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a b s t r a c t 

When exposed to complementary features of information across sensory modalities, our brains formulate cross- 
modal associations between features of stimuli presented separately to multiple modalities. For example, auditory 
pitch-visual size associations map high-pitch tones with small-size visual objects, and low-pitch tones with large- 
size visual objects. Preferential, or congruent , cross-modal associations have been shown to affect behavioural 
performance, i.e. choice accuracy and reaction time (RT) across multisensory decision-making paradigms. How- 
ever, the neural mechanisms underpinning such influences in perceptual decision formation remain unclear. Here, 
we sought to identify when perceptual improvements from associative congruency emerge in the brain during 
decision formation. In particular, we asked whether such improvements represent ‘early’ sensory processing ben- 
efits, or ‘late’ post-sensory changes in decision dynamics. Using a modified version of the Implicit Association 
Test (IAT), coupled with electroencephalography (EEG), we measured the neural activity underlying the effect 
of auditory stimulus-driven pitch-size associations on perceptual decision formation. Behavioural results showed 
that participants responded significantly faster during trials when auditory pitch was congruent, rather than in- 
congruent, with its associative visual size counterpart. We used multivariate Linear Discriminant Analysis (LDA) 
to characterise the spatiotemporal dynamics of EEG activity underpinning IAT performance. We found an ‘Early’ 
component ( ∼100–110 ms post-stimulus onset) coinciding with the time of maximal discrimination of the auditory 
stimuli), and a ‘Late’ component ( ∼330–340 ms post-stimulus onset) underlying IAT performance. To characterise 
the functional role of these components in decision formation, we incorporated a neurally-informed Hierarchi- 
cal Drift Diffusion Model (HDDM), revealing that the Late component decreases response caution, requiring less 
sensory evidence to be accumulated, whereas the Early component increased the duration of sensory-encoding 
processes for incongruent trials. Overall, our results provide a mechanistic insight into the contribution of ‘early’ 
sensory processing, as well as ‘late’ post-sensory neural representations of associative congruency to perceptual 
decision formation. 
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In everyday life, we encounter situations where we are required to
orm rapid perceptual decisions based on ambiguous sensory informa-
ion ( Philiastides et al., 2017 ; Philiastides and Heekeren, 2009 ). This can
nvolve processing information presented to multiple sensory modal-
ties ( Alais et al., 2010 ; Ghazanfar and Schroeder, 2006 ), a process
ommonly referred to as multisensory decision-making ( Bizley et al.,
016 ; Drugowitsch et al., 2014 ; Franzen et al., 2020 ; Rapaso et al.,
012 ). Previous research has shown decision-making benefits deriving
rom complementary features of information across multiple sensory
odalities ( Ernst and Bülthoff, 2004 ). The brain’s tendency to system-

tically map implicitly learnt associations between features of informa-
ion across sensory modalities is referred to as cross-modal association
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 Parise and Spence, 2013 ; Spence and Deroy, 2013 ; Spence et al., 2011 ).
hen exposed to complementary features of sensory information, fea-

ures that refer to the same object are redundantly associated, forming
ross-modal associations, enabling the brain to exploit the correlation
etween such informational cues when forming perceptual decisions
rom ambiguous, and often noisy, unisensory information ( Bien et al.,
012 ; Glicksohn and Cohen, 2013 ) . 

Cross-modal associations have been shown to influence the con-
olidation of multisensory information when forming perceptual de-
isions ( Bizley et al., 2016 ; Drugowitsch et al., 2014 ; Engel et al.,
012 ). This has been evidenced in studies that have used speeded
lassification paradigms, demonstrating behavioural effects such as in-
reased response speed (i.e. decreased reaction times; RTs; Kayser and
ayser, 2018 ; Laurienti et al., 2004 ; Silva et al., 2017 ), increased choice
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ccuracy ( Franzen et al., 2020 ; Kayser and Kayser, 2018 ; Kayser et al.,
017 ; Kim et al., 2008 ), and improved stimulus detection ( Adam and
oppeney, 2014 ; Aller et al., 2015 ). These associative influences to-
ards multisensory decision-making are consistently attributed to the
odulatory effects of cross-modal (in)congruency ( Marks, 2004 ), i.e.
odulations in behavioural performance when a multisensory stimulus
as two or more features that are (un)favourably mapped. Preferential,
r anticipated, cross-modal associations, are referred to as congruent ,
hereas non-preferential, or non-anticipated, cross-modal associations,
re referred to as incongruent . A paradigmatic example demonstrated ex-
ensively across previous literature concerns auditory pitch-visual size
ssociations ( Bien et al., 2012 ; Evans and Tresiman, 2010 ; Gallace and
pence, 2006 ; Parise and Spence, 2009 ; 2008 ; 2012 ). Congruent audi-
ory pitch-visual size associations map high-pitch tones with small-size
bjects, and low-pitch tones with large-size objects, whereas their incon-
ruent counterparts map high-pitch tones with large-size objects, and
ow-pitch tones with small-size objects. 

Previous research has demonstrated that the congruency of audi-
ory pitch-visual size associations modulates behavioural performance,
n particular, benefitting the formation of perceptual decisions. For ex-
mple, Gallace and Spence (2006) found, using a visual discrimina-
ion paradigm, that participants responded more rapidly (i.e. decreased
Ts) when auditory stimulus pitch (high/low-pitch tones) was congru-
nt with the visual stimulus size (small/large-size disks) than when in-
ongruent or no auditory stimulus was presented. Similarly, Parise and
pence (2008) found that when participants were asked to judge the
emporal order of two different-sized visual stimuli (large/small-size
rey circles), congruent auditory tones increased choice accuracy (i.e.
igher sensitivity temporal order judgements). In contrast, in a follow-
p study, participants judged the spatial discrepancy of an auditory stim-
lus less accurately (i.e. higher just noticeable difference discrimina-
ion thresholds) when presented congruently with the visual stimulus,
uggesting a decisional bias of congruency and showing that the be-
avioural effects of congruency depend on the task at hand ( Parise and
pence, 2009 ). Finally, decreased RTs for congruent, compared to in-
ongruent, pairings were found when only one unisensory stimulus fea-
ure was presented per trial using an Implicit Association Test (IAT;
arise and Spence, 2012 ). 

The neural basis of cross-modal associations within perceptual de-
ision formation has recently become a focus of human electrophys-
ology and neuroimaging research ( Spence et al., 2011 ; Bizley et al.,
016 ). However, the neural mechanisms facilitating these behavioural
nhancements remain less well understood. In particular, it is not clear
hether such improvements reflect the consequences of ‘early’ sensory
rocessing benefits, or ‘late’ post-sensory changes in decision dynamics,
r both. For example, auditory pitch-visual size congruency effects have
een identified across two Event-Related Potentials (ERPs) at ∼250 ms
nd ∼300 ms at parietal and frontal electrodes respectively ( Bien et al.,
012 ), whereas neural modulations of associative semantic congruency
ave been found in parahippocampal, dorsomedial, and orbitofrontal
ortices at ∼100 ms and ∼400 ms post-stimulus ( Diaconescu et al.,
011 ). Similarly, significant differences between congruent and incon-
ruent learned label-object associations have been identified as early as
140 ms across occipital regions, whereas mismatches to the learned as-
ociations evoked a modulation between ∼340 ms and ∼520 ms across
arietal regions ( Kovic et al., 2010 ). Overall, the above studies have
tarted to shed light on the neural underpinnings of associative con-
ruency across various association types, yet they have not provided a
onclusive mechanistic account of how the brain uses cross-modal asso-
iations to improve the efficiency of perceptual decisions. 

Difficulties in identifying the neural basis of cross-modal associa-
ions further stems from the utilisation of experimental paradigms that
resent two or more unisensory features. Previous research has asso-
iated multiple neural processes with the observed decision-making
enefits, in particular i) multisensory integration; integrating informa-
ion across sensory modalities into unified percepts ( Angelaki et al.,
2 
009 ; Calvert et al., 2004 ; Mercier and Cappe, 2020 ), or ii) a form
f selective attention; dividing attentional resources towards attend-
ng to task-relevant information in one sensory modality, and ignor-
ng task-irrelevant information in another modality ( Bien et al., 2012 ;
hoi et al., 2018 ; Gallace and Spence, 2006 ; Marks, 2004 ). Attend-

ng to two simultaneously presented stimulus features may facilitate
nhancements to perceptual decision formation from benefits not di-
ectly attributed to genuine cross-modal associations. As such, any
nderlying neural activity will display mixed selectivity representing
 variety of sensory, decision-related, and other task-relevant signals
 Chandrasekaran, 2017 ; Dahl et al., 2009 ; Fusi et al., 2016 ; Kobak et al.,
016 ; Park et al., 2014 ; Raposo et al., 2014 ; Rigotti et al., 2013 ).
herefore, it remains difficult to characterise whether cross-modal as-
ociations represent early sensory processing benefits and/or late post-
ensory changes to decision dynamics during the formation of percep-
ual decisions. 

