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Abstract 

When designing a clinical trial, one key aspect of the design is the sample size calculation. The 

sample size calculation tends to rely on a target or expected difference. The expected difference 

can be based on the observed data from previous studies, which results in bias. It has been 

reported that large treatment effects observed in trials are often not replicated in subsequent 

trials. If these values are used to design subsequent studies, the sample sizes may be biased 

which results in an unethical study. Regression to the mean (RTM) is one explanation for this. If 

only health technologies which meet a particular continuation criterion (such as 𝑝𝑝 < 0.05 in the 

first study) are progressed to a second confirmatory trial, it is highly likely that the observed 

effect in the second trial will be lower than that observed in the first trial.  

It will be shown how when moving from one trial to the next, a truncated Normal distribution is 

inherently imposed on the first study. This results in a lower observed effect size in the second 

trial.  

A simple adjustment method is proposed based on the mathematical properties of the truncated 

Normal distribution. This adjustment method was confirmed using simulations in R and 

compared with other previous adjustments. The method can be applied to the observed effect in a 

trial which is being used in the design of a second confirmatory trial, resulting in a more stable 

estimate for the “true” treatment effect. The adjustment accounts for the bias in the primary and 

secondary endpoints in the first trial with the bias being affected by the power of that study. 

Tables of results have been provided to aid implementation, along with a worked example. 

In summary, there is a bias introduced when the point estimate from one trial is used to assist the 

design of a second trial. It is recommended that any observed point estimates be used with 

caution and the adjustment method developed in this paper be implemented to significantly 

reduce this bias.   

Key words: regression to the mean, target effect size, effect size, trials in sequence 
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Introduction 

During the design stage of a randomised controlled trial (RCT), the most sensitive parameter in 

the standard sample size calculation is the target difference, d.  The most common method used to 

inform the quantification of d is to use an observed difference from a previously conducted study1.  

When designing trials in sequence, such that the second trial will only begin if the first trial is 

“successful”, one must be wary of a bias which is inherently introduced when using the results 

from one trial to design the next. This bias is known as regression to the mean (RTM) and is 

introduced by the second trial depending on the result of the first.  

The definition of success for the first trial could mean it failing to reach a specified decision point 

for the outcome of interest, whether this is reaching statistical significance or having an observed 

effect size within the bounds of a 95% confidence interval, the follow-up trial would be unlikely 

to be undertaken.  

This decision point in the first trial introduces bias into this trial which we will now discuss in the 

paper. The methods in this paper assume that the true treatment difference is known, and we will 

consider the implications of this assumption in the discussion.  

Background 

It has been reported that large treatment effects observed in trials are often not replicated in 

future trials2. For example, when replicating a small trial with a trial with a larger sample size the 

effect seen in the second trial may decrease in size3. Clinical programs where small or early trials 

report observing very large treatment effects often progress to larger trials or later stage trials. 

These trials are then considered as “failing"4 when the main trial does not demonstrate an effect 

size close to that estimated in the smaller, early phase trial.  

There are a number of plausible reasons for this. Regression to the mean has been discussed as 

being one possible reason4-6. Regression to the mean is defined by McCall et al as7  

“the likelihood that an outcome variable will show a significant change depending upon how 

much baseline values depart from the mean”.  

If only the ‘promising’ trials are taken forward to Phase III from Phase II, the average of the 

Phase III results will be less than the average of the ‘promising’ Phase II trials, due to an 

expected truncated distribution. This is caused by trials in Phase II having to exceed a pre-

specified criterion to move to Phase III. The left-truncated Normal distribution results in a higher 

mean difference for that trial. The average mean difference of the subsequent trial is less than 

that of the first and the distribution would not be truncated.  

With regards to phase II or pilot studies, careful design of the early study could reduce the 

impact of regression to the mean, however it is unlikely to eradicate the issue completely. The 
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occurrence of regression to the mean in the context of trial design and moving from one trial to 

the next needs careful management. 

There are two circumstances where regression to the mean could occur; those are when multiple 

measurements are being taken on the same patients (this can be defined as within-study) and 

when there are similar trials being conducted (this can be defined as between-study).  

Regression to the mean occurs, according to Morton and Torgerson, when8  

“an extreme group is selected from a population based on the measurement of a particular 

variable.”  

They comment that if another measurement of the same variable is taken from this same group, 

the mean of the second measurement will be “closer to the population mean than the first 

measurement.” This definition could be thought of as similar to what happens when moving 

from a Phase II to Phase III trial, or when using results from a Cochrane review or meta-analysis 

to design a large publicly funded trial. The first result must be “encouraging” the definition of 

which will be discussed later, if the second trial is to commence. So, in this situation, the extreme 

group contains all the trials which are “encouraging” though the results observed will likely 

decrease towards the population mean at the next trial. This highlights the importance of 

investigating current methods for adjusting for regression to the mean which could be applied to 

the case of moving from one trial to the next. 

