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Abstract: The influence of light sources on digital camera-based spectral estimation is explored.
The CIE daylight and non-CIE daylight illuminants with different Correlated Color Temperature
(CCT) are first tested comparatively, results indicate that CCT can be used to describe the
performance of the CIE daylight illuminants for spectral estimation but not applicable to all types
of light sources. To further investigate the mechanism of light effects on spectral estimation,
several handmade special shape of Spectral Power Distribution (SPD) are tested, results show
that the red component in visible spectrum is crucial for a higher spectral estimation accuracy.
Finally, several feature metrics of SPD are proposed to evaluate the performance of the light
sources in spectral estimation, results illustrate that the better the feature metrics the better the
spectral estimation accuracy.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The surface spectral reflectance is the unique identity of an object, and at the same time, it is
also regarded as the “fingerprint” of the object color information. Spectral imaging technology
that recording the spectral and spatial information of the scene at the same time is always a hot
research direction in many domains, such as medical application, remote sensing, color science,
industry quality control, and cultural heritage protection [1–5]. Currently, digital camera-based
spectral estimation has become a valuable solution for fast and high spatial resolution spectral
imaging with low-cost although its accuracy is affected by some factors [6–8]. The workflow of
digital camera-based spectral estimation for spectral imaging is plotted as Fig. 1.

For digital camera-based spectral estimation, the training samples with known spectral
reflectance are first captured under the illumination of the light source, and the spectral estimation
matrix is calculated based on the training sample data and spectral estimation algorithm (SRA)
[9]. Then the testing samples are captured under the same illumination condition and its spectral
reflectance is estimated. During the workflow of digital camera-based spectral estimation, the
light source is an important component that influence the spectral estimation accuracy. Different
light sources will lead to different camera responses, and therefore lead to different spectral
estimation matrix, which in turn lead to the different spectral estimation accuracy.

In early stages of researches on digital camera-based spectral estimation, tungsten halogen (TH)
lamps are often used as lighting sources as it can provide relative smooth spectral radiance over
the visible spectrum and with high color rendering index (CRI) [10]. However, the heat radiation
of the TH lamp will damage objects such as art and cultural relics, and the lifespan of TH lamp is
short. Except for the TH lamp, the other types of light sources such as high-pressure mercury
lamps, fluorescent lamps, and even the projectors are also used for digital camera-based spectral
estimation [11–14]. In addition, the fast-developing lighting technology provides a different
option of the lighting sources for digital camera-based spectral estimation, the light emitting
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Fig. 1. The workflow of digital camera-based spectral estimation.

diode (LED) light sources. Different SPDs can be acquired through programming the tunable
LED light sources in reasonable ranges of illuminance, which provide the opportunity to design
the optimal SPDs for a specific digital camera-based spectral estimation system. Furthermore,
the advantages of long lifespan, high radiance efficiency and environment friendly of LED light
sources are also need to be considered in practical applications.

In general, various types of light sources have been used for digital camera-based spectral
estimation, but do the different types of light sources affect the spectral estimation. The answer
is yes. Many researches related to the light sources selection and optimization for digital camera-
based spectral estimation has been published. Tominaga et al. explored the optimal combination
using programmable light sources and a high-speed monochrome camera for multispectral
imaging [15]. Shrestha et al. studied how to select three light-emitting diodes (LEDs) from
nineteen LEDs to built the multispectral imaging system [16]. Safdar et al. also explored the
optimal LEDs combinations for digital camera-based spectral estimation [17]. Zhang et al.
investigated the optimal combination of different light sources for spectral estimation from CIE
tristimulus [18]. Recently, Wang et al. proposed a light sources SPD optimization method for
digital camera-based spectral estimation, they found that using an optimized SPD mixed by the
tunable LEDs can improve the spectral estimation accuracy [19].

Moreover, the influence of light sources on digital camera-based spectral estimation are
also investigated in some papers. Vilaseca et al. illustrated that when using the optimal filter
combinations for spectral estimation in near-infrared multispectral imaging, the blackbody
radiation with different CCTs hardly affects the spectral estimation accuracy [20]. Li et al.
studied some LEDs and several CIE standard illuminants that with different CCTs on the spectral
estimation, they found that the spectral estimation accuracy of a light source with a small CCT is
better than that of a light source with a large CCT [21]. Sávoli et al. tested the impact of light
sources on spectral estimation form tristimulus values using the genetic optimization method
and CIE light sources, the results show that spectral estimation from tristimulus values does not
depend on changes in light sources [22].