In this study, we sought to capitalise on the novelty of using a mod-
fied variant of the Implicit Association Test (IAT), demonstrated by
arise and Spence (2012) , to induce auditory pitch-visual size cross-
odal associations from the presentation of one unisensory stimulus

eature (i.e. auditory pitch). The IAT presents one stimulus feature per
rial and manipulates associative congruency by switching the stimu-
us feature-response key mappings across blocks of trials. Therefore,
he proposed experimental manipulations overcome the methodologi-
al limitations present in previous research. First, the presentation of
ne sensory stimulus feature limits confounding effects from the pro-
esses of multisensory integration and selective attention. Second, the
anipulation of associative congruency across blocks limits confound-

ng effects from explicit stimulus feature mappings and subjective re-
orting of cross-modal associations. Thus, by coupling this paradigm
ith electroencephalography (EEG), we can record the neural activity
nderlying formulated auditory pitch-visual size associations, which is
ess likely to be affected by confounding activity attributed to processing
ultisensory stimuli. 

Using this paradigm, we aim to mechanistically characterise the neu-
al dynamics underlying cross-modal associations during perceptual de-
ision formation. To achieve this, we first analysed single-trial EEG ac-
ivity using multivariate Linear Discriminant Analysis (LDA; Parra et al.,
002 ; 2005 ; Philiastides and Sajda, 2006 ; Philiastides et al., 2006 ;
hiliastides et al., 2014 ; Sajda et al., 2009 ). Then, to dissect the con-
tituent processes underlying the effects of pitch-driven associations on
erceptual decision formation, we adopted a neurally-informed cognitive

odelling approach ( Delis et al., 2018; Diaz et al., 2017; Franzen et al.,
020; Kayser and Shams, 2015; Turner et al., 2013, 2016, 2017 ). This
pproach links underlying latent behavioural variables to hypothesised
ognitive processes, and further constrains model fits with recorded
euroimaging data, to interpret the modulation of neural activity un-
er different experimental conditions. Previous neurally-informed cog-
itive modelling research has provided mechanistic characterisations of
eural activity underlying perceptual decision formation, and recently,
ultisensory decision-making ( Delis et al., 2018 ; Franzen et al., 2020 ;
ercier and Cappe, 2020 ). Here we used a neurally-informed Hierar-

hical Drift Diffusion Model (HDDM; Wiecki et al., 2013 ) to understand
ow the neural representations of auditory-driven pitch-size associa-
ions drive behavioural benefits to perceptual decision formation. Using
his approach, we can extract sensory and decision-specific processes
rom brain activity and relate these to associative congruency benefits
hen forming perceptual decisions. 

ethods and materials 

articipants 

20 participants (male = 7, female = 13; age range = 19–
2 years) were recruited for this study. All participants reported
ormal/corrected-to-normal vision and normal hearing. Participants
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ere recruited using the University of Glasgow Subject Pool and re-
eived £6/hour (UK Sterling) for their participation. The study was ap-
roved by the ethics committee of the College of Science and Engineer-
ng at the University of Glasgow (CSE application number 300,130,001),
nd was conducted in accordance with the Declaration of Helsinki. 

timuli 

We used two auditory and two visual stimuli, which were created
nd presented using MATLAB (Mathworks) and the Psychophysics Tool-
ox Extensions ( Brainard, 1997 ). Auditory stimuli consisted of two
00 ms pure tones (‘high’ and ‘low’ pitch, 2000 Hz and 100 Hz respec-
ively). Visual stimuli consisted of two light grey circles (‘small’ and
large’, 2 cm and 5 cm, 1.1° and 2.8° of visual angle respectively). The
ound intensity of each tone was matched to 72 dB(A) SPL for left and
ight ears using a sound level metre. Auditory stimuli were presented
sing Sennheiser headphones and visual stimuli were presented on a
ansol 2100A CRT monitor at a refresh rate of 85 Hz. 

mplicit Association Test 

The IAT is a two-alternative forced-choice (2AFC) task that mea-
ures implicit perceptual associations between two arbitrary stimu-
us features by manipulating stimulus feature-response key mappings
 Greenwald et al., 1998 ). In one block of trials, two stimulus features
re assigned, or mapped , to the same response key, whereas in a sepa-
ate block of trials, they are assigned to different response keys. Reac-
ion times (RTs) and choice accuracy are collected as dependant vari-
ble measurements of behavioural performance (and perceptual choice
ormation). The IAT assumes that the congruency of stimulus feature-
esponse key mappings modulates behavioural performance, with per-
eptual choices faster (i.e. lower RTs) and more accurate (i.e. higher
hoice accuracy) when stimulus features are assigned to the same re-
ponse key than when assigned to different response keys. 

This study used a modified version of the IAT, adapted from
arise and Spence (2012) , to formulate auditory pitch-visual size cross-
odal associations ( Fig. 1 ). In this version, on each block, one audi-

ory (high-pitch/low-pitch tone) and one visual (small-size/large-size
ircle) stimulus feature are assigned to each response key. Participants
re then instructed to categorise as quickly and as accurately as possi-
le which stimulus feature was presented on a single-trial basis using
he correctly assigned response key. Congruency was manipulated by
witching the stimulus feature-response key mappings across blocks of
rials. Congruent mappings assigned high-pitch tones and small-size cir-
les to the left response key, and low-pitch tones and large-size circles
o the right response key ( Fig. 1 , top ). Incongruent mappings, however,
witched the auditory stimulus feature-response key mappings only, so
hat high-pitch tones and low-pitch tones were assigned to the right
nd left response keys respectively ( Fig. 1 , bottom ). These mappings
ustify previous findings, which suggested that high-pitch tones are of-
en preferentially associated with small-size visual objects, and vice
ersa ( Gallace and Spence, 2006 ; Evans and Treisman, 2010 ; Parise and
pence, 2012 ). The assigned visual stimulus features remained fixed
cross blocks for two reasons: (1) Pilot testing found that participants
tarted to exhibit cross-modal associations between visual size and their
ssigned response keys, rather than their auditory pitch counterparts.
pecifically, small-size and large-size visual objects were associated with
eft and right response keys respectively. (2) In total, experimental ses-
ions ran for ∼3 h ( ∼2 h for EEG setup/cleanup, ∼1.5 h for the task
f 1280 trials per subject). Taken together, this made it difficult to de-
ign a cross-modal association experiment where the auditory and vi-
ual stimuli were counterbalanced, and participants were not asked to
pend more than three hours in a single laboratory session. For these
easons, we chose to only manipulate auditory pitch-response key map-
ings, therefore manipulating auditory stimulus feature congruency,
3 
cross blocks. These stimulus feature-response key mapping manipula-
ions are consistent with the mapping manipulations used in the study
y Parise and Spence (2012) . 

rocedure 

Participants completed the experiment in a dark and electrically
hielded room. Each block began with instructions on the auditory pitch-
isual size mapping between stimuli and response keys (see Implicit As-

ociation Test section). Participants were given as much time as they
eeded to memorize the instructions for the upcoming block. Each trial
tarted with a fixation cross presented centrally on-screen for a random-
zed period (uniform distribution from 500 to 1000 ms). Then, one of the
our stimuli (see Stimuli section) were selected randomly and presented
or 300 ms. Participants were instructed to categorize, as quickly and
s accurately as possible, the presented stimulus using the left and right
eyboard response keys, as defined by the instructions given for that
pecific block (see Implicit Association Test section). Feedback was given
fter each trial, with green fixation crosses given for correct response
hoices, and red fixation crosses given for incorrect response choices.
eedback was provided for a randomised duration (uniform distribu-
ion from 300 ms to 600 ms). In total, participants completed 8 blocks
4 blocks each for the congruency of stimulus feature-response key map-
ings presented in a randomized order) for a total of 1280 trials (160
rials per block; 40 trials for each stimulus feature). 

nalysis of behavioural data 

For each participant, median RTs and choice accuracy (calculated as
he proportion of correct choices over all trials) were used as dependant
ariable measurements of behavioural performance. These were calcu-
ated separately for two independent variables: i) stimulus feature (au-
itory: high-pitch/low-pitch tones; visual: small-size/large-size circles),
nd ii) congruency of stimulus feature-response key mappings (congru-
nt/incongruent). To further assess the effect of switching auditory stim-
lus feature-response key mappings, we calculated RTs for correct and
ncorrect choice responses. Trials with RTs less than 300 ms, or more
han 1200 ms, were excluded from further analysis, as behavioural per-
ormance on such trials is often attributed to “fast guesses ” ( < 300 ms) or
ttentional lapses ( > 1200 ms) during testing ( Whelan, 2008 ). Overall,
05 trials (auditory: 677 trials; visual: 228 trials) were excluded from
urther analysis, leaving a total of 9850 trials for auditory stimuli and
0,323 trials for visual stimuli 