The issue of analyses being done in sequence and the impact on inference also impacts studies 

for adaptive designs. For a group sequential trial if there is to be an interim analysis the data will 

be left truncated (if there is an assessment of futility) and right truncated (if there is a stop for 

efficacy). To obtain an unbiased estimate there is a need to allow for the interim analysis9.  It has 

also been recently highlighted how the sequential nature of studies can bias results when 

undertaking studies in sequence10. 

This paper will highlight when two studies are done in sequence how the statistical power of the 

first study will impact on the bias in the estimates of effect from that study.  It will also extend 

the work to show how, even when the first study is powered on a different primary endpoint to 

the second study, and the primary endpoint of the second study is assessed in the first study as a 

secondary, then it will also be biased.  Simple methods are proposed to allow for the adjustment 

and tables are provided to assist in their application. 

 

Methods of Adjustment for Trials in Sequence 

According to Zhang et al., proposed methods of adjusting for overestimation of the treatment 

effect are not regularly implemented11. A search of the literature identified two simple 

comparable methods which could be used for adjustment for trials in sequence12,13. There are 

more advanced methods of adjustment which are briefly mentioned in the discussion. 
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Wang et al.12 proposes a method of adaptation for the sample size calculation when using data 

from Phase II trials. The context of this adaptation is industry-based (Phase II to Phase III, or 

early-phase to late-phase) and considers the use of surrogate endpoints in Phase II trials to be one 

of the causes for a high failure rate of Phase III trials. This could be, for example, the use of 

tumour shrinkage as the endpoint for the Phase II trial when the primary outcome is survival in 

the Phase III trial. Another example could be using a 1-month outcome in the early phase trial 

when the main trial requires a 6-12-month outcome. 

Later in the paper we will highlight how designing a study around a surrogate endpoint could 

mean the results for secondary outcomes – which may be used as the primary endpoint for the 

next trial – could be biased. 

Wang et al. focused on the calculation of the sample size for Phase III trials based on either the 

point estimate from the Phase II trial or the lower confidence limit. It recommends having a bias 

adjustment of ∆� − 1 × 𝑠𝑠. 𝑒𝑒(∆�) 

where s.e is the standard error and ∆�  is the point estimate from the Phase II trial. However, this 

result can lead to very small estimated effect sizes and therefore not many Phase III trials being 

started. Kirby et al. developed an adjustment method which was tested on the scenarios used by 

Wang. This method is a multiplicative adjustment12 which is based on the concept of assurance. 

The general adjustment is ∆� × 0.9 

Where ∆�  is the point estimate from the Phase II trial.  

These methods of adjustment can be applied to the context of previous research to inform a new 

study, such as Phase II to Phase III, or pilot study to confirmatory trial.  

 

Mathematical Development 

Methods 

As mentioned earlier in this paper, it could be assumed that the initial trial will follow a truncated 

Normal distribution. The truncation occurs because there is a specific criterion above which the 

trial will be progressed to the second trial.  

Two types of trial designs will be considered in this paper. The first is two trials in sequence for 

example a Phase 2 to Phase 3 trial. The Phase 2 trial will be deemed successful if 𝑝𝑝 ≥ 0.05. The 

second will be a pilot study to main trial sequence. For the pilot study to be deemed successful 

the criteria will be that 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 > 0. 
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The Truncated Normal Distribution 

The truncated Normal distribution is the general Normal distribution bounded by a random 

variable from either above, below or both. This could occur if there was a floor- or ceiling-effect 

with the data, for example if trial eligibility criteria included a pre-specified threshold for blood-

pressure values, there could be a truncation at that threshold value. 

Suppose 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2) and let Y  be a truncated Normal, denoted 𝑇𝑇𝑁𝑁(𝜇𝜇,𝜎𝜎2,𝑎𝑎, 𝑏𝑏) where (𝑎𝑎, 𝑏𝑏) are 

restrictions on the domain of 𝑋𝑋 (−∞ ≤ 𝑎𝑎 < 𝑏𝑏 ≤ ∞)14. These results are for a two-sided 

truncated Normal distribution. The probability of X  lying within the internal of (𝑎𝑎, 𝑏𝑏) is given 

by 


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 −
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 −
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Where ( )...Φ  is the cumulative density function of the standard Normal distribution. 