However, current research about the influence of light sources on spectral estimation is
insufficient as the conclusions are not always consistent with each other, and most of the current
researches are based on CCT. “CCT is a one-dimensional metric that aims to quantify the
perceived visual quality of nominal white light sources” [23], it can not describe the features of
SPD curves, two different SPDs can share the same CCT, therefore current researches about the
influence of light sources on the spectral estimation based on CCT maybe lack of some sufficiency.
Furthermore, although there are some other metrics (such as CRI, GAI, CQS, MCRI, CQI and so
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on) are used as supplemental metrics to quantify color quality of light sources [24–26], however,
these metrics are all developed based extra color samples and they are not developed based the
features of SPD itself. So, although these metrics can be well used to describe the color quality
of light sources, they are less suitable for evaluating the performance of a light source for spectral
estimation.

With the above in mind, in this paper, we explored the influence of light sources on digital
camera-based spectral estimation in a more detailed way, the research is for a three-channel
camera system, and not for all kinds of digital camera-based spectral system such as the camera
with filters. We step from CCT to the features of SPD curves in exploring the influences. With
the support of several experiments, four metrics that can describe the features of SPD curves in
evaluating the performance of a light source for spectral estimation are proposed. Further tests
on the proposed metrics show that the higher the metric score the better the spectral estimation
accuracy. But there is still some issues need to be resolved in the future studies. Fundamentals of
digital camera-based spectral estimation are presented in section 2, details of the experiments are
introduced in section 3, results and discussion of the experiments are presented in section 4, the
conclusion is derived in section 5.

2. Spectral estimation model

As is illustrated in Fig. 1, for digital camera-based spectral estimation, before estimate the spectral
reflectance of target samples, a training process that to construct the spectral estimation matrix is
necessary. Generally, two stages are included in the normal digital camera imaging process. In
the first stage, the scene radiance reflectance of object is firstly integrated as the raw image in the
imaging sensor, of which is often regarded as a linear imaging process. Then in the second stage,
the raw image is post-processed to acquire the visual pleased color image, this is a non-linear
imaging process and hard to mathematically modeled because of the complex and secret image
signal processing algorithms. Therefore, in most researches, a linear opto-electronic transfer
function in the digital camera is assumed [27], and the camera response of a sample can be
formulated as Eq. (1),

di =

∫
Φ

l(λ)si(λ)r(λ)dλ + e (1)

where the camera response di is related to the channel i of a sample, λ is the wavelength, l(λ)
is the relative spectral power distribution of the light source, si(λ) is the spectral sensitivity
functions of the ith channel of the digital camera, r(λ) is the spectral reflectance of a surface
point in the scene to be imaged, Φ is the spectra integrated range of the digital camera, e is the
system additive imaging noise and often simulated with the Gaussian white noise in different
researches [28–30]. In practice, we can formulate a discrete version of Eq. (1) as

d = Mr + e (2)

where d is the response vector of a sample, M is the overall spectral sensitivity function matrix
of the digital camera including the product of the matrix form of l(λ) and si(λ), and r denotes the
spectral reflectance vector of a sample to be imaged, and e is the noise vector.

For digital camera-based spectral estimation, the first step is to construct the spectral estimation
matrix based on the digital camera model indicated by Eq. (2). Many methods have been proposed
to calculate the spectral estimation matrix, such as pseudoinverse, PCA, Wiener estimation,
compressive sensing and so on [31–34]. In addition, deep learning based methods, such CNN-
based, U-net-based and GAN-based methods, are also introduced into spectral estimation in
recent years with the fast development of computer vision technology [35–37]. In this study,
taking the commonly used pseudoinverse method as example, the spectral estimation matrix is
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calculated as in Eq. (3),
Q = RtrainD+train (3)

where Q is the spectral estimation matrix, Rtrain and Dtrain are the spectral reflectance and camera
response matrix of the training dataset, and superscript+ is the pseudoinverse operator. With the
established spectral estimation matrix Q, the spectral reflectance of a sample can be estimated as
in Eq. (4).

rtest = Qdtest (4)

where dtest is the camera response vector of a test sample, rtest is the corresponding recovered
spectral reflectance vector. The spectral estimation model is formed by Eq. (2) to Eq. (4). The
commonly used method that proposed by Connah and Hardeberg is adopted to calculate the
spectral estimation matrix in this study [38], the implementation details of the method can refer
to the corresponding reference.