As anticipated, RT data was not normally distributed
 Whelan, 2008 ). Therefore, we statistically analysed median RTs
nd choice accuracy using Wilcoxon Matched-Pairs Signed-Rank tests,
nd further analysed RTs for correct and incorrect choices responses
sing Mann-Whitney U Paired tests. Effect sizes were calculated by
ividing the Wilcoxon Signed-Rank test statistic ( Z ) by the square
oot of the test population ( N = 20) for stimulus features (auditory:
igh-pitch/low-pitch tones; visual: small-size/large-size circles) and
ongruency (congruent/incongruent) respectively ( Rosenthal et al.,
994 ). For Mann-Whitney U Paired testing analysing RTs of correct
nd incorrect choices within each congruency and stimulus feature
ondition for auditory stimuli, effect sizes were calculated by dividing
he Mann-Whitney U test statistic ( Z ) by the square root of the total
umber of trials for correct and incorrect responses in each congruency
ondition (congruent/incongruent) and stimulus feature condition
high-pitch/low-pitch tones). For Mann-Whitney U Paired testing
nalysing RTs of correct and incorrect choices across congruency and
uditory stimulus feature conditions, effect sizes were calculated by
ividing the Mann-Whitney U test statistic ( Z ) by the square root of the
otal number of trials in each accuracy condition (correct/incorrect)
cross congruency and auditory stimulus feature conditions This en-
bled us to analyse the effects of both congruent/incongruent stimulus
eature-response key mapping conditions, and high-pitch/low-pitch
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Fig. 1. Implicit association test. Participants were presented with one unisensory stimulus feature (auditory high/low-pitch tone; visual small/large-size circle) per 
trial, and were asked to categorize which stimulus feature, within that modality, was presented as quickly and accurately as possible, using the correct response key 
(left/right). Auditory congruency (congruent/incongruent) was manipulated by switching the stimulus feature-response key mappings across blocks ( top , congruent 
block mappings; bottom , incongruent block mappings). 
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one presentations for correct and incorrect RTs respectively. Post hoc

ower analyses were conducted using G 

∗ Power ( Faul et al., 2007 ; 2009 )
o assess whether any identified significant results were of sufficient
tatistical power ( Cohen 1992a ; 1992b ; see the Power analyses section
n Supplementary materials ). Statistical analysis of all behavioural data
as completed using R. 

EG recording and preprocessing 

Continuous EEG data was recorded in a sound-attenuated and elec-
rostatically shielded room using a 128-channel BioSemi amplifier sys-
em and ActiView recording software (Biosemi, Amsterdam, Nether-
ands). Signals were sampled and digitized at 512 Hz, then band-pass
ltered online between 0.16 and 100 Hz. Signals originating from ocular
uscles were recorded from four additional electrooculography (EOG)

lectrodes placed below and at the outer canthi of each eye. 
Individual blocks of data were preprocessed using the Fieldtrip Tool-

ox ( Oostenveld et al., 2011 ), which was implemented in MATLAB us-
ng custom scripts. Epochs of 2 s, from − 0.5 to 1.5 s relative to stim-
lus onset, were extracted and filtered between 0.5 and 90 Hz using
 Butterworth filter, before being down-sampled to 200 Hz. Potential
ignal artefacts were removed using Independent Component Analysis
ICA), using the Fieldtrip toolbox ( Oostenveld et al., 2011 ). Compo-
ents related to typical eye movement activities, such as blinks, or noisy
lectrode channels were removed. Horizontal, vertical, and radial EOG
ignals were further processed using established procedures ( Hipp and
iegel, 2013 ; Keren et al., 2010 ) and trials with high correlations be-
ween eye movements (e.g. saccades) and components in the EEG data
4 
emoved. Remaining trials with amplitudes that exceeded ± 120 μV were
lso removed. Successful cleaning was verified by visual inspection of
ingle trials. 

EG signal analysis - Linear Discriminant Analysis 

We applied single-trial multivariate Linear Discriminant Analy-
is (LDA; Parra et al., 2002 ; 2005 ; Philiastides and Sajda, 2006 ;
hiliastides et al., 2006 ; Philiastides et al., 2014 ; Sajda et al., 2009 ) to
xtract EEG components discriminating between congruent and incon-
ruent trials for auditory stimulus-locked EEG data only. Specifically,
or a pre-defined time window of interest, this method applies a linear
ultivariate classifier to EEG data in order to estimate a spatial weight-

ng vector that quantifies the optimal combination of EEG sensor lin-
ar weights. When applied to multichannel EEG data, this yields a one-
imensional projection that maximally discriminates between two con-
itions of interest. This projection represents the ‘discriminating compo-
ent’ that integrates all signal information across the multichannel EEG
rray, while reducing effects common to both conditions. Compared
o univariate trial-averaging approaches, notably Event-Related/Evoked
esponse Potential (ERP) analyses, multivariate approaches are better
ble to spatially integrate information across the multidimensional EEG
ensor space, yielding components which both preserve inter-trial signal
ariability and increase the signal-to-noise ratio ( Sajda et al., 2011 ) for
reserved task-relevant information. Note that the term ‘component’ is
referred instead of ‘source’ in order to make clear that this is a projec-
ion of all EEG activity correlated with the underlying source. 
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We used a sliding window approach ( Parra et al., 2005 ; Sajda et al.,
009 ) to identify a projection of the multichannel EEG signal, 𝑥 𝑖 ( 𝑡 ) ,
here 𝑖 = [ 1 …𝑁 𝑡𝑟𝑖𝑎𝑙𝑠 ] , and 𝑁 is the total number of trials, within short

ime windows that maximally discriminated between congruent and in-
ongruent trials for auditory stimulus features only. All time windows
ad a width of 50 ms, with the window centre 𝑡 shifted from − 100 ms to
00 ms, relative to auditory stimulus-onset, in 5 ms increments. Specif-
cally, we used logistic regression ( Parra et al., 2002 ; 2005 ) to learn a
28-channel spatial weighting vector 𝑤 ( 𝑡 ) that achieved maximal dis-
rimination within each time window. This yields a one dimensional
rojection, 𝑦 𝑖 ( 𝑡 ) , for each trial 𝑖 and given window 𝑡 : 

 ( 𝑡 ) = 𝑤 

𝑇 𝑥 ( 𝑡 ) = 

𝐷 ∑
𝑖 =1 

𝑤 𝑖 𝑥 𝑖 ( 𝑡 ) 

Here, 𝐷 represents the number of channels in the multichannel EEG
rray and 𝑇 refers to a matrix transpose operator. Our classifier was de-
igned to map component amplitudes, 𝑦 𝑖 ( 𝑡 ) , for congruent and incongru-
nt trials, that separates activity maximizing differences and minimiz-
ng similarities of effects from neural processes common to both con-
itions. In discriminating the two congruency categories, the classifier
aps negative and positive discriminant component amplitudes to con-

ruent and incongruent trials respectively. Thus, larger negative values
ndicate a higher likelihood of categorizing auditory stimuli within con-
ruent stimulus feature-response key mappings, and larger positive val-
es indicate a higher likelihood of categorizing auditory stimuli within
ncongruent stimulus feature-response key mappings, with values near
ero reflecting less discriminative component amplitudes. 

We quantified classification performance of our classifier for each
ime window using the area under a receiver operating characteris-
ic (ROC) curve ( Green and Swets, 1966 ), referred to as an 𝐴 𝑧 value,
sing a leave-one-out cross-validation procedure ( Gherman and Phil-
astides, 2015 ; Philiastides and Sajda, 2006 ). To determine group sig-
ificance thresholds for discriminator performance, we implemented a
ermutation test, whereby congruent and incongruent trial labels were
andomized and submitted to the leave-one-out procedure. This ran-
omization procedure was repeated 1000 times, producing a probabil-
ty distribution for 𝐴 𝑧 , which we used as reference to estimate the 𝐴 𝑧 

alue leading to a significance level of 𝑝 < 0 . 05 . 
Finally, the linearity of our model allowed us to compute scalp pro-

ections of the discriminating components resulting from Eq. (1) by es-
imating a forward model as: 

 ( 𝑡 ) = 

𝑥 ( 𝑡 ) 𝑦 ( 𝑡 ) 
𝑦 ( 𝑡 ) 𝑇 𝑦 ( 𝑡 ) 

here the EEG data ( 𝑥 ) and discriminating components ( 𝑦 ) are orga-
ized as matrix and vector notations, respectively, for convenience.
ere, the EEG matrix, 𝑥 𝑖 ( 𝑡 ) , denotes channel activity across rows and tri-
ls across columns for all 5 ms increments in time window 𝑡 , whereas dis-
riminating components, 𝑦 𝑖 ( 𝑡 ) , are organized as single-trial vectors, 𝑦 ( 𝑡 ) ,
ith each row is from trial 𝑖 . Such forward model implementations can
e displayed as scalp topographies and interpreted as the coupling be-
ween discriminating component amplitudes and observed multichannel
EG activity, whereby vector 𝑎 ( 𝑡 ) reflects the coupling of the discriminat-
ng component 𝑦 ( 𝑡 ) that explains most of the activity in 𝑥 ( 𝑡 ) , with maps
llustrating this optimal component-activity coupling ( Philiastides et al.,
014 ). 

ierarchical Drift Diffusion Model – description 

We fit participants’ behavioural performance i.e. RTs and choice ac-
uracy, with a Hierarchical Drift Diffusion Model (HDDM; Wiecki et al.,
013 ). Similar to the traditional Drift Diffusion Model (DDM;
atcliff et al., 2015 ; R. 2016 ; Forstmann et al., 2016 ; Ratcliff and
cKoon, 2008 ; Ratcliff, 1978 ), the HDDM assumes sensory evidence

s stochastically accumulated over time, towards one of two decision
5 
oundaries, corresponding to two choice alternatives (e.g. correct or in-
orrect choices; left or right response keys). For each decisional process,
he HDDM returns parameter estimates of four internal components of
erceptual decision-making, (1) the rate of evidence accumulation (drift
ate), (2) possible a priori bias towards one of the two choice alternatives
starting point), (3) the distance between two decision boundaries con-
rolling the amount of evidence required for one particular choice alter-
ative (decision boundary), and (4) the duration of non-decisional pro-
esses, which can include time taken for stimulus encoding and motor-
esponse production latency (non-decision time). 

