
This is a repository copy of Indoor Temperature Forecast based on the Lattice Boltzmann 
method and Data Assimilation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/182219/

Version: Accepted Version

Article:

Salman, N, Khan, A orcid.org/0000-0002-7521-5458, Kemp, AH et al. (1 more author) 
(2022) Indoor Temperature Forecast based on the Lattice Boltzmann method and Data 
Assimilation. Building and Environment, 210. 108654. p. 108654. ISSN 0007-3628 

https://doi.org/10.1016/j.buildenv.2021.108654

© 2022 Elsevier Ltd. All rights reserved. This manuscript version is made available under 
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Indoor Temperature Forecast based on the Lattice Boltzmann

method and Data Assimilation

N. Salmana, A. Khana, A. H. Kempb, C. J. Noakesa

aSchool of Civil Engineering, University of Leeds, Woodhouse Ln., Leeds, LS2 9DY, United Kingdom
bSchool of Electronic and Electrical Engineering, University of Leeds, Woodhouse Ln., Leeds, LS2

9DY, United Kingdom

Abstract

Control of the indoor environment in buildings is reactive and usually based on sen-

sor data at a single location in a room without any consideration of the air flows within

the space. The ability to accurately simulate indoor conditions would enable predictive

control offering improved environmental conditions and better energy efficiency. This

study investigates the temporal prediction of temperature and its coupling with sensor

data for improving thermal comfort forecasting in an indoor environment. We present a

real-time implementation of a computational fluid dynamics (CFD) Lattice Boltzmann

method (LBM) model coupled with data assimilation (DA) to make periodic updates

to the state of the model. Variational and sequential DA techniques are evaluated

and two novel methods for real-time accurate temperature prediction are presented.

The models are demonstrated for prediction of temperature in an idealised room, with

simulated temperature sensor readings used to update LBM-based flow predictions.

The LBM-DA approach overcomes the need for accurate boundary conditions while

considerably improving the transient and spatial prediction of temperature in terms of

root mean squares error, thereby avoiding large deviation from the room’s true flow

state. The accuracy of prediction is shown to depend on number of sensors with poor

prediction using just a single sensor. Results also depend on quality of sensor data,

with highly variable data yielding poorer results. The approach has potential for appli-

cation in indoor environments to provide more accurate and faster response of control

systems to changing environmental conditions.

Keywords: Thermal comfort, Lattice Boltzmann method, Data Assimilation,

Ensemble Kalman filter, temperature sensors.

1. Introduction

Monitoring and predicting indoor air quality (IAQ) and thermal comfort is essential

given that we spend about 90% of the time living indoors [21]. Poor indoor environ-

ments are widely recognised to have a detrimental impact on human health, comfort,

cognitive performance, and creativity. Control of the indoor environment also has a

Email addresses: n.salman1@leeds.ac.uk (N. Salman), a.khan@leeds.ac.uk (A. Khan),
a.h.kemp@leeds.ac.uk (A. H. Kemp), c.j.noakes@leeds.ac.uk (C. J. Noakes)

Preprint submitted to Building and Environment January 11, 2022



substantial impact on energy performance, with buildings representing around 40% of

EU energy use [41] and 36% of carbon emissions [9]. Strategies to control tempera-

ture, humidity and IAQ to manage pollutant exposure, thermal comfort and balance

the quality of the environment against energy use range from simple thermostatic

control of radiators for heating, to more complex demand controlled ventilation that

responds to sensing of temperature and IAQ parameters such as CO2 [15]. However,

these approaches are reactive rather than predictive and are generally based on a sim-

ple single point measure assuming a well-mixed indoor airflow rather than considering

the detail of the indoor flow [28]. The ability to make real-time or faster than real-time

prediction of indoor conditions that considers that complexity of airflow, temperature

and contaminant distributions would enable more effective and localised control of the

environmental conditions, improving both individual experience and the performance

of the building. This is particularly important for critical environments such as health-

care, where comfort needs vary between patients and IAQ includes control of infection

which can be transmitted through the air [27].