The probability density function of a left-truncated Normal distribution is 𝑓𝑓�𝑦𝑦�(𝑎𝑎, 𝑏𝑏)� =  

1𝜎𝜎𝜙𝜙(
𝑦𝑦−𝜇𝜇𝜎𝜎 )1−Φ�𝑎𝑎−𝜇𝜇𝜎𝜎 �    (2) 

for 𝑎𝑎 ≤ 𝑦𝑦 and 𝑓𝑓(𝑦𝑦) = 0 otherwise. 

From Equation (1) the probability of 𝑋𝑋 lying within the interval (𝑎𝑎, ∞) is given by 

1 −Φ�𝑎𝑎−𝜇𝜇𝜎𝜎 �      (3) 

Where Φ(. . ) is the cumulative distribution function, since ∞→b . 

The expectation for the truncated Normal distribution is given by the following, if we let 𝐸𝐸(𝑌𝑌) =𝜇𝜇∗ where 𝜇𝜇∗ is the expectation of the truncated Normal distribution 
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As previously mentioned, if only statistically significant studies were taken forward to the 

second trial, the results would form a left-truncated Normal distribution. Therefore, this will 

remain the focus for this research.  

From (4), if we simplify this such that  

σ
µ−

=
a

A  

then this becomes 
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Where μ is the expectation or mean of the underlying Normal distribution (the untruncated 
Normal distribution), and σ is the population standard deviation. It can be observed that 𝜇𝜇∗ > 𝜇𝜇 

since  
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so when the distribution is left-truncated, the mean is higher than the standard Normal 

expectation. This method is similar to the Maximum Likelihood method discussed by Kirby et 

al.10 

If one is able to find the truncation point, then it is possible to calculate the mean for the 

distribution if it were not truncated. This can then be used to assess the bias and determine an 

adjustment by which one can estimate an unbiased mean for the first trial. 

The probability of 𝑋𝑋 lying in the area greater than 𝑎𝑎 becomes 







 −

Φ−=>
σ
µa

aXP 1][     (6) 

Since ∞→b  this result looks similar to that for the power of a trial )1( β− . Here,  β  is the 

probability of making a Type II error, whilst the power of a trial is the probability of observing a 

difference if there is truly a difference to be observed (i.e. if the alternative hypothesis is true).  

Note it is often the 𝑡𝑡-distribution which is used for the test statistics and to estimate the power. 

However, for large sample sizes, the 𝑡𝑡-distribution tends to the standard Normal distribution. 

Results 

To derive an adjustment that can be applied to reduce the bias when moving from initial study 

results on to designing a later phase study, there are a number of steps. Further details of these 

can be found in Appendix 1. 

It has been highlighted that when moving from one study to the next, a truncated Normal 

distribution is observed for the results of the first study. The truncation point of this distribution 

is associated with the power of the first study. Thus, the power is linked to the bias observed 

when estimating the effect size for the second study. This will be expanded upon in the next 

section. 

It can be shown that the distribution of the effect sizes in the first trial is 
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𝑁𝑁�𝐸𝐸𝐸𝐸�𝑛𝑛
2

, 1�. 

Let 𝐸𝐸(𝑌𝑌) be denoted 𝜇𝜇∗, which is the mean of the truncated Normal distribution. Since the 

truncation point, 𝑎𝑎, can be calculated using 𝑡𝑡2𝑛𝑛−2,1−𝛼𝛼/2, and the truncated mean 𝜇𝜇∗ is known, we 

can rearrange the equation (5) in terms of the true mean to be  𝜇𝜇 = 𝜇𝜇∗ − 𝜎𝜎 Φ(𝐴𝐴)

1 −Φ(𝐴𝐴)
 

where 𝐴𝐴 =
𝑎𝑎−𝜇𝜇𝜎𝜎 . 

Power-based Truncation Point 

The purpose of this section is to highlight the association between the truncation point and the 

power of a study, whereas the previous section highlighted the association between the 

truncation point and the bias. Therefore, the bias and the power are both directly linked to the 

truncation point. 

The results from the previous section can be used to investigate the truncation point using the 

Minimum Detectable Difference (MDD). The MDD is the smallest difference which can be 

statistically detected in a particular study16.  

