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Abstract This paper highlights kernel principal compo-

nent analysis (KPCA) in distinguishing damage-sensitive

features from the effects of liquid loading on frequency

response. A vibration test is performed on an aircraft wing

box incorporated with a liquid tank that undergoes various

tank loading. Such experiment is established as a prelimi-

nary study of an aircraft wing that undergoes operational

load change in a fuel tank. The operational loading effects

in a mechanical system can lead to a false alarm as loading

and damage effects produce a similar reduction in the

vibration response. This study proposes a non-nonlinear

transformation to separate loading effects from damage-

sensitive features. Based on a baseline data set built from a

healthy structure that undergoes systematic tank loading,

the Gaussian parameter is measured based on the distance

of the baseline data set to various damage states. As a

result, both loading and damage features expand and are

distinguished better. For novelty damage detection,

Mahalanobis square distance (MSD) and Monte Carlo-

based threshold are applied. The main contribution of this

project is the nonlinear PCA projection to understand the

dynamic behavior of the wing box under damage and

loading influences and to differentiate both effects that

arise from the tank loading and damage severities.

Keywords Kernel PCA �Mahalanobis squared distance �

Euclidean distance � Vibration-based damaged detection �
Structural health monitoring

Introduction

Structural health monitoring (SHM) is a condition-based

maintenance that provides an alternative strategy to tradi-

tional maintenance by utilizing sensor networks to detect

irregularities through data processing, recognition algo-

rithms and statistical methods. It can continuously monitor

the structural health conditions and detect any irregularities

in the structure with minimal human intervention in the

earliest time possible before the structural health deterio-

rates, which can put human lives at risk and cause

substantial operating loss. SHM incorporates mainly

dimensional reduction and statistical pattern recognition

(SPR) techniques to transform the measured data into a

more useful information to determine damage and abnor-

malities present in the system [1–5].

Within aircraft maintenance, SHM technology is sig-

nificantly important to improve the reliability and

monitoring of the structural integrity. As the aircraft

structures are made of composite materials as such it

requires more intelligent damage detection strategy to

identify any fault or irregularities present in the complex

structure. SHM is proved to reduce breakdown time and

lower the maintenance cost. In developing a reliable SHM

technology, all influences from the operational and envi-

ronmental variations (OEVs) must be considered [1, 6].
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The OEVs effects should be distinguished from the real

damage effects in the measured response. In reality, load

variations on the aircraft wing due to the change of fuel

load poses a significant effect on the vibration-based

damage detection (VBDD). However, there is a limited

research work of the SHM technology focusing on an

aircraft wing under the effects of fuel tank load variation.

The current work focuses on VBDD of an aircraft wing box

subjected to a fuel tank load variations based on a repli-

cated model of an aircraft wing box.

There are different SHM techniques such as compara-

tive vacuum monitoring (CVM), piezoelectric impedance,

vibration-based and strain monitoring. Among the most

matured SHM approaches is a VBDD [1]. One main dif-

ference of the VBDD compared to the other approaches is

that VBDD is focused on damage detection and identifi-

cation at global level in contrast to the local damage

detection techniques such as CVM, strain monitoring and

elastic waves. VBDD parameters such as the natural fre-

quencies, vibration modes, structural damping are

examined which are based on the principal that structural

damages generally modify vibration parameters. The

approach is capable to perform damage diagnostics with

the integration of statistical and Machine Learning tool.

One of the key procedures in performing SHM is to

transform the measured data into a more useful represen-

tation by acquiring data trends that can provide a beneficial

clue on the structure’s health condition. This often

achieved by means of statistical pattern recognition,

machine learning algorithms or probability theories [7–12].

The general procedures usually involve data acquisition via

sensors, data preprocessing, feature extraction and pattern

recognition before the structural health condition can be

inferred. Generally, under SPR technique, a reference data

set usually acquired from an undamaged of structure state

which are then recorded and compared to the new data set

of unknown structural health states. Any pattern deviations

from the baseline feature indicate possibility of irregular-

ities or a damage might occur in the structure [13–15]. The

use of SPR has been applied in VBDD intensively in the

last decade, which has allowed damage detection and

identification to be carried out globally in effective manner

without the necessity to remove the components to reach to

the hidden damage [1–3].