Computation simulation of indoor environments

In recent years, computational fluid dynamics (CFD) based simulations have been

widely used by architects and engineers to assess various aspects of building design [38].

For example, outdoor airflow around the buildings, analysis of thermal environments

[25], ventilation design [2], and IAQ evaluation [39]. Conventional CFD methods,

although successfully applied to simple steady-state conditions have limited application

in complex indoor environments, due to their transient nature resulting from variable

temperature sources or human mobility. Transient CFD models suffer from excess

computational complexity resulting in unacceptable processing time (several hours to

months) [18], [40]. To address the excessive time issue, high-end supercomputers are

used [5], which is not a financially viable solution in many cases. Other attempts

to speed up the computational process include multi-zone network models [35], zonal

models [26] and fast fluid dynamics (FFD) methods. The multi-zone network and zonal

models although faster than conventional CFD, suffer from simplistic assumptions and

loss of accuracy. FFD on the other hand provides better accuracy and much higher

speeds (50 times faster than CFD) but still suffer from loss of spatial and temporal

accuracy.

Non-traditional CFD methodologies, such as Lattice Boltzmann Method (LBM),

have recently been shown to give comparable results to unsteady CFD methods like

large eddy simulation (LES) without the substantial computational overhead or ex-

cessive solution times [19], [8]. LBM is a microscopically inspired method designed to

solve macroscopic fluid dynamics problems. It originates from the lattice gas automata

(LGA) method and can be regarded as an explicit discretisation of the Boltzmann equa-



tion. The LBM has several advantages over traditional Navier-Stokes equations (NSE),

such as its numerical stability and accuracy, the capacity to efficiently handle complex

geometries, and the data-parallel nature of its algorithm. Thus, LBM is an explicit

numerical scheme with only local operations. The LBM describes the fluid by particle

distribution functions (PDFs) located at grid points (lattice), while the macroscopic

properties of the fluid are recovered from moments of these PDFs. It has the advantage

of being easy to implement and is especially well suited for massively parallel archi-

tectures like graphics processing units (GPU). The approach is gaining popularity and

usefulness in modelling of the built environment including exploration of indoor [19]

and outdoor [20] flows.

Application of data assimilation approaches

Regardless of the method used, CFD predictions are likely to diverge from reality

over extended periods of time due to unknown/unresolved boundary conditions as well

as changes in the dynamic environment. To circumvent this, data assimilation (DA) [1]

can be used to correct the prediction of flow models using data from real-world mea-

surements. DA techniques have been widely used in weather prediction (e.g. ECMWF,

Met Office, Meteo-France, etc.) and oceanography, however, their utility has not yet

been exploited for indoor environments. DA is a tool for incorporating observation

into the state model to update (correct) the state of the model. DA techniques can

generally be classed into statistical DA [11] and variational DA [30], both have their

benefits and disadvantages. Statistical DA methods incorporate observation to the

model sequentially in time and include approaches like the Kalman filter (KF) [36],

extended Kalman filter (EKF), and Ensemble Kalman filters (EnKF) [7]. Variational

DA on the other hand includes the 3DVAR and 4D-VAR methods [24]. 3DVAR is a

classical DA implementation and is based on minimising a cost function that contains

information on the background errors with their respective spatial correlation (and

also cross-correlation between different physical parameters) and the observations with

their errors. DA techniques can be modified to cater for dynamic indoor environment

needs, this can be, for example, achieved by accurately modeling the interaction within

the physical environment (the background) that encompasses both spatial and inter-

variable correlations. Simplistic approximations to the correlations can be made such

as assuming the correlations to be Gaussian with an exponentially decaying profile,

and thus simplifying the correlation structure by separating the correlation matrices

along each physical dimension [23], [22]. In present work, the background covariance

matrix is modeled following a similar approach, where it is assumed that the simulated

sensor measurement of temperature in an indoor environment is correlated to the sur-

rounding cells via a Gaussian function. The correlations indeed die out after a certain

distance, which can in practice be determined with an exhaustive offline measurement



campaign.