One intuitive method to calculate the MDD is to set the power to 50% for a sample size 

calculation, this gives the minimum value that the 95% confidence internal around the point 

estimate will exclude the null value. Using a standard sample size calculation,   

𝑛𝑛 =

2𝜎𝜎2 �𝑍𝑍1−𝛽𝛽 + 𝑍𝑍1−𝛼𝛼2�2𝑑𝑑2  

With the power set to 50%, the 𝑍𝑍1−𝛽𝛽 term becomes equal to 0. If the resulting equation is re-

arranged in terms of 𝑑𝑑, it becomes 

𝑑𝑑𝑜𝑜𝑜𝑜𝑑𝑑 = �2𝜎𝜎2𝑍𝑍1−𝛼𝛼/22𝑑𝑑2  

If the 𝑃𝑃-value observed in the trial is less than the (two-sided) statistical significance of 0.05, and 

the sample size is achieved, then the ratio of the detectable difference to the target difference can 

be calculated for various powers by 𝑑𝑑𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑  

This will provide an adjustment value for the target difference, 𝑑𝑑, showing the minimum 

detectable difference. These results can be seen in Table 1.  
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[Insert Table 1 here] 

 

If a trial has a power of 80% and a 𝑃𝑃-value of 0.05, the detectable difference would be 0.7𝑑𝑑, 

where 𝑑𝑑 is the target difference. These values are closely associated with the truncation point, 

since the truncation point is the value at which the 𝑝𝑝-values become significant, and the 

detectable difference is the proportion of 𝑑𝑑 which will observe a 𝑃𝑃-value of 0.05. 

Results of a priori truncation point calculation 

This section compares the results of a series of simulations, where the bias is quantified and 

observed, with the results following the implementation of the adjustment derived in Table 1. 

The adjustment outlined in Table 1 can be used in the design of subsequent trials based on 

current or previously observed results. 

Each variable in the results Table 2 and Table 3 are described here. The values for µ  are those 

of the true effect sizes and 𝜇𝜇∗ show the biased mean estimate on the standardised scale. 

• Sample size per arm ( n ) is set to pre-specified values shown in the tables. 

• µ  is the mean difference based on the non-central t -distribution. Thus ES=µ  where 

ES  is the effect size 

• 𝑎𝑎𝑜𝑜𝑜𝑜𝑑𝑑 is calculated by 𝑥𝑥. 𝜇𝜇, where 𝑥𝑥 is the associated value from Table 1. 

• 𝑎𝑎 is the mathematical truncation point calculated as 21,22 α−−= nta  

The difference between 𝜇𝜇∗ and µ quantifies the level of bias which occurs from the truncation of 

the underlying distribution, with 𝜇𝜇∗ being the mean of the truncated distribution (the observed 

mean) and µ being the mean of the non-truncated distribution (the ‘true’ mean).  

A series of simulations were performed, based on the concept of trials in sequence. There were 

10,000 pairs of trials run in sequence, following a Normal distribution with varying “true” mean 

and a fixed standard deviation. The sample sizes were calculated then the results of the 

simulations represented the individual patient observed values. The average was taken to be 𝜇𝜇∗. 
[Insert Table 2 here] 

[Insert Table 3 here] 

 

Pilot study to Main Trial 

This section presents an extension of the previously described adjustment method to the case of a 

pilot study to a main trial. The adjustment has been altered slightly to assume the “success” of a 

pilot study being that there is a positive treatment effect. 
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For a pilot study to main trial scenario, we are considering only pilot studies where the observed 

treatment effect is positive. The same adjustment as above would be developed by setting the 

truncation point, 𝑎𝑎, equal to zero. The results are given in Table 4. 

[Insert Table 4 here] 

 

It can be observed that the ratio of mean differences observed from the simulations are similar to 

the ratio of mathematical mean differences developed here. 

Some assumptions have been made for the context of pilot study to main trial, the first being that 

the sample size calculation for the pilot study, which is capped at a minimum of 10 participants 

per arm. The number of subjects has been derived from the results presented by Whitehead et 

al.17. The second assumption is that we are considering only the context of having a positive 

(𝑑𝑑 > 0) result in the pilot study resulting in a confirmatory study.  

However, these results for the mathematical solution depend on the conditions set moving 

forward with the main trial. Since these results are all based on only observing a positive effect 

size in the pilot study, these results can be extended to any pilot trial which has a decision point 

before starting the next trial.  

Development of Adjustment Method 

Up to this point, we have highlighted the bias in the first trial when two trials are done in 

sequence. By being able to quantify this bias from a known cut-point, it is possible to adjust for it 

by extending the results from Table 2 to Table 4 by using the bias expected for the decision point 

as an adjustment.  

Adjustments that can be applied to the results of trial 1 (T1) is presented in Table 5 (for powered 

studies) and Table 6 (for pilot studies).  