There are numerous works of SHM centered on aircraft

and civil structures using various algorithms. Kernel-based

algorithms such as KPCA, greedy KCA and support vector

machine have been successfully studied and compared with

alternative algorithms such as auto-associative neural net-

work (AANN), factor analysis (FA) and Mahalanobis

squared distance (MSD) regarding damage detection per-

formance under the presence of OEVs [3]. The study

carried out by Adam et al. concludes that KPCA produces

lower false positive error compared to the alternative

algorithms [3]. The authors extract damage-sensitive fea-

tures from the time series which the parameters of the

autoregressive (AR) model are calculated based on the

order of the AR model. High damage detection rate of the

KPCA, indicates the algorithm’s capability to capture the

OEVs in the high-dimensional space which are proved by

the authors in [13–15].

Another related nonlinear PCA-based approach is a

strain field pattern recognition-based damage detection

method using its statistical damage indices that are T2

index and Q index. These indices are used to classify

various damage severities when the structure is exposed to

different loading conditions. The pattern recognition

approach successfully performs damage detection when the

structure is under OEVs based on measurements data from

various strain sensors [9].To produce a reliable and robust

SHM system, the system should be able to discriminate the

OEVs effects from the signal of which the process com-

monly referred as data normalization. If those effects are

not accounted, the detection system can often trigger a

false positive or false negative damage detection [1, 4, 6].

In vibration-based SHM, regression-based approach has

also been utilized to normalize the confounding effects on

the dynamic response. Cross and Worden (2018) reported

that fitting a regression model to a data with the OEVs will

capture mainly the OEVs in the system [6]. By subtracting

the OEV predictions model from the test data, the

remaining data can show higher sensitivity to damage after

eliminating the OEVs effects. Some regression models that

are commonly used are ANN, SVM and Gaussian Process.

Treed Gaussian Process is shown to be effective as a

switching nonlinear model to remove temperature variation

to produce a damage-sensitive feature. By partitioning the

data effectively using regression trees, a linear regression

model is fitted to the response signal over each distinct

region more smoothly which allow it to produce excellent

results.

The current work introduces nonlinear PCA based on

kernel Gaussian in solving the overlapping and hidden

features that mask the DS features. KPCA is also used to

better establish nonlinear relationship between the loading

and damage variables than a linear PCA method. The

performance of the KPCA relies on the radial distance

parameter, also known as the precision. In this work, the

precision value is computed from the distance between the

baseline data and test data of various damage classes that

undergo equivalent loading conditions. To perform a more

convenience search for this precision, Euclidian distance

block is proposed and presented in this work.

The strategy applied in the KPCA model is illustrated in

Fig. 1. The FRF data associated with healthy conditions

comprising all measured loading conditions are stored as
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the baseline set. The covariance matrix and the eigenvec-

tors are then computed from the baseline set. Some

selected eigenvectors (principal components) with the

highest variance are stored as the coefficient which to be

applied on various structural health conditions. The selec-

ted principal components are then multiplied with each

data sets named as structural conditions 1, 2, 3 and 4 which

has been normalized. It is important to note that, the

healthy state and all damaged states undergo similar

loading conditions labeled as L1, L2, …, L5 (empty load,

quarter full, half full, three quarter and full load) as illus-

trated in Fig. 1.

This paper is organized as the following style. A brief

background and related previous work of PCA are descri-

bed in the Introduction section. Next, the formulation of the

KPCA is presented in the Mathematical Equations sec-

tion. MSD is also given here as it is used for novelty

detection in this paper. The experimental setup and con-

figuration and data preprocessing steps are explained in the

Methodologies section. The results of the frequency spec-

trum of the structure and feature selection are addressed in

the Results and Analysis section. Euclidean distance matrix

block and KPCA transformation are also presented here.

Outlier analysis using MSD is also addressed here. Finally,

the important findings and summary are concluded in the

Summary and Conclusion section.

Mathematical Equations

Constructing the Kernel PCA

Kernel substitution applies a nonlinear function in a form

of a scalar product xTx
0
, before merging it with the PCA in

an eigenvalue solution. It avoids performing a complex

standard PCA in the new feature space which can be

extremely costly and inefficient [15–17]. By principle, for a

nonlinear transformation /ðxÞ from the original-dimen-

sional feature space D to an M-dimensional feature space,

the case M[D must be satisfied. First, assume that the

projected new features have zero mean, defined as

1

N

X

N

i¼1

/ðxiÞ ¼ 0 ðEq 1Þ

The covariance matrix of the projected features with

dimensional size M �M is

C ¼
1

N

X

N

i¼1

/ðxiÞ/ðxiÞ
T ðEq 2Þ

Fig. 1 PC model constitutes the

baseline model along with the

measured loading variations in

application of the loading

matrix to normalized data of

different damage conditions
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Its eigenvalues and eigenvectors are indicated by