Study objectives

The aim of this study is to develop an approach to real-time visualization and pre-

diction of spatially and transiently varying temperature within the built environment

through a data assimilation approach to enable a coupled sensor-airflow predictive

modelling approach for thermal comfort forecast. For accurate temperature prediction

in real-time, two novel implementations are presented that consider both variational

and statistical DA methods, i) LBM-3DVAR, ii) LBM-EnKF. In both approaches, the

airflow in an indoor environment is simulated using the LBM which is coupled with

energy equations to model the temperature distribution in space and time within the

space. This is used to produce a simulated ground truth model to compare to the DA

methods. The prediction from the LBM is then corrected with simulated sensor data

using data assimilation cycles to account for changing temperature boundary condi-

tions. Simulation and analysis for both methods are presented for an idealised office

environment setup with various boundary conditions. The root mean squares error

(RMSE) is obtained for both methods and compared to the case where the boundary

conditions change but no DA is performed. It is demonstrated that the LBM coupled

with DA performs significantly better than without DA.

The rest of the paper is organized as follows, Section 2 presents the LBM approach

while Section 3 explains the 3DVAR and EnKF techniques. Section 4 presents the

simulation results which are followed by a discussion section. Finally the conclusions

are presented.

2. Lattice Boltzmann Method

The LBM discretises the Boltzmann equations in phase space, involving space, time,

and velocities. The flow domain, in this case the indoor environment, is represented

fully by a regular grid or lattice of points. The fluid is represented by the PDFs

which resides at these lattice points and indicates a probability of the presence of

particles with a given velocity. Macroscopic properties of the fluid, e.g., density and

velocity are recovered from these PDFs. However, the PDFs can only propagate in

set directions depending on the underlying model. A convention for these models is

the DdQq name scheme, where d denotes the number of dimensions and q represents

the discrete directions. In this study, D3Q19 is used for the velocity of the flow while

a smaller D3Q7 is used for heat flow. The rationale behind the choice of D3Q19

lattice for velocity field is a compromise between computational cost and the minimum

number velocity directions required to faithfully reproduce the hydrodynamics in the

continuum limit. Similarly, the D3Q7 has been shown to be the minimum number

which reproduces the advection diffusion equations adequately in 3D. More details in



[19, 10]. Two steps are involved in the LBM simulation, i) a streaming operation in

which the PDFs are streamed or propagated to the neighboring grid points and depend

on the lattice geometry and ii) a collision step, in which the PDFs are relaxed towards

an equilibrium depending on the chosen relaxation scheme.

(a) D3Q19 (b) D3Q7

Figure 1: The discrete velocities directions for D3Q19 and D3Q7. C (center), E (east), N
(north), W (west), S (south), NE (north east), NW (north west), SW (south west) and SE
(south east). T (top), B (bottom),TE (top east), TN (top north), TW (top west), TS (top
south), BE (bottom east), BN (bottom north), BW (bottom west) and BS (bottom south).

2.1. The D3Q19 model for velocities

The D3Q19 model, shown in Fig. 1a, maintains sufficient isotropy while having

the minimum number of velocity directions. The collision operation is based on the

Bhatnagar-Gross-Krook (BGK) scheme [6]. The BGK approach states that the PDFs

f = {fi}i∈{0,...,18} relaxe to the equilibrium PDFs f eq = {f eq
i }i∈{0,...,18} over a relaxation

time τf . The relationship between the PDFs using the BGK collision approximation

is given by the lattice Boltzmann equation

fi (x+ cei∆t, t+∆t) = fi (x, t)−
1

τf
(fi (x, t)− f eq

i (x, t)) , (1)

where c = ∆x
∆t

is the lattice speed while ∆x is the space between lattice points and

∆t is the time step. The macro fluid density ρ and velocity v are recovered from the

PDFs by

ρ =
18
∑

i=0

fi, v =
1

ρ

18
∑

i=0

ceifi,

where ei represent the velocity directions, i.e.,
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(0, 0, 0) i = 0 (C) ,

(±1, 0, 0) i = 1, 2 (E,W ) ,

(0,±1, 0) i = 3, 4 (N,S) ,

(0, 0,±1) i = 5, 6 (T,B) ,

(±1,±1, 0) i = 7, 8, 9, 10 (NE,NW,SE, SW ) ,

(±1, 0,±1) i = 11, 12, 13, 14 (TE, TW,BE,BW ) ,

(0,±1,±1) i = 15, 16, 17, 18 (TN, TS,BN,BS) .