The values presented in Table 5 are the adjustment values which the observed trial 1 effect size 

should be multiplied by to get the adjusted effect size for trial 1. This gives a more unbiased 

estimate of the ‘true’ effect size. It can be seen that the adjustment for constant power is 

relatively stable irrespective of varying observed effect size. 

[Insert Table 5 here] 

The adjustment values developed for pilot study to main trial scenarios are presented in Table 6. 

These are dependent on the continuation criteria imposed on the pilot study, for example this 

could be that the observed effect size was positive (𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑑𝑑 > 0) or that the 95% confidence 

interval contains a pre-specified minimum clinically important difference. 

[Insert Table 6 here] 

 



11 

 

Powering on a Surrogate or Secondary Endpoint 

So far in the paper, the scenario under discussion has been when two studies being done in 

sequence are having decisions made based on the same endpoint. Often, however, the primary 

endpoint for the first study will be different to that in the second study. Thus, when undertaking a 

preliminary study, it will not be powered on the primary outcome for the definitive study but a 

surrogate or other outcome such as the primary outcome but at an early timepoint. The outcome 

for the definitive study may also be still assessed in the trial but is a secondary outcome. 

For a primary outcome, let 𝜇𝜇1 be the effect from the underlying Normal distribution and 𝜇𝜇1∗ be 

the effect from the truncated Normal distribution. The estimate of the mean effect for the 

secondary outcome would be obtained from16 𝜇𝜇2 =  𝜇𝜇2∗ − 𝜌𝜌𝜎𝜎2𝜎𝜎1 (𝜇𝜇1∗ − 𝜇𝜇1) 

Where 𝜎𝜎1 and 𝜎𝜎2 are the standard deviations for the primary and secondary outcomes and 𝜌𝜌 is 

the pooled correlation coefficient between the primary and secondary outcome. Thus, if there is a 

bias in the primary outcome there will also be bias in the secondary outcome – which in the 

context of this paper will be the primary outcome for the study being planned. 

Table 7 extends the results in Table 5 and Table 6 by giving the ratio of effects for the secondary 

outcomes between studies run in sequence assuming that 𝜎𝜎1 = 𝜎𝜎2. This latter assumption may be 

reasonable if the primary outcome in the pilot trial is an early time point for the outcome in the 

definitive trial. 

[Insert Table 7 here] 

The work in Table 7 could also be extended to pilot trials. If the correlation between the primary 

and secondary outcomes are known, and the bias in the primary outcome is known then this 

approach can be used to adjust to get an unbiased estimate for the primary outcome.  

In practice, the correlation between the primary and secondary endpoints and the bias are not 

always known, however these could be estimated from results from other studies with similar 

target populations. Alternatively, a sensitivity assessment could be performed so a range of 

feasible correlation assumptions are evaluated and the impact on the adjusted effect size can be 

considered. 

 

Comparison with other methods 

In order to assess the developed adjustment, it will be compared with the Wang and Kirby 

adjustments discussed earlier in the paper. The adjustments are compared and presented in Table 

8. 
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The adjustments have been applied to the simulation results, which were outlined in an earlier 

section, and which were produced to confirm the mathematical methodology. A series of 

simulated parallel, two-arm trials were produced with varying sample size, power and target 

effect size. Recall that there were 10,000 pairs of trials run in sequence, following a Normal 

distribution with varying “true” mean and a fixed standard deviation. From Table 8, the 

conditions for the simulations can be gathered. For the evaluation of a varying power and 

constant effect size, the power is increased in 5% increments whilst the effect size is held 

constant at 0.2. This was based on a mean of 10, and a standard deviation of 50. This resulted in 

the sample size increasing as the power increased. 

For the evaluation of varying the effect size whilst power remained constant, the power was set 

to 80% and the effect size was increased from 0.2 to 0.8, whilst keeping the standard deviation at 

50. This was achieved by increasing the mean from 10 to 40 in stages.  

The results for these simulations are extensive and have not been included. Figure 1 shows the 

comparison of the adjusted estimates with the “true” treatment effect. It can be observed that 

there is some variation between the adjusted values, the Maximum Likelihood adjustment seems 

the most stable to the “true” mean difference. Figure 2 shows the comparison of the various 

adjustments applied to simulation data with varying effect size. 

[Insert Table 8 here] 

[Insert Figure 1 here.] 

Figure 1 shows how the various adjustment methods behave in relation to the true mean 

difference (10) for varying powers. As the power increases, the unadjusted mean difference gets 

closer to the true mean difference, mirroring the results shown earlier in the paper. The 

Maximum Likelihood adjustment is the most stable across all powers, with only minor 

fluctuations due to the random nature of simulations. It is interesting to note that as the power 

increases the Wang adjustment tends towards the true mean whilst the Kirby adjustment, which 

is a constant value tends away from the true mean difference.   

