NCD2 score within each gene
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(because low NCD2 scores are indicators of BS). Following the

recommendations of Siewert and Voight (2020), we only con-

sidered windows containing �5 variants.

Gene Ontology Analysis

Gene Ontology (GO) descriptions and gene details for the

L. donovani BPK282A1 reference genome were downloaded

from TriTrypDB. GO enrichment analysis was performed using

the PANTHER service on tritrypdb.org. Proteins that were

classed as “hypothetical” or of “unknown function” were

BLASTed against the nonredundant protein sequences (nr)

database of NCBI to obtain possible identity by shared homol-

ogy, and to determine conservation across trypanosomes.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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