.

With these new computed values, the local equilibrium is obtained by

f eq
i = ρwi

(

1 + 3
eiv

c
+ 4.5

(eiv)
2

c2
− 1.5

v2

c2

)

, (2)

where wi represent the weight coefficients of individual velocity direction ei i.e., w0 =

1
3
, w1,...,6 =

1
18
, w7,...,18 =

1
36
.

The NSE can be recovered from BGK model through the Chapman-Enskog expan-

sion [16] with the kinematic viscosity of the fluid ν relating to τf by

ν =
(2τf − 1)∆x2

6∆t
. (3)

2.2. The D3Q7 model for temperature

In this study, the temperature is chosen as a metric for IAQ evaluation. Other IAQ

parameters such as CO2, humidity, etc. can be modeled similarly. To include the flow

of heat, a coupled temperature model in which the temperature is treated as a scalar

quantity advected by the fluid and is solved on a smaller D3Q7 lattice, as shown in Fig.

1b is used [10]. This smaller lattice is sufficient to represent heat while maintaining

low computational complexity. The two-step streaming and collision expression for

temperature is given by

Ti (x+ cei∆t, t+∆t) = Ti (x, t)−
1

τT
(Ti (x, t)− T eq

i (x, t)) , (4)

where Ti is the temperature PDF along the direction ei, where now i ∈ {1, ..., 7} and

τT is the relaxation time of temperature flow towards equilibrium T eq
i . τT when related

to the thermal diffusivity D is given by τT = 3D∆t
∆x2 + 0.5 and the equilibrium PDF is

given by

T eq
i =

T

7

(

1 + 2
eiv

c

)

. (5)

The macro temperature is computed from the micros by the summation T =
∑6

i=0 Ti

[14]. In this work, it is assumed that the temperature has little effect on the flow

except for the buoyancy term [14]. The buoyancy effects of temperature are addressed



by adding a forcing term to the NSE, also known as the Boussinesq approximation

[34], however other models exist [4], [29]. For the coupling of the temperature with the

flow, the Boussinesq forcing term FB = −gβ (T − T0) is added to the LBM equation,

where g is the acceleration due to gravity and β is the coefficient of thermal expansion.

In this study, however, a simplified approximation of the forcing term that is aligned

with the direction of gravity is used, i.e.,

Fi =
ei.FB

2
=

±gβ (T − T0)

2
. (6)

Finally the coupled LBM equation is given by

fi (x+ cei∆t, t+∆t) = fi (x, t)−
1

τf
(fi (x, t)− f eq

i (x, t)) + Fi∆t. (7)

3. Data Assimilation Approaches

Data assimilation (DA) is the approximation of the true state of some physical sys-

tem at a given time by combining time-distributed observations with a dynamic model

in an optimal way [1]. Forecast models like the one used in numerical weather predic-

tion (NWP), or the LBM approach in this study for temperature prediction start with

erroneous initial conditions, or more precisely with initial conditions that do not repre-

sent the true state of the physical space. Moreover, these errors accumulate over time

rendering the forecast meaningless in many cases. The predictive models can be steered

back to the true state by the periodic injection of physical observations. Observations,

such as sensor readings for IAQ measurements are themselves not error-free. DA is the

art of dealing with these uncertainties in models and observations. DA forms the link

between a free-flowing model and spatiotemporally sparse observations. DA has been

applied in many different fields and has been referred to by as many names [33], [37].

However, the underlying mechanism is the same i.e., most modern DA methods are

based on Bayes theorem [32]. Broadly, DA techniques are classed into two categories i)

Varitaional DA ii) Statistical DA . Variational methods including 3DVAR or 4DVAR

obtain the optimized compromise between the background (that is the flow model) and

observation by minimizing a cost function. These assume linearity in the model as in

the case of 3DVAR or goes through a linearization process as in 4DVAR.