3. Experiment

3.1. Overview of experiment

With the spectral estimation model, three experiments are carried out progressively to explore
the influence of light sources on digital camera-based spectral estimation. In considering the
current research progress about the problem, in the first experiment, we test the influence of CIE
daylight illuminants with different CCTs on spectral estimation. In the second experiment, in
order to test whether CCT can effectively indicate the performance of any type of light sources
in spectral estimation, the influence of light sources with same CCT but difference SPDs are
explored. In the third experiment, to further investigate how the light sources with different SPDs
influence the spectral estimation, we test some handmade SPDs with specific shapes using the
natural color system (NCS) samples.

Before the experiments, the simulated digital camera system is firstly constructed. According
the linear imaging model in Eq. (1), the camera sensitivity functions of Canon 1D Mark III and
Nikon D5100 are selected from Jiang’s databases to constructed the simulated digital camera
systems [39], the distributions of the camera sensitivity function are plotted in Fig. 2. One percent
of Gaussian white noise with SNR equal to 40 dB is added to the simulated system as additive
imaging noise.30 Three sample datasets including X-rite Color charts, Munsell color sample
and a set of mineral pigment color samples are used in experiment 1 and 2. The chromaticity
distribution of three sample datasets in a*-b* plane of CIELAB color space are plotted in Fig. 3.
The training and testing samples are set as in Table 1, where the numbers in brackets represent
the number of samples in each set.

Fig. 2. The camera sensitivity functions of Canon 1D Mark III (a) and Nikon D5100 (b).
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Fig. 3. The chromaticity distribution of three sample datasets in a*-b* plane of CIELAB
color space, Color Chart SG (a), Color Chart CC (b), Munsell color (c), Pigment samples(d).

Table 1. Three groups of training and testing samples in experiment 1 and experiment 2.

Samples Color Chart Munsell color Pigment sample

Training samples SG (140) odd (635) odd (392)

Testing samples CC (24) even (634) even (392)

Based on the constructed simulated digital camera systems and sample datasets, the experiments
are carried out one by one. More details about tested light sources and other settings of the three
experiments are illustrated as follows.

3.2. Details of experiment

Details of experiment 1. In the first experiment, the influence of CIE daylight illuminants that
with different CCTs on spectral estimation are tested. The SPDs of CIE daylight illuminants are
calculated with reference to the CIE specification, where the CCTs are sample from 2300 K to
15000 K with the interval of 100 K (Kelvin). Detail method to calculate the SPD of CIE daylight
illuminant for a given CCT is presented from Eq. (5) to Eq. (10) [40]. The tested CCTs covers
almost the various types of lighting sources in industrial production and in daily life. The SPDs
of the tested CIE daylight illuminants are plotted in Fig. 4.

xD =
−4.06070 × 109

(Tcp)
3 +

2.9678 × 106

(Tcp)
2 +

0.09911 × 103

(Tcp)
+ 0.244063 (5)

xD =
−2.0064 × 109

(Tcp)
3 +

1.9018 × 106

(Tcp)
2 +

0.24748 × 103

(Tcp)
+ 0.237040 (6)

yD = −3.000xD
2 + 2.870xD − 0.275 (7)

where xD and yD and are the chromaticity coordinates for the given CCT of Tcp. In this study,
when Tcp is below than 7000 K, Eq. (5) is used to calculate the xD, and when Tcp is above than
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7000 K, Eq. (6) is used to calculate the xD. With the chromaticity coordinates for given CCT, the
relative SPD is compute as indicated by Eq. (8),

l(λ) = l0(λ) +M1l1(λ) + M2l2(λ) (8)

where l0(λ), l1(λ) and l2(λ) are the basic functions to compute the relative SPD of l(λ) at
wavelength of λ, M1 and M2 are the factors whose values are related to the chromaticity
coordinates xD and yD as follows,

M1 =
−1.3515 − 1.7703xD + 5.9114yD
0.0241 + 0.2562xD − 0.7341yD

(9)

M2 =
0.0300 − 31.4424xD + 30.0717yD
0.0241 + 0.2562xD − 0.7341yD

(10)

Fig. 4. Relative SPDs of the tested CIE daylight illuminants from 2300 K to 15000 K with
the sample interval of 100 K.