ierarchical Drift Diffusion Model – fitting 

To fit HDDM to participants’ performance and estimate internal de-
isional processes, we used the HDDM toolbox ( Wiecki et al., 2013 ),
n open-source software package, written in Python, that permits cus-
om fits of HDDM variants to participants’ RTs and choice accuracy.
he HDDM uses a Bayesian hierarchical framework to estimate the
bove four parameters, whereby sampled prior probability distributions
f the model parameters are updated based on a likelihood function,
ormed from the data given to the model, to yield posterior proba-
ility distributions. The HDDM uses Markov-Chain Monte Carlo sam-
ling within this framework, whereby prior distributions of estimated
arameters are iteratively adjusted by a likelihood function that max-
mizes the log likelihood of predicted mean RTs and choice accuracy
 Gamerman and Lopes, 2006 ). The use of Bayesian hierarchical frame-
orks, and specifically the HDDM, allows for several benefits relative

o traditional (non-hierarchical) DDM analysis. First, such frameworks
ssume that participants’ samples in a dataset are randomly drawn from
 group ( Vadekerchkove et al., 2011 ), thereby constraining participant-
nd group-level posterior distributions, which yield more stable param-
ter estimates for individual participants ( Wiecki et al., 2013 ). Second,
he HDDM has been found to be more robust in achieving stable pa-
ameter estimates in datasets with low numbers of trials, compared to
on-hierarchical DDM approaches ( Ratcliff and Childers, 2015 ). Third,
ather than quantifying the most likely value for each parameter, un-
ertainty can be directly conveyed with posterior distributions for each
stimated parameter ( Wiecki et al., 2013 ; Navarro and Fuss, 2009 ;
elman, 2003 ). Fourth, and most importantly for our analysis, the
DDM framework supports the use of external variables as regressors
f estimated model parameters, to assess the relations between specific
arameters with further behavioural or neuroimaging data ( Delis et al.,
018 ; Frank et al., 2015 ; Franzen et al., 2020 ; Mercier and Cappe, 2020 ;
remel and Wheeler, 2015 ). 

To implement the HDDM, we used a process referred to as ‘accuracy-
oding’ ( Wiecki et al., 2013 ), which fits the HDDM to RT distributions
hat assume the upper and lower decision boundaries corresponding to
orrect and incorrect choices respectively. We sampled parameter esti-
ates for drift rate ( 𝛿), decision boundary ( 𝜃), and non-decision time

 𝜏). Starting point (z) was set as the midpoint between the two deci-
ion boundaries, since the IAT had no a priori bias towards either choice
lternative (i.e. response key; Philiastides et al., 2011 ). We did not in-
lude any inter-trial variability parameters in our models as previous
tudies have shown that it is difficult to achieve stable posterior esti-
ates, particularly with fewer trials ( Boehm et al., 2018 ; Ratcliff and
hilders, 2015 ). For each model, we ran 5 separate Markov chains with
1,000 samples each. For each chain, the first 1000 were discarded as
burn-in ”, and the rest subsampled ( “thinned ”) by a factor of two, to
educe the autocorrelation within and between Markov chains. This is
 conventional approach to MCMC sampling, whereby initial samples
n the “burn-in ” period are based on the selection of a random starting
oint, and neighbouring samples likely to be highly correlated. Both is-
ues are likely to provide unreliable posterior distributions for estimated
arameters. This left 25,000 remaining samples for our model, which
onstituted the probability distributions for each estimated parameter,
llowing us to compute individual parameter estimates for participants
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n  
nd condition categories. To ensure Markov chain convergence, we
omputed Gelman-Rubin Ȓ statistics between chains ( Gelman and Ru-
in, 1992 ). This compares within-chain and between-chain variance of
stimated parameters both for individual participants and group condi-
ions. We verified that all Ȓ statistics fell between 0.98 and 1.02, which
uggests reliable convergence between chains. 

ierarchical Drift Diffusion Model – EEG regressors 

We sought to use our EEG discrimination analysis results to inform
he fitting of the HDDM to our behavioural data (i.e. RTs and choices).
pecifically, we used the HDDM toolbox ( Wiecki et al., 2013 ) to con-
truct regressors that assessed the trial-by-trial linear relationship be-
ween our single-trial EEG discriminator amplitudes (for congruent and
ncongruent trials) and posterior estimates for drift rate ( 𝛿) , decision
oundary ( 𝜃) , and non-decision time ( 𝜏) . In line with our behavioural
esults, in which we reported a significant effect of RTs decreasing for
ongruent trials, we hypothesized that component amplitudes would
e predictive of increases in the rate of evidence accumulation (drift
ate) and decreases in evidence required for categorising auditory stim-
li (decision boundary). For the duration of non-decisional processes
non-decision time), we hypothesized that either a) component ampli-
udes for congruent trials would be predictive of decreases in the du-
ation of non-decisional processes, or b) component amplitudes for in-
ongruent trials would be predictive of increases in the duration of non-
ecisional processes. Therefore, as part of the model fitting within the
DDM framework, we used our single-trial EEG discriminator ampli-

udes for congruent and incongruent trials to construct regressors for
rift rate ( 𝛿) , decision boundary ( 𝜃) , and non-decision time ( 𝜏) as fol-
ows: 

= 𝛼0 + 𝛼1 ∗ 
|||𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 

||| + 𝛼2 ∗ 
|||𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 

|||

= 𝛽0 + 𝛽1 ∗ 
|||𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 

||| + 𝛽2 ∗ 
|||𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 

|||

= 𝛾0 + 𝛾1 ∗ 
|||𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 

||| + 𝛾2 ∗ 
|||𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 

|||
here |𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 
| and |𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 
| are the maximum, single-trial, discriminator

mplitudes of subject-specific, stimulus-locked EEG components captur-
ng the highest classification performance between congruent and incon-
ruent trials (corresponding to group peak 𝐴 𝑧 values; Early ∼ 110 ms;
ate ∼ 340 ms; see Fig. 3 ). Coefficients 𝛼1 , 𝛽1 , 𝛾1 and 𝛼2 , 𝛽2 , 𝛾2 weight
he slope of each parameter by the absolute values of |𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 
| and |𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 
|

espectively, with intercepts 𝛼0 , 𝛽0 , 𝛾0 , on a trial-by-trial basis for each
ubject and congruency condition. Note that we used the absolute val-
es of our single-trial EEG discriminator amplitudes to construct regres-
ors, since congruent trials were predominantly categorised by negative
𝑦 𝑚𝑎𝑥 
𝑒𝑎𝑟𝑙𝑦 

| and |𝑦 𝑚𝑎𝑥 
𝑙𝑎𝑡𝑒 

| values, and incongruent trials were predominantly cat-
gorised by positive |𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 
| and |𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 
| values respectively (see EEG signal

nalysis – Linear Discriminant Analysis section). Hence, by using these re-
ression coefficients, we were able to assess the trial-by-trial modulatory
ffects of each identified component on drift rate, decision boundary,
nd non-decision time in both congruency conditions. Consequently, we
an characterise the behavioural benefits of cross-modal associative con-
ruency on perceptual decision formation, dissecting which decisional
rocesses best predict decreases in choice RT. 

To assess the posterior predictive power of our regression coeffi-
ients, we first calculated the posterior probability densities of samples
hat differed from 0 using the built-in functions of the HDDM toolbox
 Wiecki et al., 2013 ) corresponding to our pre-defined hypotheses pre-
icting the effect of decreased RTs for congruent trials, and decreased
Ts for incorrect responses for congruent trials (albeit not significantly
ffecting choice accuracy, see Behavioural results section). For drift rate
nd incongruent non-decision time regression coefficients, probability
ensities were calculated from the proportion of samples greater than
 (P( 𝛿 > 0); P( 𝜏 > 0)), whereas for decision boundary and congruent
6 
on-decision time regression coefficients, probability densities were cal-
ulated from the proportion of samples less than 0 (P( 𝜃 < 0); P( 𝜏 < 0)).
hen, we calculated each coefficient’s posterior log-odds by applying the

ogit function to the proportion of posterior samples in favour of their
orresponding hypothesis ( Ince et al., 2020 ). This Bayesian Inference
pproach was utilised because Bayesian hierarchical modelling frame-
orks violate the assumption of independence in its posterior estimation

ampling procedure, since group-level and participant-level parameter
osteriors are simultaneously estimated ( Wiecki et al., 2013 ). There-
ore, null-hypothesis significance testing approaches commonly utilised
n frequentist approaches to statistical analysis are not recommended.
o determine the prevalence of true positive results, implicating strong
redictive effects of our regression coefficients on posterior parameter
stimations, we further calculated the log posterior odds proportion of
 hypothetical sample corresponding to a false-positive rate of ɑ = 0.05
i.e. a 95% true-positive threshold). Regression coefficient log-odds pro-
ortions greater than the hypothetical log-odds proportion of our false
ositive rate (which is equal to 2.944) suggests highly predictive effects
f our regression coefficients on changes to estimated posterior param-
ters favoured by our hypotheses. 