Algorithm 1: LBM-DA algorithm

Required: LBM parameters initialization listed in table 2 and time step
(ts)=0
while ts ≤ Total time do

1: Operate LBM equation for flow PDF
fi (x+ cei∆t, t+∆t) = fi (x, t)−

1
τf
(fi (x, t)− f eq

i (x, t))

2a: Operate the LBM streaming step for temperature
Ti (x+ cei∆t, t+∆t) = Ti (x, t)
2b: Go to step 3 if ts=DA cycle otherwise go to step 4.
3: Go to 3DVAR or EnKF to perform DA and update macro temperature
T = T a

4: Operate the LBM collision step for temperature with updated marco T
T eq
i = T

6

(

1 + 2eiv

c

)

5: Operate the coupled LBM equations
fi (x+ cei∆t, t+∆t) = fi (x, t)−

1
τf
(fi (x, t)− f eq

i (x, t)) + Fi∆t
ts = ts+ 1

end

Statistical DA includes the ensemble Kalman filter (EnKF) and its derivatives.

These obtain the background statistics from an ensemble (multiple runs of the flow

forecast) and is not limited to linearized models. The variational DA assumes a pre-

calculated background covariance matrix while the sequential DA uses a Monte Carlo

approach to estimate the covariance with a multiple (ensemble) simulation runs. A

third sub-category can be the Monte-Carlo methods (particle filters) which deal with

non-Gaussian errors in the flow and observation models. In this study, linearity in

the observation model and Gaussian errors are assumed, therefore the 3DVAR and the

EnKF techniques are studied. The LBM-DA algorithm is presented in Algorithm 1.

3.1. 3DVAR

3DVAR is a classical DA implementation and is based on minimizing a cost func-

tion that contains information on the background errors with their respective spatial

correlation (and also cross-correlation between different physical parameters) and the

observations with their errors. The cost function of 3DVAR in its incremental form [3]

is given as follows:

J (δx) =
1

2

(

δx− δxb
)T

B−1
(

δx− δxb
)

+
1

2
(y −H (xg + δx))T R−1 (y −H (xg + δx)) ,

(8)

where δx is the N by 1 vector given by δx = (x− xg) , with N being the number

of states, δxb is the background increment given by δxb = xb − xg with xg being a

known reference state. x is the vector of the model state and xb is the background

state, which is the state of the forecast model just before the DA cycle. y is the O by 1

measurement vector with the number of measurements O << N . The operatorHmaps

the variables from the state space into the observation space. R is the covariance matrix

of the observation and B is the background error covariance. R and its inversion is easy

to deal with as its size only depends on the number of observations. If the observations



are obtained from sparsely located sensors, they can be assumed to be uncorrelated,

hence in most cases, R is a diagonal matrix. The matrix B encapsulates the correlation

between grid points and hence is responsible for the spread of measurement (sensor)

information to the surrounding cells and is key to the success of modern variational

DA techniques [3]. In general, explicit determination of the B is not feasible, this is

partly because of its large size (and rank) > 107 and also the fact that the true state

is unknown. Thus B is commonly modeled and is assumed to be static. The literature

on modeling B, almost entirely has been focused on using the dynamical properties of

the atmosphere and assumes homogeneity and horizontal isotropy in the background

errors. The success of NWP in terms of accurate analysis and forecast relies intimately

on the accurate modeling of B. In this study, an approximation of the correlations

is made by assuming the correlations to be Gaussian with an exponentially decaying

profile. This assumption was made in [22], [23] for oceanography and outdoor pollution

dispersion. It is assumed in the current work, that temperature (or any other air quality

parameter) will follow a similar exponential decay profile with distance. Thus matrix

B is factorized i.e.,

B = SCST , (9)

where S is a diagonal matrix of the standard deviations of individual cell points while

C is the correlation matrix. Also

C = CL ∗ (CL)
T , (10)

where CL is the lower triangle of the Cholesky decomposition of the matrix C. With

this modification, the variable transformed representation of the cost function is given

as

J (δz) =

1

2

(

δz − δzb
)T (

δz − δzb
)

+
1

2
(y −H (xg + SCLδz))

T
R−1 (y −H (xg + SCLδz)) .