Details of experiment 2. In experiment 2, two groups of light sources that with the same
CCT but different SPDs are tested. The tested CCTs are ∼2856 K and ∼6500 K, which are
two common used but very different CCTs in the filed of spectral imaging. The SPDs of CCT
∼2856 K including CIE-A illuminant, a tungsten halogen light source of GE Par38 (11878)
(TH2856) and a LED light source of Endura OT16-3301-WW MR16 (LED2856). The SPDs of
CCT ∼6500 K including the CIE-D65 illuminant, a fluorescent light source of GE F40W/AD
(FL6500) and a LED light source of Toshiba E-Core Par30s 23Deg (LED6500). The other SPDs
except for the CIE illuminant are collected from the National Gallery of United Kingdom [41].
These two groups tested SPDs are plotted in Fig. 5.

Details of experiment 3. In experiment 3, in order to explore the influence of light sources
on spectral estimation more specifically, five handmade rectangle light sources including red,
green, blue, yellow and equal energy white (E) are tested based on the samples of NCS samples.
The SPDs of five handmade light sources are plotted in Fig. 6. The camera sensitivity functions
of Nikon D5100 (as plotted in Fig. 7) that measured from National Physical Laboratory (UK) is
adopted in the experiment to construct the simulated digital camera system [42]. Furthermore,
in this experiment, all NCS samples are used as training samples, and five hue samples of red,
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Fig. 5. Relative SPDs of the two groups tested light sources in experiment 2: CCT∼2856 K
(a), CCT∼6500 K (b).

green, blue, yellow and gray are used as testing samples. The chromaticity distribution of all
NCS samples and the selected five tested hue samples in a*-b* plane of CIELAB color space are
plotted in Fig. 8.

Fig. 6. Relative SPDs of five handmade light sources in experiment 3.

To evaluate the spectral estimation accuracy, the root-mean-square error (RMSE) is calculated
between the ground-truth and reconstructed spectral reflectance. Method to calculate the RMSE
is illustrated in Eq. (11).

RMSE =
√︃

1
N
(r1 − r2)

T (r1 − r2) (11)

where r1 is the reconstructed spectral reflectance of the testing sample, r2 is the ground-truth
spectral reflectance, superscript T is the transpose operator, N is the sampling number of spectral
in visible spectrum. In this paper, for spectral wavelength ranges from 400 to 700 nm at 10 nm
intervals, N=31.



Research Article Vol. 29, No. 26 / 20 Dec 2021 / Optics Express 43906

Fig. 7. The camera sensitivity functions of Nikon D5100 that measured from National
Physical Laboratory (UK).

Fig. 8. Chromaticity distribution of all NCS samples and the selected five tested hue
samples in a*-b* plane of CIELAB color space: all samples (a), red hue samples (b), green
hue samples (c), blue hue samples (d), yellow hue samples (e), neutral gray samples (f).

4. Results and discussion

In this section, the results of three experiments are firstly presented and analyzed. Then, the
proposed feature metrics of SPD curves that used to evaluate the performance of light sources in
spectral estimation is introduced and tested. Finally, we give the overall discussion on the results.

4.1. Results of experiment 1

In this experiment, the influence of CIE daylight illuminants that with different CCTs on spectral
estimation accuracy are tested. Figure 9 shows the relationship between spectral estimation error
and CCTs of the CIE daylight illuminants of three tested sample datasets under two simulated
digital camera systems.
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Fig. 9. The relationship between spectral estimation error and CCTs of the CIE daylight
illuminants of three tested datasets under two simulated digital camera systems: Color chart
(a), Munsell color (b), and Pigment samples (c).

It can be seen from Fig. 9 that for each group of tested sample dataset, although there is slight
difference of their spectral estimation error of RMSE under the two different simulated digital
camera systems, the spectral estimation error show very similar changes with the increase of
CCT, where the correlation coefficient between the spectral estimation results of two simulated
digital camera systems are 0.9985, 0.9903 and 0.9874 for the three tested sample sets. Therefore,
it easy to infer from Fig. 9 that although different digital camera systems affect the accuracy of
the spectral estimation, however in this study, they do not affect the overall law of the influence
of the CIE daylight illuminants on the accuracy of the spectral estimation.