esults 

ehavioural results 

Participants responded faster in auditory trials with congruent com-
ared to incongruent stimulus feature-response key mappings ( Fig. 2 b,
ongruent: median = 608 ms post-stimulus offset; Incongruent: 643 ms
ost-stimulus offset). Wilcoxon Signed-Rank Testing determined this
nding to be statistically significant ( Z = − 2.135, p = 0.033, ef-

ect size = − 0.477, Wilcoxon Signed-Rank Testing). This result held
or both correct ( Fig. 2 f, Congruent/Correct: median = 611 ms post-
timulus offset; Incongruent/Correct: median = 645 ms post-stimulus
ffset, Z = − 6.940, p < 0.001, effect size = − 0.073, Mann-Whitney U
esting) and incorrect trials separately ( Fig. 2 f, Congruent/Incorrect:
edian = 578 ms post-stimulus offset; Incongruent/Incorrect: me-
ian = 621 ms post-stimulus offset, Z = − 2.628, p = 0.004, effect
ize = − 0.091, Mann-Whitney U testing). Furthermore, RTs were sig-
ificantly longer for correct compared to incorrect responses for con-
ruent stimulus feature-response key mappings ( Fig. 2 f, Correct: me-
ian = 611 ms post-stimulus offset; Incorrect: median = 578 ms post-
timulus offset, Z = − 2.142, p = 0.016, effect size = − 0.030, Mann-
hitney U Testing), but not for incongruent stimulus feature-response

ey mappings ( Fig. 2 f, Correct: median = 645 ms post-stimulus offset;
ncorrect: median = 621 ms post-stimulus offset, Z = − 0.664, p = 0.253,
ffect size = − 0.010, Mann-Whitney U Testing). We found no signifi-
ant effect of stimulus feature on median RTs ( Fig. 2 a, High-Pitch Tone:
edian = 625 ms; Low-Pitch Tone: median = 624 ms, Z = − 0.788,
 = 0.430, effect size = − 0.176, Wilcoxon Signed-Rank Testing). There
as also no significant effect when testing correct ( Fig. 2 e, High-
itch Tone/Correct: median = 626 ms post-stimulus offset; Low-Pitch
one/Correct = 626 post-stimulus offset, Z = 0.421, p = 0.663, effect
ize = 0.004, Mann-Whitney U Testing) or incorrect trials separately
 Fig. 2 e, High-Pitch Tone/Incorrect: median = 594 ms post-stimulus
ffset; Low-Pitch Tone/Incorrect: median = 597 ms post-stimulus off-
et, Z = 0.420, p = 0.663, effect size = 0.015, Mann-Whitney U Test-
ng). Furthermore, we found no significant difference in RT between
orrect and incorrect responses for either high-pitch tones ( Fig. 2 e, Cor-
ect: median = 626 ms post-stimulus offset; Incorrect: median = 594 ms
ost-stimulus offset, Z = − 0.994, p = 0.172, effect size = − 0.013,
ann Whitney-U Testing), or low-pitch tones ( Fig. 2 e, Correct: me-

ian = 627 ms post-stimulus offset; Incorrect: median = 597 ms post-
timulus offset, Z = − 1.627, p = 0.052, effect size = − 0.023, Mann
hitney-U Testing). 
Regarding choice accuracy, participants had a slightly but not sig-

ificantly higher proportion of correct responses for auditory trials with



J. Bolam, S.C. Boyle, R.A.A. Ince et al. NeuroImage 247 (2022) 118841 

Fig. 2. Behavioural performance. Left. Median RTs and choice accuracy (proportion of correct responses) for condition (bars) and participants (scatter points) for 
a, b Stimulus Feature (high/low-pitch tones) and c, d Congruency (congruent/incongruent). Right. Median RTs for correct and incorrect RT for e Stimulus Feature 
(high/low-pitch tones) and f Congruency (congruent/incongruent). For all graphs, 95% Confidence Intervals (CIs) were computed using 1000 bootstrapping random 

sampling iterations to estimate the distribution of average performance measurements. 
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ongruent compared to incongruent stimulus feature-response key map-
ings ( Fig. 2 d, Congruent: proportion correct = 0.918; Incongruent: pro-
ortion incorrect = 0.913, Z = − 0.128, p = 0.898, effect size = − 0.029,
ilcoxon Signed-Rank Testing). There was also no significant effect

f stimulus feature on choice accuracy ( Fig. 2 b, High-Pitch Tone: pro-
ortion correct = 0.914; Low-Pitch Tone: proportion correct = 0.917,
 = − 0.237, p = 0.812, effect size = − 0.053, Wilcoxon Signed-Rank
esting). 

We found no significant effect of associative congruency on me-
ian RTs for visual stimuli (Supplementary Figure 1b, Congruent: me-
ian = 581 ms post-stimulus offset; Incongruent: median = 604 ms post-
timulus offset; Z = − 1.161, p = 0.245, effect size = − 0.260, Wilcoxon
igned-Rank Testing). We further found no significant effect of visual
timulus feature on median RTs (Supplementary Figure 1a, Small-Size
ircle: median = 597 ms post-stimulus offset; Large-Size Circle: me-
ian = 586 ms post-stimulus offset, Z = − 0.863, p = 0.388, effect
ize = − 0.193, Wilcoxon Signed-Rank Testing). 

Regarding choice accuracy, participants had a slightly, but not signif-
cantly, higher proportion of correct responses for trials with congruent
ompared to incongruent visual stimulus feature-response key mappings
Supplementary Figure 1d, Congruent: proportion correct = 0.957; In-
ongruent: proportion correct = 0.955, Z = − 0.055, p -value = 0.956,
ffect size = − 0.012. Wilcoxon Signed-Rank Testing). There was also no
ignificant effect of visual stimulus feature on choice accuracy (Supple-
entary Fig. 1c, Small-Size Circle: proportion correct = 0.954; Large-

ize Circle: proportion correct = 0.958; Z = − 1.161, p -value = 0.245,
ffect-size = − 0.260, Wilcoxon Signed-Rank Testing). 

To summarize, we found responses for congruent auditory trials
ere faster than responses for incongruent auditory trials and, in ad-
ition, within the set of congruent trials, correct responses were slower
han incorrect responses. Furthermore, we found responses for congru-
nt visual trials were not faster nor more accurate compared to in-
ongruent visual trials. Therefore, no significant behavioural improve-
ents as a result of associative congruency were demonstrated when

ategorising visual stimulus features (see Supplementary materials for
igs. 1 and 2 for the behavioural and modelling results for visual stimuli
espectively). 
7 
EG signal analysis results 

Next, we analysed the EEG data to identify the neural components
hat discriminated between congruent and incongruent trials. Specifi-
ally, for each participant separately, we performed a single-trial mul-
ivariate discriminant analysis to identify linear spatial weightings (i.e.
patial filters) of the EEG sensors that discriminated congruent from in-
ongruent trials. The identified weightings produced a projection in the
28-dimensional EEG space that maximally discriminated congruent-vs-
ncongruent trials within short pre-defined windows of 50 ms, locked to
timulus onset. 

Application of the resulting linear spatial filters to single-trial EEG
ata produces a measurement quantifying the discriminating compo-
ent amplitude ( y , see Methods and materials ). These component ampli-
udes can be used as an index of the quality of categorizing the congru-
ncy of stimulus feature-response key mappings in each trial. In other
ords, higher amplitudes, negative or positive, indicate higher neural

vidence for congruent or incongruent stimulus feature-response key
appings, while values closer to zero indicate less evidence of catego-

izing associative congruency. 
To quantify the discriminator’s performance over time, we used the

rea under a receiver operating characteristic curve (i.e. A z value), cou-
led with a leave-one-trial-out cross validation approach, to control for
verfitting. Compared to traditional approaches, which assume an A z 
alue of 0.5 as chance performance, we performed a permutation anal-
sis using a leave-one-trial-out procedure that produced an A z random-
zation distribution, to compute a group-average A z value, that lead to
 conventional significance level of p = 0.05. 

Our discriminator’s performance as a function of stimulus-locked
ime revealed increased discriminant performance from 0 to 600 ms,
bove the significance level estimated from our permutation test. Specif-
cally, discriminator performance within this range was characterized
y two temporally specific components ( Fig. 3 a; C Early : mean peak
ime = 100–110 ms, Az value = 0.846; C Late : mean peak time = 330–
40 ms, Az value = 0.797). These components were consistent across
articipants (see Fig. 4 a for the A z curves and Fig. 4 b for the maximum
 values of each participant). We then computed the corresponding
z 
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Fig. 3. Multivariate linear discriminant analysis results. a Mean multivariate discriminator performance (A z ), quantified by leave-one-out trial cross-validation 
procedure, during outcome discrimination of stimulus-locked EEG responses, as a function of congruency (congruent-vs-incongruent; red) and stimulus feature (high- 
pitch tones-vs-low-pitch tones; blue) conditions. Dashed black line represents the group average permutation threshold at p < 0.05 for congruent-vs-incongruent 
discriminator performance. Shaded error bars denote the standard error of the mean across participants. Shaded area denotes the presentation of auditory stimuli, 
from 0 ms (post-stimulus onset) to 300 ms (post-stimulus offset). b Scalp topographies at representative time windows corresponding to the two EEG components, 
defined for congruency ( Top , C Early and C Late ) and stimulus feature ( Bottom , SF 1 and SF 2 ) conditions respectively. 
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calp topographies, obtained using the forward model, correlating be-
ween peak discriminant output and EEG data (averaged over a 50 ms
ime window centred on the two classification performance peaks). For
he ‘Early’ component, the strongest effects originated over central,
eft-lateralized centro-parietal, and left-lateralized occipital electrodes,
hereas for the ‘Late’ component, the strongest effects predominantly
riginated over fronto-central electrodes. These results indicate that our
ultivariate LDA classifier identifies two EEG components that carry sig-
ificant information about the congruency of stimulus feature-response
ey mappings. 