[Insert Figure 2 here.] 

Figure 2 shows a comparison of the adjustments with the true effect size for 80% power. We can 

see that both Maximum Likelihood and Kirby adjustments follow the true mean difference very 

closely since the Kirby adjustment would multiply the observed effect size by 0.90, whereas the 

Maximum Likelihood adjustment would multiply the observed by 0.89. The unadjusted line 

shows the effect that regression to the mean has on the observed result. 

 

Worked Example 

A new study is being planned which will follow a first trial where a statistically significant result 

was the observed.  The wish is to use the effect from the observed study to assist in the design of 
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the new study.  Now suppose the first study was designed with 80% power and the observed 

treatment effect for the primary outcome was 19.1. If we apply the adjustment from Table 5, we 

get the following result 

19.1 × 0.89 = 16.98 

Therefore, when designing the second study, we should use 16.98 as the estimate of effect from 

the first study to assist in the quantification of the effect size.  

Now suppose the first study was a preliminary Phase II trial and it was powered on an early time 

point.  The later time point was also assessed and the effect of 16.98 was the observed treatment 

difference.  If we assume the primary and secondary outcomes have the same variance, and that 

the correlation between them was ρ =0.80 we can then make use adjustments in Table 7. The 

adjustment in Table 7 which corresponds to a correlation of 0.80 and the adjustment from Table 

5 (0.89) is 0.91. 

Thus, if we apply the adjustment from Table 7, we get the following result to account for bias, 

19.1 × 0.91 = 17.38 

Thus, assuming that there is a correlation of 0.8 between the primary endpoint and the secondary 

endpoints in the first study we should use 17.38 to guide us in quantifying the target estimated 

effect size for the main trial.  

Discussion 

The implication of the results in the paper is that if a point estimate from a trial is being used to 

assist in the design of a confirmatory trial then the observed effect should be interpreted with 

caution as the estimate. Even if the primary outcome for the confirmatory trial is a secondary 

endpoint in the first trial then the observed effects should be interpreted with care.  

This paper has demonstrated how inherent bias is introduced when using a point estimate from one 

trial to design the sample size for the confirmatory trial. The reason the first trial is biased is that 

only results which are supportive (evidence of effect) would result in a secondary confirmatory 

trial.  

The implication of this is if the point estimate from the first trial is then used as an effect size for 

the main trial, it will be overestimating the effect for the planned study.  If the observed effect is 

being used to assist the quantification of an effect – complementing subjective clinical opinion for 

example – then the issue of bias needs to be considered but the consequences are less. 

There have been simple comparable adjustments described previously for this regression to the 

mean effect when moving from one trial to the next. The other adjustments mentioned in this 

manuscript either apply a standard “rule-of-thumb” method, or are considering combining study 

results (study 1, study 2) and comparing the combined observed with an expected difference. The 
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focus of the work documented in this paper is the design of the second study based on the results 

of the first study. This has been expanded to a range of design scenarios. 

The simple adjustment approach described in this paper compares well with these previous 

adjustments and is more stable for various target effect sizes. To assist researchers, tables have 

also been provided which adjust for the bias in the first study, depending on the power of the first 

study and the power of the second study (and the correlation between outcomes if the primary 

outcome in the main is being used as a secondary outcome in the first.) 

The results in the paper were highlighted using continuous data assumed to take a Normal form. 

However, they can be extended to other distributional forms if the test statistic has a Normal 

approximation.  

The work in the paper assumes that the true treatment difference is assumed known, it does not 

cover the scenario where the true treatment difference is unknown. This could be considered a 

limitation. However, point estimate and a 95% confidence interval will contain the true treatment 

difference 95% of times if the estimates are unbiased. If the estimates are biased, this will not be 

the case. We have shown when the estimates from the first study done in sequence will be biased 

and will need an adjustment, this ensures the 95% confidence interval has an appropriate coverage. 

A limitation of the approach we are proposing is that it is a simple one. Alternative approaches 

could be considered extending the work of group sequential trials19 or sequential meta analyses20. 

Kirby et al also describes alternative methods10,13. The methods in this paper could be used to guide 

researchers on plausible effects to assist in the decision of a future study. Especially if this 

quantification is complemented by alternative approaches such as clinical judgement. Further 

recent work has investigated the regression to the mean when moving from small proof-of-concept 

studies to larger trials, as we have discussed in this paper, and considered adjustments for selection 

bias from a frequentist and Bayesian perspective21. 