Furthermore, it is also easy to infer from Fig. 9 that for all three groups of the tested sample
datasets, with the increase of CCT the spectral estimation error of RMSE is increase rapidly,
when the CCT reach about 7000 K the increasing speed is slow down, and with the continue
increase of CCT the RMSE tends to be stable. Therefore, the CCTs of CIE daylight illuminants
that can cause significant changes in the spectral estimation accuracy is approximately in the
range of 2300 K to 7000 K, which basically covers the common CCTs of lighting sources in daily
life.

From the results of experiment 1 we can see that the CCT can be used to describe the
performance of CIE daylight illuminants in spectral estimation. The results are consistent with
those of Li et al. [21]. where a light source with a small CCT is better than that of a large CCT
in a reasonable range. However, does this conclusion is applicable to any other types of light
sources not belong to CIE daylight illuminants. The experiment 2 following will give out the
answer.

4.2. Results of experiment 2

From Fig. 4 we can see that the SPDs of CIE daylight illuminants shows regular changes with the
increase of CCT, however the relative SPDs of artificially manufactured light sources in daily life
is usually quite different from that of CIE daylight illuminants (see as in Fig. 5). Therefore, in
order to test whether the conclusion about CIE daylight illuminants is applicable to any other
types of light sources, the influence of light sources that with the same CCT but different SPDs
on spectral estimation are tested in this section.

In terms of the two tested groups of light sources with the same CCT but different SPDs, the
spectral estimation error of RMSE of three sample datasets under two different simulated digital
camera systems are summarized in Table 2. For more intuitively observe and analysis the data in
Table 2, these data are plotted in Fig. 10.

First of all, it is easy to find from Fig. 10 that the spectral estimation error of each group
sample dataset under the two digital camera systems also have very similar distributions. The
correlation coefficient between the spectral estimation results of two simulated digital camera
systems are 0.9973, 0.9878 and 0.9976 for the three tested sample sets, respectively. The high
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Fig. 10. The spectral estimation error distribution of three sample datasets under two
simulated digital camera systems in terms of two groups of light sources: Color Chart (a)
and (d), Munsell color (b) and (e), and Pigment samples (c) and (f).

Table 2. The spectral estimation results of three sample datasets under two simulated digital
camera systems in terms of two groups of light sources.

RMSE (%) Group 1: CCT ∼ 2856K Group 2: CCT ∼ 6500K

CIE-A TH2856 LED2856 CIE-D65 FL6500 LED6500

Color Chart
Canon 1D Mark III 2.13 2.11 2.40 2.32 2.60 2.29

Nikon D5100 2.18 2.16 2.48 2.38 2.66 2.34

Munsell color
Canon 1D Mark III 1.44 1.45 1.53 1.48 1.59 1.46

Nikon D5100 1.47 1.48 1.57 1.52 1.64 1.51

Pigment samples
Canon 1D Mark III 2.66 2.67 2.88 2.78 2.99 2.76

Nikon D5100 2.71 2.72 2.92 2.84 3.04 2.81

correlation coefficient illustrate that different simulated digital camera systems have almost no
influence on the investigation. Furthermore, for all the tested sample datasets, they exhibit very
similar distribution of their spectral estimation errors under a specific CCT (three tested light
sources) but different results between two different CCTs, which means that different tested
sample datasets also have almost no influence on the investigation in this paper.

To further analysis of the results between each tested light source of each specific CCT in
Fig. 10, we can see that the spectral estimation errors of the light sources are different with
each other although some of them achieved very closed results. For CCT ∼2856 K, apparent
difference of spectral estimation errors between LED light source (LED2856) and the other two
light sources (CIE-A and TH2856). For CCT ∼6500 K, apparent difference of spectral estimation
error between fluorescent light source (FL6500) and the other two light sources (CIE-D65 and
LED6500). In addition, from comparison of the spectral estimation errors between LED2856
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and CIE-D65 as well as FL6500 in Table 2, we can see that the light source with small CCT
(LED2856) exhibit bigger spectral estimation error than the light sources with big CCT (CIE-D65
and FL6500), which is contradictory to the conclusion in experiment 1.

Based on the analysis above, we can conclude that when facing the non-CIE daylight illuminants,
it is actually not suitable to evaluate the performance of a light source for spectral estimation
based on CCT. Therefore, we tested the influence of light sources on spectral estimation in a
more detailed way in experiment 3.