Similarly, we applied the same single-trial multivariate discrimi-
ant analysis to the EEG data to identify the neural components that
iscriminated between trials that presented high-pitch and low-pitch
uditory tones. Here, our discriminator’s performance as a function
f stimulus-locked time revealed increased discriminant performance
ost-stimulus onset, characterized by two temporally specific peaks
 Fig. 3 ; SF 1 : mean peak time = 90–100 ms, Az value = 0.595; SF 2 :
ean peak time = 170–180 ms, Az value = 0.647). The correspond-

ng scalp topographies, again obtained using the forward model, re-
ealed a bipolar EEG response that discriminated the two auditory
timuli. The first component (SF 1 ) had positive activations over outer
ccipital, parietal, and temporal electrodes and negative activations
ver a frontocentral cluster, whereas the second component (SF 2 )
howed activations at the same locations with inverse polarity. No-
ably, the stimulus-discriminating components occur approximately at
he same temporal window as the Early congruency-discriminating EEG
omponent. Thus, taken together, our EEG results attribute an early
ensory-encoding role for the Early congruency-discriminating compo-
ent and a post-sensory role for the Late congruency-discriminating
omponent. 

eurally-informed cognitive modelling results 

After characterizing the effect of congruency on the discriminating
ower of brain activity, we sought to gain a mechanistic insight into how
he identified single-trial neural responses were linked to improvements
8 
n perceptual decision formation between congruent and incongruent
rials. To achieve this, we used a neurally-informed variant of the Hier-
rchical Drift Diffusion Model (HDDM; Wiecki et al., 2013 , see Fig. 5 a
or a graphical illustration and Methods and materials for details on the
odel). As previously mentioned, the HDDM is a Bayesian implemen-

ation of the well-known Drift Diffusion Model, used for characterizing
erceptual decision formation in 2AFC paradigms (DDM; Ratcliff and
cKoon, 2008 ). 

We extracted the maximum single-trial discriminator amplitudes
 |𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 
| and |𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 
|) from subject-specific temporal windows correspond-

ng to our stimulus-locked ‘Early’ and ‘Late’ peak EEG components.
hese values represent the neural evidence for discriminating the con-
ruency of stimulus feature-response key mappings per trial (see Fig. 4 c
or histograms of 𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 
and 𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 
in congruent and incongruent trials).

epending on the stimulus feature-response key mapping, these values
emonstrate where stimulus-induced neural responses systematically
iffer, explicitly linking perceptual decision formation benefits to time
eriods where early bottom-up and late top-down influences from asso-
iative congruency modulate the subsequent neural responses. Thus, we
sed them to construct regressors for drift rate, boundary separation,
nd non-decision time parameters in the model. We estimated regres-
ion coefficients to assess the relationship between trial-to-trial varia-
ions in EEG component amplitude and parameter posterior estimations
Coefficients 𝛼1 , 𝛽1 , 𝛾1 and 𝛼2 , 𝛽2 , 𝛾2 for |𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 
| and |𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 
| respectively).

ote that we extracted the absolute single-trial discriminator amplitudes,
s this would permit us to compare indexes of neural evidence, under-
ying our assumption that larger component amplitudes reflect higher
iscriminant activity within the brain for congruent compared to in-
ongruent trials (see Fig. 4 d for the average |𝑦 𝑚𝑎𝑥 

𝑒𝑎𝑟𝑙𝑦 
| and |𝑦 𝑚𝑎𝑥 

𝑙𝑎𝑡𝑒 
| of each

articipant). 
We found a good fit of the behavioural data (i.e. choice accu-

acy and RTs) from our proposed neurally-informed HDDM ( Fig. 5 b).
rucially, we found that the single-trial amplitudes for the Early
omponent were highly predictive of increases in non-decision time
stimates for incongruent trials (Early: 𝑃 ( 𝛾𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

1 < 0) = 0.189,

og-odds = − 1.470; 𝑃 ( 𝛾𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

1 > 0) = 0.997, log-odds = 5.861.
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Fig. 4. Participant multivariate linear discriminant analysis results. a Participants’ mean discriminator performance (A z ), obtained from a leave-one-out trial 
cross-validation procedure, during stimulus feature (blue) and congruency (red) discrimination of stimulus-locked EEG responses. Dashed black line represents the 
group average permutation threshold at p < 0.05 for congruent-vs-incongruent discriminator performance. Condition mean discriminator performance (black) is 
also illustrated for congruency and stimulus feature discrimination . Shaded area denotes the presentation of auditory stimuli, from 0 ms (post-stimulus onset) to 
300 ms (post-stimulus offset). b Participants’ mean discriminator performance (A z ) for the Early and Late congruency-discriminating EEG components. c Single-trial 
discriminator amplitudes (y) for the Congruent (red) and Incongruent (pink) component amplitudes are illustrated as histograms for the Early (top) and Late (bottom) 
EEG components respectively. Negative values indicate neural evidence for congruency whereas positive values indicate neural evidence for incongruency. d Absolute 
values of our single-trial discriminator amplitudes (y) for the Congruent (red) and Incongruent (pink) component amplitudes for the Early (top) and Late (bottom) 
components respectively. 
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ate: 𝑃 ( 𝛾𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

2 < 0) = 0.62, log-odds = − 2.712; 𝑃 ( 𝛾𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

2 >

) = 0.936; log odds = 2.690; Fig. 6 c). We should note that the non-
ecision time parameter captures the duration of non-decisional pro-
esses, such as the latency of early stimulus encoding and the mo-
or preparatory response. This result is consistent with the longer
Ts observed in incongruent trials, and combined with the early
ccurrence of this component ( ∼100 ms post-stimulus onset), sug-
ests a longer duration of early sensory processing during incongruent
rials. 

We further found evidence to indicate that single-trial amplitudes
f the Late component were highly predictive of decreases in deci-
ion boundary parameter estimates for congruent trials only (Early:
( 𝛽𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

1 < 0) = 0.370, log-odds = − 0.553; P( 𝛽𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

1 < 0) = 0.641,

og-odds = 0.580. Late: 𝑃 ( 𝛽𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

2 < 0) = 0.973, log-odds = 3.574;

( 𝛽𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 

2 < 0) = 0.234, log-odds = − 1186; Fig. 6 b). Thus, this im-
lies a modulation of the decision boundary in congruent trials by the
ate component amplitudes. The lower decision boundary indicates that
articipants require less evidence to reach a decision in congruent tri-
ls, thus they a) respond faster and b) are more likely to make incorrect
erceptual judgments when responding fast. These are consistent with
ur behavioural findings indicating a) shorter RTs in congruent trials
nd b) faster RTs for incorrect choices compared to correct choices in
ongruent trials ( Fig. 2 ). 
9 
iscussion 

In this work, we used single-trial multivariate linear discriminant
nalysis and neurally-informed cognitive modelling to investigate the
eural mechanisms underlying auditory pitch-visual size cross-modal
ssociations, formulated from the presentation of unisensory stimulus
eatures (i.e. auditory pitch). Using a variant of the Implicit Associa-
ion Test ( Parise and Spence, 2012 ), we showed significant behavioural
mprovements as a result of associative congruency as participants re-
ponded faster to congruent than incongruent stimulus feature-response
ey mappings ( Fig. 2 ). Our multivariate linear discriminant analysis on
he EEG signals revealed neural information for congruent mappings in
 0–600 ms post-stimulus onset window. Moreover, we characterised
wo EEG components carrying congruency-relevant information in sin-
le trials: an ‘Early’ ( ∼100–110 ms) component and a ‘Late’ ( ∼330–
40 ms) component. Using neurally-informed cognitive modelling, we
inked these neural correlates of associative congruency with the cor-
esponding behavioural benefits for forming perceptual decisions. We
hus associated the observed shorter RTs in congruent trials with a)
n increase in the duration of sensory processing time modulated by
he Early component during incongruent trials, and b) a decrease in
he quantity of post-sensory evidence needed to facilitate a perceptual
hoice modulated by the Late component in congruent trials. 
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Fig. 5. Neurally-informed cognitive modelling. a Graphical representation illustrating the Bayesian hierarchical framework for estimating neurally-informed 
HDDM parameters. Round nodes represent continuous random variables, with shaded nodes representing recorded or computed signals, i.e., single-trial behavioural 
data (RTs and Choice) and EEG component discriminator amplitudes (y’s). Double-bordered nodes represent deterministic variables, defined in terms of other 
variables. Plates denote a hierarchical framework for modelling multiple random variables. The inner plate is over participants ( n = 1, …, N) and the outer plate is 
over congruency conditions (Congruent | Incongruent). Parameters are modelled as random variables with inferred means μ and variances 𝜎2 , constrained by inferred 
estimates over congruency conditions. External plates denote constructed single-trial regression coefficients as predictors of the drift rate ( ɑ ), decision boundary ( 𝜃), 
and non-decision time ( 𝜏). b Posterior predictive checks of the Neurally-informed HDDM fitting to participant and group behavioural data. Modelling fit to behavioural 
data was assessed using a cumulative quantile-probability plot, showing quantiles of RT distributions split across congruency conditions (Congruent/Incongruent in 
columns) and choice accuracy (Correct/Incorrect in rows). Cumulative probability quantiles are plotted along the x-axis for observed RTs (in pink), i.e. single-trial 
behavioural data (RTs), and predicted RTs (in cyan), i.e. simulated RTs from HDDM posterior predictive estimates. Diamonds represent group averages and circles 
represent single-participant values. 
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Our behavioural results provide further evidence supporting the ex-
stence of auditory pitch-visual size cross-modal associations that have
een previously reported ( Bien et al., 2012 ; Evans and Treisman, 2010 ;
allace and Spence, 2006 ; Parise and Spence, 2009 ; 2008 ; 2012 ). More