The results could also be extended to when a systematic review has been used as a justification 

to undertake a definitive trial. If the consequent meta-analysis suggests further work should be 

undertaken, then the results of this meta-analysis should be interpreted with caution when 

designing the definitive trial. Extending the results from this work applied to meta-analyses 

being used to assist in the design of future trials needs investigating further.   

 

Conclusion 

It has been shown in this paper that there is a bias when the point estimate from a first trial is being 

used in the design of a second trial, even if the outcome of interest for the main trial is a secondary 

outcome in the initial trial. The recommendation from this work is to implement the adjustment 
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method proposed in this paper. Tables are provided to assist researchers to apply the results in 

practice.  
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Appendix 1 

This Appendix contains further details on the derivation of the adjustment described in this 

paper.  

Finding the Truncation Point 

Based on the results discussed up to this point, we can deduce that it is possible to calculate the 

truncation point using the results from the distribution.  

Consider many t -test results, forming a t -distribution. The results for a t -distribution of t -

statistics is given by 

( ) ( )

n
s

xx
t 2121 µµ −−−
=  

We can define 21 xxd −= . Under the null hypothesis, 021 =− µµ so the equation becomes 

n
s

d
t =  

If the number of subjects in each group can be assumed to be equal, the degrees of freedom are 

22 −n . Therefore the truncation point can be given by the proportion of trials excluded due to 

having 05.0≥P corresponding to the value 
2

1,22 α−−n
t . Therefore, the truncation point for small 

samples ( 30<n ) could be calculated by taking the inverse cumulative density function of a 

t -distribution with mean d , standard deviation s  and 22 −n degrees of freedom.  

As previously discussed, for large sample sizes ( 30≥n ), the t -distribution tends to a standard 

Normal distribution. The adjustments proposed in this section are based on the Normal 

distribution but could be generalised. 

Using the standard result for a non-central t-distribution, the power of a trial can be calculated as 

1-β = 1-T-1 �t1-
α2 ,nA(r+1)-2, nA(r + 1)-2,�rnAdS2

(r1)σ2� 

Where T-1(… ) is the cumulative density function of a non-central t-distribution with non-

centrality parameter15 � rnA
r + 1

. 

In this paper the focus is on two-arm trials with r = 1, therefore the non-centrality parameter 

becomes 
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�ndS22σ2. 
It can be observed that  

�dS2σ2 

is the standardised effect size, denoted ES. Therefore, the non-centrality parameter becomes 

ES × �n

2
 

The distribution of the effect sizes multiplies by �n

2
 

to give a Normal distribution 

N�ES�n

2
, 1�. 

Let E(Y) be denoted μ*, which is the mean of the truncated Normal distribution. Since the 

truncation point, a, can be calculated using t2n-2,1-α/2, and the truncated mean μ* is known, we 

can rearrange the equation (5) in terms of the true mean to be  μ = μ*-σ Φ(A)

1-Φ(A)
 

where A =
a-μσ . 
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Table 1 The adjustment values for the detectable difference. Note: 𝑥𝑥 is the value by which the target difference, 𝑑𝑑, 

should be multiplied. 

Power X 

80 0.700 

81 0.691 

82 0.682 

83 0.673 

84 0.663 

85 0.654 

86 0.645 

87 0.635 

88 0.625 

89 0.615 

90 0.605 

95 0.544 

99 0.457 

 

  



21 

 

Table 2 Comparison of mathematically calculated truncation points and ratios of mean differences with simulated 

values for various powers, having multiplied the ES by �2/𝑛𝑛 

Trials in sequence 

  Truncation Point Mean difference Ratio 

Power Sample Size (n) 𝑎𝑎𝑜𝑜𝑜𝑜𝑑𝑑 𝑎𝑎 µ 𝜇𝜇∗ 𝜇𝜇𝜇𝜇∗ Simulations 
𝜇𝜇𝜇𝜇∗ 

80 393 1.962 1.963 0.2 0.225 0.889 0.885 

85 450 1.962 1.963 0.2 0.218 0.916 0.926 

90 526 1.962 1.962 0.2 0.212 0.943 0.945 

95 651 1.963 1.962 0.2 0.206 0.971 0.970 

99 950 1.960 1.961 0.2 0.201 0.994 0.994 

 

  



22 

 

Table 3 Comparison of mathematically derived truncation points and the associated ratio of mean differences with 

the simulated values for various effect sizes having multiplied the ES by �2/𝑛𝑛 

Trials in sequence (80% Power) 