Before the discussion on the results of experiment 3, an explanation of why experiment 3
was set in this study is presented. Figure 11 shows the spectral estimation error distributions of
Color Chart CC for illuminant CIE-A and CIE-D65. Since the same spectral estimation results
for Color Chart CC under two different simulated digital camera systems of Nikon D5100 and
Canon 1D Mark III, therefore only the results of Nikon D5100 is presented here.

Fig. 11. The spectral estimation error distributions of Color Chart CC for illuminants
CIE-A and CIE-D65 under the simulated digital camera system of Nikon D5100.

We can see from Fig. 11 that for most colors in Color Chart CC, there is no significant
difference in the spectral estimation error between CIE-A and CIE-D65, but for the colors with
the main reflectance component located from middle to long wavelength (such as the colors of
No. 1, No. 2, No. 7, No. 9, No. 12 and No. 15), the spectral estimation error of CIE-A is
apparent small than that of CIE-D65.

The groundtruth and estimated spectral reflectance of color No. 7 and No. 15 under CIE-A
and CIE-D65 are plotted in Fig. 12. It is obvious that the estimated spectral reflectance of color
7 and 15 are more closed to the groundtruth for CIE-A. In review the SPD profile of CIE-A
and CIE-D65 that plotted in Fig. 5, we believe that the key to investigate the influence of light
sources on spectral estimation lies in the curve features of the light source SPD. Thus a more
detailed investigation about the influence of light sources on spectral estimation is carried out in
experiment 3.

4.3. Results of experiment 3

In experiment 3, five handmade light sources with special shapes and five hue samples selected
from NCS samples are used to investigate the influence of light sources on spectral estimation in
a more detailed way. The results of experiment 3 are summarized in Table 3, and an intuitive
display of the spectral estimation errors are plotted in Fig. 13.

It is easy to find from Table 3 and Fig. 13 that different light sources have different effects on
the spectral estimation of different hue samples, but in general, the distribution of the spectral



Research Article Vol. 29, No. 26 / 20 Dec 2021 / Optics Express 43910

Fig. 12. The spectral reflectance distribution of color 7 (a) and 15 (b) in Color Chart CC:
groundtruth and estimated with CIE-A and CIE-D65.

Fig. 13. The spectral estimation errors distribution of five tested hue samples of NCS
samples under five handmade light sources.

Table 3. The spectral estimation errors of five tested hue samples of NCS under five handmade
light sources.

red light green light blue light yellow light E

red hue samples 1.86 3.68 2.56 2.22 2.26

green hue samples 1.45 1.90 1.60 1.64 1.46

blue hue samples 1.24 1.76 1.22 1.48 1.27

yellow hue samples 1.42 1.95 1.65 1.56 1.49

neutral gray samples 0.88 1.14 1.05 0.92 0.92

Ave. 1.37 2.08 1.61 1.56 1.48

estimation errors shows a significant results. During the five tested light sources that with special
shapes, the red light source gives the best estimation accuracy overall, where the average spectral
estimation error of RMSE is 1.37(%) for all five tested hue samples of NCS samples. The equal
energy light source gives the secondary best spectral estimation accuracy. The green light shows
the worst result. In addition, different hue samples also achieved different spectral estimation
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results under different lights sources. Therefore, the SPD features of a light source is the essence
influence factor for digital camera-based spectral estimation.

Furthermore, for the five tested hue samples, the spectral estimation error of the red hue sample
is always the largest under five light sources, and the spectral estimation error of the neutral
gray sample is always the smallest. The spectral estimation errors of other three hue samples is
between red and neutral gray samples, and there is basically no significant difference in spectral
estimation error between them. This is an additional finding in this experiment that the color,
which is inherently determined by the spectral reflectance, of the testing samples also influence
the spectral estimation accuracy. To explore the influence of light sources on spectral estimation
from the aspect of SPD itself, several metrics that to describe the curve features of the SPD are
proposed and tested in the following section.

4.4. Proposed feature metrics of SPD

Based on the results of above experiments and our previous experience on spectral estimation,
four feature metrics of SPD curves are proposed to assist in evaluating the performance of a light
source in spectral estimation. These four metrics are red light ratio (RLR) that to indicated the
ratio of the red component (600nm∼700 nm) in the SPD of a light source, the smoothness index
(SI) that to describe the smoothness of the SPD based on the reciprocal of curvature of SPD, the
integral area (IA) that to describe the integral area between the SPD and wavelength axis, and the
effective wavelength number (EWN) that to indicated the wavelength number of relative spectral
power values bigger than a specified threshold, where in this paper the threshold is define as 5.
Details to calculate the four feature metrics of SPD are reported for Eq. (12) to Eq. (15).