mportantly, our results demonstrate that auditory pitch-visual size
ross-modal associations can be formulated even when only a single
nisensory stimulus feature is presented on a single-trial basis. This
eplicates the findings of Parise and Spence (2012) , who reported faster
Ts for congruent compared to incongruent trials for five auditory-
isual stimulus combinations, including frequency-pitch and object-size.
t should be emphasized that the benefits of associative congruency ob-
erved in our study should be considered relative in nature. Specifi-
ally, it is the variation within blocks of trials, and subsequent trial-by-
rial contrasts between ‘high’ and ‘low’ pitch tones, that influences be-
avioural performance, and not necessarily the absolute pitch frequency
f the auditory tones presented ( Spence, 2019 ). 

We further provide neuroimaging evidence demonstrating a robust
odulation to neural activity by the associative congruency of auditory-
riven stimulus feature-response key mappings. Importantly, as the IAT
nly presents one unisensory stimulus feature per trial, it minimizes
odulations from confounding neural activity attributed to further mul-

isensory decision-making mechanisms, notably multisensory integra-
ion ( Franzen et al., 2020 ; Mercier and Cappe, 2020 ) and a form of
elective-attention/attention-dividing ( Bien et al., 2012; Marks, 2004 )
etween two simultaneously presented stimulus features. 

To examine neural activity specifically related to the behavioural
enefits of cross-modal associative congruency, we applied multi-
ariate Linear Discriminant Analysis to decode congruent from in-
ongruent stimulus-feature response key mapping trials. The ap-
lication of multivariate Linear Discriminant Analysis to our EEG
ata revealed two temporally distinct neural components represent-
ng both early and late influences of associative congruency map-
ings. Furthermore, the two components share a broadly consis-
ent scalp topography for localizing associative congruency bene-
ts, clustering a positive discriminative topography that emerged
ver left-lateralized centro-parietal, and left-lateralized occipital elec-
rodes, gradually emerging toward fronto-central regions of the
rain. 
10 
The first component (Early: ∼100–110 ms) arises near simultane-
usly with the defined components for encoding auditory stimuli (i.e.
F 1 and SF 2 ), with higher neural evidence for discriminating associa-
ive congruency prior to discriminating auditory pitch. The early latency
nset of the discrimination of congruency coincides with our results re-
ealing an increase in discrimination of the presented auditory stimulus
eature, possibly implicating an overlapping mapping of perceptual pri-
rs of auditory-driven pitch-size associations that automatically influ-
nces early sensory encoding/processing. We suggest that the benefits
f associative congruency, observed in the behavioural results, modu-
ate neural activity due to a form of perceptual feedback, influencing
he early processing of sensory information across the different modali-
ies during the perceptual decision formation process. Previous research
as demonstrated that repeated exposure to complementary stimulus
eatures shapes their multisensory composition, thus forming implicit
references to congruent mappings ( Habets et al., 2017 ; Kayser and
ayser, 2018 ; Park and Kayser, 2019 ). Therefore, this reaffirms our as-
umption that associative congruency shapes multisensory decision for-
ation, thus improving either or both the speed and accuracy of choice.

imilarly, multisensory enhancements during perceptual decision for-
ation have been found with interactions occurring in neural signals at

ery short latencies ( Boyle et al., 2017 ; Cappe et al., 2010 ; Foxe et al.,
000 ; 2002 ; Foxe and Schroeder, 2005 ; Molholm et al., 2002 ; 2006 ;
perdin et al., 2009 ). Importantly, in our study the early modulation we
bserved suggests such enhancements are not exclusively multisensory,
ince on each trial only a single sensory stimulus was presented. Con-
equently, we contend that the early onset of our results suggests that
ross-modal associations are not exclusively decision-related, but may
e perceptual in origin. 

Alternatively, an existing underlying mapping of the perceptual pri-
rs of auditory pitch-visual size associations may automatically influ-
nce early sensory encoding. Cross-modal associations reflect a natu-
ally occurring mapping between stimulus features ( Parise et al., 2014 ;
arise and Spence, 2013 ). Auditory acoustic pitch-visual size associa-
ions demonstrate a strong statistical correspondence in our external en-
ironment, whereby larger objects resonate at lower pitch frequencies
han smaller objects. Thus, an alternative interpretation suggests that
he early onset of our results is related to the influence of such existing
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Fig. 6. Neurally-informed cognitive modelling results . Posterior density dis- 
tributions of estimated regression coefficients for a drift rate ( 𝛼’s), b decision 
boundary ( 𝛽’s), and c non-decision time ( 𝛾 ’s) for Early (Left) and Late (Right) 
EEG component discriminator amplitudes. All regression coefficients are derived 
from the neurally-informed HDDM, including N = 20 independent participants 
and 9850 trials. Thick lines denote the median point estimate and the shaded 
areas represent the 90% probability mass, enclosed between 5% and 95% prob- 
ability confidence intervals. Dashed lines denote the zero point. 
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11 
riors shaped in the statistics of our natural environment ( Baier et al.,
006 ). For example, if top-down processes access this existing mapping,
nd signal to early sensory encoding regions, such feedback might em-
ed the existing environmental prior mapping. The contention of an in-
uence of existing priors between auditory pitch and visual size further
ontributes to the longstanding debate in the field concerning the degree
f automaticity of cross-modal associations ( Chen and Spence, 2017 ;
pence and Deroy, 2013 ). Our interpretation here supports findings sug-
esting that the automaticity of audiovisual associative congruency ben-
fits involves both perceptual bottom-up and modulatory top-down pro-
esses ( Getz and Kubovy, 2018 ). This interpretation is further supported
y the observation that our discriminator’s performance for congruency
xceeded the significance level prior to auditory stimulus feature pre-
entation (i.e. Az > 0.05, see Fig. 3 ). A possible explanation for this is
hat the discrimination of EEG component amplitudes, formulated by
he congruency of stimulus feature-response key mappings prior to the
ormation of perceptual decisions, could indicate pre-mapping anticipa-
ion, or expectation, that actively modulates the effects of congruency
enefitting the faster formation of perceptual decisions, without modu-
ating the categorisation of auditory stimulus features, or their sensory
ignals themselves. Bang and Rahnev (2017) present psychophysical evi-
ence to implicate the effects of pre-stimulus anticipation to support this
nterpretation. 

Thus, we contend that cross-modal associations may benefit from
eing consolidated within a predictive coding framework as a mech-
nism benefitting choices for multisensory decision-making ( Shi and
urr, 2016 ; Talsma, 2015 ). In this framework, repeated exposure to au-
itory pitch-visual size mappings could relate to some existing under-
ying mapping of the perceptual priors between high/low-pitch tones,
nd small/large-size objects respectively. In a predictive coding frame-
ork, we posit that the early sensory benefits we observed from asso-

iative congruency may be influenced by newly formed priors of audi-
ory pitch-visual size associations, with top-down processing signalling
o early sensory regions of the brain providing feedback that embeds this
nvironmental prior. Evidence that applies a predictive coding frame-
ork stems from studies that implement Bayesian interpretations of the

ffect of existing priors ( Huang and Rao, 2011 ; McGovern et al., 2016 ;
ong et al., 2020 ). Bayesian theories have implicated that cross-modal
ssociative congruency strengthens the binding of stimulus features dur-
ng multisensory integration ( Parise and Spence, 2013 ), demonstrat-
ng the pronounced effect of associative priors for benefitting multisen-
ory decision formation ( Acerbi et al., 2018 ; Gau and Noppeney, 2016 ;
ohe et al., 2019 ; Rohe and Noppeney, 2015a ; 2015b ). 