Cvk ¼ kkvk ðEq 3Þ

where k=1, 2, …, M. From Eqs 1 and 3, it gives

1

N

X

N

i¼1

/ðxiÞ /ðxiÞ
T
vk

� �

¼ kkvk ðEq 4Þ

which vk can be restated as

vk ¼
X

N

i¼1

aki/ðxiÞ ðEq 5Þ

Now by substituting vk in Eq 5 with Eq 4, it yields

1

N

X

N

i¼1

/ðxiÞ/ðxiÞ
T
X

N

i¼1

akj/ðxjÞ ¼kk
X

N

i¼1

aki/ðxiÞ

Kernel function can be defined as

jðxi; xjÞ ¼ /ðxiÞ
T
/ðxjÞ ðEq 6Þ

Multiply both sides of Eq 6 by /ðxlÞ
T
, gives

1

N

X

N

i¼1

jðxl; xiÞ
X

N

j¼1

akjjðxi; xjÞ ¼kk
X

N

i¼1

akijðxl; xiÞ ðEq 7Þ

Using the matrix notation

K2ak ¼ kkNKak ðEq 8Þ

where

Ki;j ¼ jðxi; xjÞ; ðEq 9Þ

and ak is the N-dimensional column vector of aki

ak ¼ ak1 ak2. . .akN½ �T: ðEq 10Þ

solving ak by

Kak ¼ kkNak ðEq 11Þ

then the resulting kernel principal components can be

solved using

ykðxÞ ¼ /ðxÞTvk ¼
X

N

i¼1

akijðx; xiÞ: ðEq 12Þ

In transformation space, the projected data set f/ðxiÞg

generally does not have a zero mean. The data cannot

simply be subtracted off the mean in the transformed space.

The algorithm can be formulated in terms of the kernel

function using the Gram matrix representation for this

purpose, given by

~K ¼ K � 1NK � K1N þ 1NK1N ðEq 13Þ

where 1N equals to N-by-N matrix with all elements equal

to 1/N.

As stated earlier, the advantage of kernel methods is that

the computation is not explicitly performed in the feature

space but by directly constructing kernel matrix from the

training data set {xi} avoiding the feature space. Some

popular kernels normally applied are the polynomial kernel

and sigmoid (hyperbolic tangent) kernel with the Gaussian

kernel is the most popular kernel to use in complex prob-

lem [13–15]. In this study, Gaussian kernel is utilized to

achieve the objective of this work. Gaussian kernel is given

by

kðx; yÞ ¼ exp
� x� ykk 2

2r2

 !

ðEq 14Þ

where r2 is the inverse variance which depends on the data

variation [3].

Mahalanobis Squared Distance (MSD)

MSD function is used in this work to analyze the variation

in the data sample in the KPCA model. It is based on

Hotelling’s T2-statistic [14]. High variation is desirable as

it distinguish the conditions of the structure [1]. To com-

pute the T2 index in the reduced space corresponding to the

principal component projections in which its focus is to

compare the degree of variability between the undamaged

and damaged states, the following equation is applied by

computing the score matrix obtained from the PCA

T2
i ¼ ti � TN

�

�

�

��
X

TN

�

�

�

�

�

�

�1

� ti � TN

�

�

�

�

T
ðEq 15Þ

Methodologies

Experiment Configuration and Data Acquisition

The data acquisition system used is a DIFA SCADAS III of

16-channel and high-speed data acquisition system, con-

trolled by LMS software running on a Dell desktop PC.

The samples were captured using frequency range 0–1024

Hz with 0.25 Hz resolution. Based on a sampling rate 2048

samples per second, the data are presented in the results in

terms of spectral lines amounting 8192 spectral lines.

White Gaussian signal is used to excite the wing box

using LDS shaker powered by an amplifier. The response

signal was measured using PCB piezoelectric accelerom-

eters (s1 – s7) mounted vertically below the wing box and

the water tank (Fig. 3). The excitation signal was measured

by a standard PCB force transducer.