The calculation of RLR is defined as in Eq. (12),

RLR =
∑︁700nm

600nm l(λ)dλ∑︁700nm
400nm l(λ)dλ

(12)

where l(λ) is the relative SPD of a light source, RLR is the ratio of the red component in the SPD.
Metric RLR is proposed based on the experiment results in section 4.3, where we believes that
the red light component plays an important role in spectral estimation.

The calculation of SI is defined as in Eq. (13),

SI = f (
∑︂|︁|︁|︁|︁|︁ l′′(λ)

(1 + l′(λ)2)3/2

|︁|︁|︁|︁|︁ dλ) (13)

where l´(λ) and l´´(λ) are the first and second derivatives of a light source l(λ), f () represent the
mapping function to map the curvature of SPD to a curvature radius space within 0 to 1, SI is
the smoothness index metric of a SPD. The SI is proposed because we find that when the light
sources with strong peak and valleys of their SPDs (such as the high-pressure mercury lamp or
light sources composed of narrow-band LEDs) are used for spectral estimation, the accuracy is
always inferior to the light sources with relative smooth SPDs.

The calculation of IA is defined as in Eq. (14),

IA =
∑︂700nm

400nm
l(λ)dλ (14)

where l(λ) is the relative SPD of a light source, IA is the integral area metric of a SPD. Generally
speaking, the larger the integral area of the SPD, the higher the radiant energy in each wavelength,
and vice versa.

The calculation of EWN is defined as in Eq. (15),

EWN = sum(l(λ) ≥ th) (15)

where l(λ) is the relative SPD of a light source, sum() represent the function to count the number
of wavelength that meet the conditions in (), EWN is the effective wavelength number of a SPD,
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th is the threshold to judge whether the wavelength is an effective one. The reason why EWN is
defined is because when the lower boundary of red light in Fig. 6 is set to 0 or a very small value,
the spectral estimation error will increase significantly. For example, when the lower boundary
of red light in Fig. 6 is set to 0, the corresponding spectral estimation errors of five different hue
samples in Table 3 are increased from 1.86, 1.45, 1.24, 1.42 and 0.88 to 6.89, 6.78, 10.56, 10.78
and 9.13, respectively.

Using a light sources database including 402 different SPDs published previously [43], the
proposed four feature metrics of SPD curves are tested using the constructed simulated digital
camera system of Nikon D5100 and the NCS samples. And all the NCS samples are used both as
training and testing samples in the test. The relationship between the four proposed metrics and
spectral estimation errors of 402 tested SPDs are plotted in Fig. 14, where the spectral estimation
errors are calculated by averaging the errors of all SPDs whose feature metrics is greater than a
certain value of the horizontal axis.

Fig. 14. Relationship between the four proposed metrics and spectral estimation errors of
tested SPDs: RLR (a), SI (b), IA (c), and EWN (d), where the spectral estimation errors of
RMSE are calculated by averaging the errors of all SPDs whose feature metrics is greater
than a certain value of the horizontal axis.

We can see from Fig. 14 that for the defined feature metrics of SPD, the higher the metrics
score the higher the spectral estimation accuracy. Therefore, the defined metrics may be used to
describe the performance of a light source in spectral estimation in somehow from the aspect of
SPD features rather than the CCT or other color quality features. However, there are still some
issues about the proposed metrics. On one hand, the similar problem of CCT is also exist for the
proposed metrics in evaluating the performance of a light source for spectral estimation, to be
specifically it is that different SPDs can also share the same metrics. In addition, the fluctuation
of metric EWN indicated that it is not always a effective metric but can work to some extent in
evaluating the performance of a light source in spectral estimation.

On the other hand, there is a little bit conflict between the functions of RLR and IA, but this is
not absolute. Therefore, in the following research, we will explore how to unify these metrics as
an effective one. When the proposed metrics are unified as one, the problem of multiple SPDs
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corresponding to the same metric and the conflict between RLR and IA can be appropriately
solved to a certain extent. In addition, how to using the proposed metrics to guide the selection,
design and optimization of a light source for a specific digital camera-base spectral imaging
system in practice is another important aspect of our future researches.