The late onset of the second component (Late: ∼330–340 ms) fur-
her suggests that cross-modal associations may be decision-related,
lbeit not exclusively. Previous perceptual decision formation stud-
es have consolidated a neural signature of decision formation, of-
en termed Centro-Parietal Positivity (CPP; O’Connell et al., 2018 ;
olich, 2007 ; Tagliabue et al., 2019 ; Twomey et al., 2016 ), or the
ate decision-related component ( Philiastides et al., 2006 , 2011 ; 2014 ;
hiliastides and Sajda, 2006 ; 2007 ), arising approximately 300–500 ms
ost-stimulus, reflecting neural activity for accumulating evidence to
acilitate a choice. A previous study by Mercier and Cappe (2020) has
urther attributed that the CPP indexes the accumulation of sensory
vidence for multisensory decision-making. In our study, the decoded
ate component highly resembles the spatiotemporal characteristics of
his indexed neural signature, with a positive discriminative topogra-
hy emerging across centro-parietal regions. Given we further observed
igher neural evidence for discriminating associative congruency as late
s 600 ms, we contend that the congruency of cross-modal associations
or accumulating sensory evidence at a further decisional stage is im-
ortant, supporting studies demonstrating the CPP for both unisensory
nd multisensory decision-making, thus benefitting perceptual decision
ormation. 

Previous multisensory decision-making studies have localized ben-
fits to perceptual decision formation at a later stage ( Franzen et al.,
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020 ; Kayser et al., 2017 ). However, these cannot be solely attributed
o congruency effects as previously explained. Here, by using the IAT,
e were able to demonstrate that associative congruency has a further

ole in accumulating sensory evidence at a later decisional stage, with
eural activity aligned with CPP, or the late decision-related component,
ven when a single unisensory stimulus feature is presented. Thus, we
an localize the benefits of cross-modal associations for forming percep-
ual decisions while simultaneously minimizing the benefits that may
e attributed to bottom-up (i.e. multisensory integration), or top-down
i.e. selective attention) multisensory processes. 

When forming decisions with multisensory information, multisen-
ory interactions are pervasive within the human brain, constitut-
ng different processes along the cortical hierarchy ( Cao et al., 2019 ;
ohe et al., 2019 ; Rohe and Noppeney, 2016 ; Keil and Senkowski, 2018 ;
adaghiani et al., 2009 ). For identifying when multisensory information
enefits perceptual decision-making, three prominent theories persist in
he field ( Bizley et al., 2016 ): a) the early integration hypothesis, b) the
ate integration hypothesis, and c) what we term as the dual integration
ypothesis, which was formulated by Mercier and Cappe (2020) . The
arly integration hypothesis posits that early sensory encoding stages
acilitate the influences of multisensory benefits from complementary
ensory information across modalities ( Ghazanfar and Schroeder, 2006 ;
ayser and Logothetis, 2007 ; Schroeder and Foxe, 2005 ). The late inte-
ration hypothesis, however, postulates that unisensory information is
rocessed separately at early sensory encoding stages, then combined
nto a unified source of evidence at a late post-sensory decisional stage
 Bizley et al., 2016 ; Franzen et al., 2020 ). Finally, the dual integration
ypothesis posits that unisensory information is integrated at both early
ensory encoding and later decision formation stages, consolidating a
ole of causal inference in determining whether multisensory informa-
ion is supramodal in defining incoming sensory information ( Aller and
oppeney, 2019 ; Cao et al., 2019 ; Gau and Noppeney, 2016 ; Kayser and
hams, 2015 ; Mercier and Cappe, 2020 ; Rohe et al., 2019 ; Rohe and
oppeney, 2015 ; Su, 2014 ). 

Evidence supporting the early integration hypothesis arises from
dentified neural pathways between sensory cortices (i.e. the visual and
uditory cortices), and higher-order associative cortices of the brain (e.g.
arietal, temporal and frontal associative cortices), with cross-modal in-
uences on neural responses localized early within the sensory cortices
 Eckert et al., 2008 ; Ghazanfar and Schroeder, 2006 ; Giart et al., 1999 ;
ayser et al., 2017 Petro et al., 2017 ; Rohe and Noppeney, 2016 ). Pre-
ious research has also argued in favour of the late integration hypoth-
sis, implicating post-sensory enhancements of decision evidence from
 late integration of multisensory information benefits perceptual deci-
ion formation ( Franzen et al., 2020 ). The processes of object recogni-
ion and categorization, naturally multisensory processes given the in-
ormation presented to multiple sensory modalities, has led researchers
o contend that top-down processing is required to determine associa-
ive congruency, thereby expediting the speed of perceptual decision
ormation. However, as we’ve previously discussed, evidence supporting
he late integration hypothesis remains stemmed from paradigms that
resent two or more unisensory features simultaneously. By utilizing a
aradigm that presents only one unisensory stimulus feature per trial,
ecorded neural activity elicits a neural component for discriminating
timulus feature-response key mapping congruency early in a trial. To
mplicate cross-modal associations are only post-sensory, or decisional,
n origin ignores this early associative benefit for forming perceptual
ecisions and contradicts previous research localizing ERPs for associa-
ive congruency early in the decision-making process ( Kovic et al., 2010 ;
ien et al., 2012 ). To briefly summarize, our results do not provide ex-
lusive support for one of these two theories. 

Our data do however support the dual integration hypothesis.
ercier and Cappe (2020) demonstrated support for this hypothesis in

heir study, in which they identified two temporally-distinct neural pro-
esses underlying multisensory decision-making across both cue detec-
ion and cue categorization paradigms. Importantly, decoding of EEG
12 
ctivity underlying unisensory signal cues implicated these processes
ere responsible for early sensory encoding and late decisional forma-

ion. Multisensory benefits observed in the behavioural data (i.e. faster
Ts, higher accuracy, increased sensitivity towards multisensory cues)
ere concurrent with an acceleration of both processing stages, sug-
esting that associative congruency benefitted both a faster integration
f sensory information and consolidation of decisional evidence. Here,
e identified a similar temporal trajectory of EEG activity, character-

zed by two mechanisms complementing prior research demonstrating
arly sensory encoding and decision formation processes that benefit
rom cross-modal associative congruency ( Bizley et al., 2016 ). Without
onfounds due to the processes of multisensory integration, and higher-
rder cognitive processes such as selective attention using the IAT, we
lso localized the effects of associative congruency as both early sensory-
erceptual and late-decisional, thus further consolidating the benefits
raditionally observed by early multisensory integrative processes and
ate decision accuracy. Ultimately, this is in line with a dual integra-
ion hypothesis, reconciling the early and late integration hypotheses
espectively. 

Importantly, our findings suggest that key mechanistic insights can
e elicited by coupling models of perceptual decision formation with
euroimaging data. The inclusion of the two characterised EEG compo-
ents enabled the disambiguation of the internal processes that yielded
wo IAT behavioural performance results. First, decreased RTs for con-
ruent compared to incongruent stimulus feature-response key map-
ings, and second, decreased RTs for incorrect compared to correct con-
ruent trials. Our Late component was linked with a decrease in the
mount of evidence required to reach a decision as a result of con-
ruent associations, thus congruent trials had shorter RTs and larger
roportions of incorrect responses for short RTs. This result is com-
lemented by the observation that incongruent stimulus-response map-
ings yielded increased non-decision time estimates modulated by the
arly component, suggesting longer stimulus encoding times and con-
equently slower responses in incongruent trials. 

Previous studies have used DDMs to study multisensory decision-
aking ( Delis et al., 2018 ; Franzen et al., 2020 ; Kayser et al., 2017 ;
ercier and Cappe, 2020 ). To our knowledge, such studies have not fo-

used purely on cross-modal associations and modelled behavioural and
euroimaging data from experimental paradigms that present two sen-
ory stimuli simultaneously, or within close spatial or temporal prox-
mity. The application of the IAT means we can model multisensory
ecision-making, yielding parameter estimates informed by neural mea-
urements linked to the processing of one sensory stimulus feature, thus
roducing neurally compatible outcomes underlying benefits purely
riven by cross-modal associations. 

In conclusion, using a neurally-informed cognitive modelling ap-
roach, we first characterized the spatiotemporal dynamics of neu-
al activity underlying associative congruency, and then probed its
unctional role in perceptual decision formation. By presenting only
ne unisensory stimulus feature per trial, we were able to over-
ome previous difficulties interpreting the mixed selectivity of neu-
al responses to simultaneously presented stimulus features. Conse-
uently, we could identify the effects of cross-modal associations on
eural processing and draw a direct link between these neural pro-
esses and the behavioural benefits of associative congruency in per-
eptual decision-making. We recommend that future research consol-
dates our observations by utilizing similar unisensory approaches for
nvestigating cross-modal associations with alternative statistical cor-
espondences (e.g. auditory pitch-visual lightness; Brunel et al., 2015 ;
eljko et al., 2019 ; auditory pitch-visual brightness; Marks, 1987 ;
lapetek et al., 2012 ; auditory pitch-visual elevation; Jamal et al.,
017 ; McCormick et al., 2018 ; Zeljko et al., 2019 ; auditory pitch-visual
hape; Köhler, 1929 ; Marks, 1987 ; Parise and Spence, 2012 , and higher-
rder semantic coherence; Marks, 2004 ; Parise and Spence, 2013 ;
evill et al., 2014 ; Sadaghiani et al., 2009 ; Spence and Deroy, 2013 ;
pence, 2011 ). 
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