Water tanks are bonded above the wing box plate in

order to provide changing loading effects in each mea-

surement. The top sheet has a size of 750 9 500 9 3 mm

aluminum sheet. It is stiffened by two ribs of length of C-

channel riveted to the shorter edges and two stiffening

stiffeners of angle section bolted along the length of the
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sheet. Free–free boundary conditions are approximated by

suspending the wing box from a substantial frame using

springs and nylon lines attached at the corners of the top

sheet (Fig. 2). The structural weight is approximately 6.464

kg.

Introduce Load Variables and Damage Variables

The liquid loading takes the amount as empty, quarter full,

half full, three quarter full and full as measured on the tank.

The process of filling up and emptying is reversible (re-

peated) and the same amount must be taken into account

for each class. After completing the measurement for the

baseline set, damage severities are introduced in the

structure’s stiffener using four different saw-cut lengths

(labeled as D1, D2, D3 and D4) as shown in Fig. 3.

In this work, the data are grouped based on the structural

health conditions (Fig. 4). The baseline set comprised of

data from undamaged state that undergoes similar opera-

tional loading conditions as described above. The KPCA

transformation in high-dimensional space based on Gaus-

sian function allows the nonlinear relationship between the

baseline set and damage set to be compared. The effects of

loading variations can also be examined as all data groups

(from damage and undamaged label) as they are constituted

naturally in the frequency response. All data groups are

compared in term damage conditions.

In the column of every data group, 200 samples are

measured which total is 1000 samples recorded. Within

each loading class, 40 samples are recorded for each of the

5 loading classes. The PCA model (illustrated in Fig. 1) is

based on Fig. 4 where the eigenvectors of the covariance

matrix are computed from the baseline (undamaged set).

The goal is to identify if the new data transformation

established from damage set can be distinguished from the

baseline set when projected in the feature space (Fig. 1).

Results and Analysis

Dynamic Behavior Due to Operational Loading

and Damage Variations

The signal captured from all the accelerometers are ana-

lyzed. The best signal from one of the accelerometers is

selected based on the criteria that the signal shows good

damage and loading sensitivity. The sensitivity is based on

the shifting of the frequency peaks as the result of the

effects of different loading conditions. It is indicated that

the signal produced by the loading effects in the structure

display better sensitivity compared to the effects of damage

severities. It is evident on the shift of the frequency peaks

as the structure is subjected to various loadings (Fig. 5).

With known labels as in the study, it allows one to

understand the structure’s behavior in response to the

loading changes and damage, respectively.

The FRF plot in Fig. 5 shows distinct peaks at lower

spectral lines in the range 200–800 spectral lines (50–

200 Hz). Zooming into the selected range, it highlights

Fig. 2 Physical model of the wing box with two water tanks attached to the box
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damage sensitivity in the frequency range between 350 and

450 spectral lines (87.5 Hz and 112.5 Hz).

In calculating the precision value for kernel Gaussian

function, data on row 0–40 samples of distance block

between undamaged and damage class which labeled as 1

(Fig. 6) is considered. The smallest distance matrix is

determined from the undamaged and each damage class

data set which located in the first row indicated by 1 in

darkest blue-colored scale.

The precision value is computed based on the mean of

the distance between undamaged and damage class data

represented in the matrix block. It is written as r ¼

mean DNN
i

� �

where Di
NN represents the smallest distance

(excluding zero) between each data point in a row.

To calculate the precision value, firstly, the value (r) is

set to be minimum in each column of the distance matrix

and its average is then calculated (across the first row of

distance block). Based on this strategy, the result shows

greater separation of class especially among lower variance

Fig. 3 (Left): Underneath the box shows the mounting of the accelerometers and the shaker. (Right): The top part shows the water tank with

refilling process

Fig. 4 Data arrangement and

grouping based on different

structural health conditions and

undergo varying load conditions

from empty tank increases to

full tank load
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data group. As the result, this value is opted for damage

detection approach as presented in the MSD. This is

illustrated in Fig. 8. On the other hand, using larger sigma

values (taken second row in distance block in white dash

box marked as 2) produce better data pattern for the pur-

pose of tracking of the various damage states. This is

preferable for monitoring the structural health. Also, for the

purpose of damage detection, a choice of minimum mean

distance is shown to be more appropriate so that the

smallest damage can be captured. KPCA can generalize

different level of separation by adopting a slightly higher

sigma. This rule has a potential application in monitoring

of structural conditions and damage progressions as

demonstrated in Fig. 7.

The results produced by KPCA shown in Fig. 8 display

significant separation between the baseline sets and the

damage states. The data points from damage states are

distinctly separated from the baseline data points regardless

of all loading classes. However, the separation between

damage states especially for full tank is not systematically

promising.