  Truncation Point Mean difference Ratio 

Effect Sample Size (n) 𝑎𝑎𝑜𝑜𝑜𝑜𝑑𝑑 𝑎𝑎 µ 𝜇𝜇∗ 𝜇𝜇𝜇𝜇∗ Simulations 
𝜇𝜇𝜇𝜇∗ 

0.2 393 1.962 1.963 0.2 0.225 0.889 0.886 

0.3 175 1.962 1.963 0.3 0.338 0.889 0.891 

0.4 99 1.962 1.963 0.4 0.450 0.889 0.884 

0.5 64 1.962 1.963 0.5 0.561 0.891 0.880 

0.6 45 1.962 1.963 0.6 0.672 0.892 0.892 

0.8 26 1.962 1.963 0.8 0.893 0.896 0.896 
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Table 4 Comparison of mathematically calculated truncation points and ratios of mean differences with simulated 

values for various effect sizes for pilot study to main trial. 

Pilot to Main trial 

  Truncation Point Mean difference Ratio 

Effect Sample Size (n) 𝑎𝑎 µ 𝜇𝜇∗ 𝜇𝜇𝜇𝜇∗ Simulations 
𝜇𝜇𝜇𝜇∗ 

0.2 20 0 0.2 0.340 0.588 0.591 

0.3 14 0 0.3 0.440 0.682 0.682 

0.4 11 0 0.4 0.533 0.751 0.745 

0.5 10 0 0.5 0.610 0.820 0.823 

0.6 10 0 0.6 0.680 0.883 0.881 

0.8 10 0 0.8 0.837 0.955 0.959 
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Table 5 The adjustment for trials in sequence for various powers and effect sizes. Note: x is the value by which the 

observed difference 𝑑𝑑𝑇𝑇1 should be multiplied. 

Trials in Sequence 

Effect Size=0.2 

Power Adjustment (x) 

80 0.89 

85 0.92 

90 0.94 

95 0.97 

99 0.99 

Power = 80% 

Effect Adjustment (x) 

0.2 0.89 

0.3 0.89 

0.4 0.89 

0.5 0.89 

0.6 0.89 

0.8 0.90 
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Table 6 The adjustment for pilot study to main trial designs. Note: x is the value by which the observed difference 𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜𝑑𝑑  should be multiplied. 

Pilot study to main trial 

Effect Adjustment (x) 

0.2 0.59 

0.3 0.68 

0.4 0.74 

0.5 0.82 

0.6 0.88 

0.8 0.96 
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Table 7 Ratio of Point Estimates for the Secondary Outcomes from Studies Run in Sequence 

  Bias in the primary outcome 

 Extending Table 6 Adjustments  Extending Table 5 Adjustments 𝜌𝜌 0.59 0.68 0.74 0.82  0.89 0.92 0.94 0.97 0.99 

0.1 0.96 0.97 0.97 0.98  0.99 0.99 0.99 1.00 1.00 

0.2 0.92 0.94 0.95 0.96  0.98 0.98 0.99 0.99 1.00 

0.3 0.88 090 0.92 0.95  0.97 0.98 0.98 0.99 1.00 

0.4 0.84 0.87 0.90 0.93  0.96 0.97 0.98 0.99 1.00 

0.5 0.80 0.84 0.87 0.91  0.95 0.96 0.97 0.99 1.00 

0.6 0.75 0.81 0.84 0.89  0.93 0.95 0.96 0.98 0.99 

0.7 0.71 0.78 0.82 0.87  0.92 0.94 0.96 0.98 0.99 

0.8 0.67 0.74 0.79 0.86  0.91 0.94 0.95 0.98 0.99 

0.9 0.63 0.71 0.77 0.84  0.90 0.93 0.95 0.97 0.99 
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Table 8 All adjustment methods results for trials in sequence, by power. Note: x is the value by which the observed 

difference 𝑑𝑑𝑇𝑇1 should be multiplied. The value y should be subtracted from the observed difference.  

Trials in Sequence 

Varying Power, Constant Effect Size (0.2) 

Power X (Maximum Likelihood) X (Kirby) Y (Wang) 

80 0.89 0.90 0.139 

85 0.92 0.90 0.126 

90 0.94 0.90 0.113 

95 0.97 0.90 0.097 

99 0.99 0.90 0.074 

 

Varying Effect Size, Constant Power (80%) 

Effect Size X (Maximum Likelihood) X (Kirby) Y (Wang) 

0.2 0.89 0.90 0.139 

0.3 0.89 0.90 0.309 

0.4 0.89 0.90 0.551 

0.5 0.89 0.90 0.853 

0.6 0.89 0.90 1.207 

0.8 0.90 0.90 2.093 
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Figure 1 
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Figure 2 

 

 