4.5. Discussion

The optimization of key components and influence factors for digital camera-based spectral
imaging or color measurement is extensively studied recently from different aspects such as the
filter choose and design [44,45], the optimization of spectral estimation algorithm [8,46], as well
as the selection and optimization of light sources [17,19,47]. For digital camera-based spectral
estimation from single RGB image, the optimization of lighting sources is actually a promising
strategy in somehow for specific applications as the tunable LEDs can generate most of the
desired SPDs currently, this has been confirmed in the research of Wang et al. [19]. However,
the current optimization researches especially for the optimization of light sources are performed
without prior knowledge, which means that how the light sources will influence the spectral
estimation is not known initially and the optimal light source was often selected from countless
possible SPDs based on exhausted searches or using some searching algorithms. This will lead to
the optimization result of the optimal light source is hard to explain even though there are some
reasonable explanations on the optimization results in current researches, and the explanations
are result-oriented and lack of the investigation about how the light sources influence the spectral
estimation.

To make the optimization or selection of the light source for digital camera-based spectral
estimation more evidence-based, the influence of light sources on spectral estimation is conducted
in this paper. Different from the current researches on this topic of which the investigation are
based on the CCT of light sources, we investigate the influence of light sources on spectral
estimation from the aspect of SPD features of the light sources.

Obviously, the influence of light sources on spectral estimation accuracy for specific digital
camera-based system depend on the SPD of the light sources, and four different feature metrics
of SPD are defined based on the investigation. These proposed SPD features of light sources can
be used as constraints for light source optimization in order to compress the solution space of
light source optimization.

To compare with the existing exhaustive search methods that without the prior knowledge to
guide the search of the optimal light source, the methods that with considering the proposed
features of SPD may achieve higher efficiency in searching the optimal light sources, and the
search process is actually oriented by prior knowledge. But we should admit that the mechanism
of how the light source influence the spectral estimation is still not fully revealed currently, and
how to unify these proposed feature metrics of SPD in practice is also an important question to
be resolved in the future.

In addition, it should be noted that in this paper we only investigate the influence of light
source on spectral estimation from the aspect of spectral accuracy and without consideration
of the colorimetric accuracy. As we all know that the calculation of colorimetric values, such
as the CIELab values, from the corresponding spectral reflectance is determined by the light
source and the color matching function (CMF), which is a non-linear calculation process. So
the experiment results may different from the current achieved. For example, the colorimetric
accuracy of CIELab color difference (∆Eab) for the CIE daylight illuminants in experiment 1 is
calculated and plotted in Fig. 15. Compared with the result in Fig. 9, it is obvious that a very
different result is presented for the relationship between colorimetric error (∆Eab) and CCTs of
the CIE daylight illuminants.

Therefore, the optimal light source for digital camera-based spectral estimation is also related
to the evaluation metrics of the spectral estimation accuracy. In practice, except for to use the
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Fig. 15. The relationship between colorimetric error (∆Eab) and CCTs of the CIE daylight
illuminants of three tested datasets under two simulated digital camera systems: Color chart
(a), Munsell color (b), and Pigment samples (c).

feature metrics proposed in this paper, the inconsistency of spectral errors and colorimetric
errors should also be considered in searching or designing the optimal light source. Overall,
for different applications purpose, we can combine the proposed feature metrics and different
evaluation metrics (spectral or colorimetric) in searching or designing the optimal light source.

5. Conclusion

The light source is an very important factor that influence the estimation accuracy of digital
camera-based spectral estimation. In this paper, an investigation about the influence of light
sources on spectral estimation is conducted based on several progressive independent experiments.
The investigation between CCT and spectral estimation errors indicated that the CCT can be used
to describe the performance of the CIE daylight illuminants in spectral estimation, but can not be
used to describe the other types of light sources. The investigation between SPD of the light
source and spectral estimation errors illustrated that the influence of the light source on spectral
estimation depends on the SPD itself, and the red component in visible spectrum is important
for higher spectral estimation accuracy. Four feature metrics of SPDs are proposed to evaluate
the performance of light sources in spectral estimation. Further tests showed that the higher
the metrics score the better the spectral estimation accuracy. However, some issues about the
proposed metrics need to be further investigate, such how to unify these metrics as an effective
one, and how to using the proposed metrics to guide the selection, design and optimization of
light source in practical applications with consideration the other factors. These issues are the
key points that make the proposed feature metrics of SPDs move towards practical application in
the future.
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