All data points from all damage states including the

smallest damage, D1 are easily identified as damage and

projected well above the threshold line.

Note that, the main purpose of establishing visualization

model via KPCA is to monitor the structural health con-

ditions by highlighting the separation between the baseline

set (undamaged variables) and the damage set. KPCA is

Fig. 5 A shift of high peaks (natural frequencies) due to loading variations signifies high sensitivity to loading compared to damage

Fig. 6 A distant block based on Euclidean distance, improved with color scale to aid the for the finding of the precision value
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shown to fulfill this expectation as highlighted in the above

results.

Highlighting on overall loading and damage classes in

Fig. 7, the results using the kernel Gaussian PCA confirms

that the loading features are distinctly separated. It displays

a distinct pattern recognition in the interest of tracking and

monitoring damage changes in a changing load environ-

ment. Features of the damage severities also provide good

identification especially for higher damage level (D3 and

D4).

The performance of the transformation is measured by

the degree of the baseline separation from the damaged

condition using T-squared statistics (MSD function) as

illustrated in Fig. 8. The variance (eigenvalues) based on

the first 100 principal components are extracted as to

provide sufficient representation of the structural

characteristic.

Using KPCA, joining all operational loading conditions

as the baseline produces a novelty detection with excellent

result for all loading conditions. The results shown in Fig. 8

display higher data separation between the baseline and the

Fig. 7 Data transformation using KPCA illustrates a smooth data pattern transition from undamaged (UD) to most severed condition (D4)

Fig. 8 MSD plot of data distance between baseline and damage states based on the average of the minimum distance taken from row 1 in

distance block
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damage class. The damage classes are distinctly separated

from the baseline regardless of all loading classes.

All data points from all damage states including the

smallest damage, D1 are easily identified as damage and

projected well above the threshold line. The distance

associated to damage severities especially between

undamaged and damage class is significantly seperated.

This can be due to the large variation in the distance matrix

calculated based on the combined loads (empty to full load

joint as baseline set) and cause the sigma that is calculated

from the distance matrix that is difficult to adjust to the

high variability from the large variance.

It had been investigated that by varying the sigma values

alter the trend of the damage severities variations and their

T-squared index in the reference set. In this case, the sigma

is adapted to each structural health condition as illustrated

in distance matrix (Fig. 6) to obtain appropriate data

variations. Despite some data are not correlated with the

damage severities level, due to the small damage size

introduced in the wing. Through this holistic approach,

KPCA has shown to be useful in SHM and novelty

detection area under the influence of operational loading

variations.

Summary and Conclusions

The key contribution of this work is the adaptation of the

KPCA parameter which is the flexibility of the precision

value. This study also highlights data behavior under var-

ious loading and damage variables for the VBDD

application. The factor size of the loading variables poses

significant effects in comparison to the real damage vari-

ables when using KPCA. A smaller loading variation in the

system may cause the damage detection to be falsely

identified as damage. The data features are likely to be

overlapped in the linear PCA projection space; hence

making the detection of damage more challenging.

Therefore, KPCA transformation can successfully be uti-

lized to reveal and distinguish the feature driven by the

damage or loading effects when projected into the feature

space. Besides the separation of the loading and damage

effects, the flexibility of the precision value in the kernel

function also provides a good advantage for monitoring

and detecting damage of engineering structures.

The important criteria when applying KPCA is to

choose a suitable hyper parameter sigma (r) which is also

known as the precision value. It is computed as an inverse

variance (1/r2) used for the nonlinear mapping transfor-

mation function based on the kernel Gaussian or radial-

based function (RBF) [15–17]. The work has also estab-

lished a visualization method using a color-scale distance

matrix to assist one for visualizing the data separation

between the baseline and damage class. Based on the

Euclidean distance matrix, the inverse variance can be

computed on the basis that the sigma parameter value (r)

should be smaller than the average inter-class data distance

(of different class) and larger than the average of inner

class data distance. Another key benefit of using kernel

Gaussian PCA, besides improving data separation between

undamaged condition and damaged states, the full forma-

tion data trajectory or its pattern can be established and

visualized. This complete pattern can guide one in moni-

toring of the structural health based on the feature

departure from the baseline feature. In the study, the pat-

tern of the damage features forms the radius of the ellipse

directing toward the center while the loading class forms

the outer ellipse. This can provide useful information when

examining the damage state and find the associated loading

class instantaneously.
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