(11)

Where δz is the transformed variable given by δz = S−1C−1
L δx . If the elements of C

are a product of a Gaussian function i.e., corr(i, j) = exp
(

− (i−j)2

L

)

, with L being the

decorrelation distance, then CL can be further decomposed as

CL = CLx
⊗CLy

⊗CLz
. (12)

Where CLx
,CLy

,CLz
are the correlation matrices along the x, y, and z directions, and

⊗ is the Kronecker product. This simplification greatly reduces the computation com-

plexity of the 3DVAR cost function as the correlation matrices along the individual axis

have significantly reduced dimensions. These correlation matrices can be determined



and stored before the DA cycles. Furthermore, this also enables the DA to incorporate

anisotropic correlations. For any indoor environment, the decorrelation distance can

be determined with an offline measurement campaign. The 3DVAR methodology is

shown in Algorithm 2.

Algorithm 2: 3DVAR algorithm

Required: Macro T = xb, B and 3DVAR parameters initialization given in

table 3.

k = 0,

while |Jk − Jk−1| > ϵ do

1: Compute J (δz) from Eq. (11)

2: Compute ∇δz

∇δz =
(

δz − δzb
)

− (CLS)
T
HTR−1 (y −H (xg + SCLδz))

3: Update δzk+1 with gradient descent k = k + 1

end

4: xa = xg + SCLδz = T a

3.2. Ensemble Kalman filter

The EnKF mimics the Kalman filter by approximating the calculation of complex

covariance matrices with a limited number of ensemble members. The analysis step is

given by

xa
i = xb

i +K
(

y −H
(

xb
i

))

, (13)

where i=1,...,M is the ensemble index, xb
i is the forecast state (or the background) i.e.,

the state just before the assimilation cycle. The superscript b is used here instead of

the more conventional f to be consistent with the 3DVAR formulation in the previous

section. K is the so-called Kalman gain given by

K = PbHT
(

HPbHT +R
)−1

, (14)

where Pb is the background error covariance matrix and is approximated by

Pb =
1

M − 1

M
∑

i=1

(

x
b
i − x̄

b
) (

x
b
i − x̄

b
)T

, where x̄
b =

1

M

M
∑

i=1

x
b
i .

The analysis covariance matrix Pa of the analysis ensemble x
a is given by

Pa = (I−KH)Pb (I−KH)T . (15)

However in order achieve the best linear unbiased estimator (BLUE) analysis of the

Kalman filter, one should obtain [1] Pa as follows

Pa = (I−KH)Pb. (16)



One way to obtain (16) is by perturbing the observation with errors drawn from a

Gaussian distribution, i.e., ŷ = y + n where n ∼ N (0,R). However, this step adds

an additional source of sampling error into the observation. The implementation of

EnKF requires some additional treatment which is discussed in the next subsection.

Implementation of the EnKF

The EnKF attempts to estimate a large background covariance matrix with only

a limited number of ensemble members, however, in practice this is accompanied by

large sampling error rendering the covariance matrix rank deficient. This results in

spurious correlations at longer distances that have no relevance to the ground truth.

This almost always results in the divergence of the filter. Fortunately, some tricks

can be incorporated into the algorithm to avoid the divergence of the filter. Here

localisation and inflation will be discussed as measures to avoid filter divergence.

Localisation. Localisation is based on the notion that cell points that are close to each

other have a higher correlation while distant cell points have lower correlations. In this

work, the low-rank background covariance matrix Pb is regularised by removing the

long-range (and meaningless) correlations by a point-wise multiplication of a correlation

matrix L ∈ RN×N , i.e.,
[

L ◦Pb
]

i,j
=
[

Pb
]

i,j
[L]i,j

where ◦ is the Schur product. [17] shows that the L ◦ Pb is positive definite if Pb

and L are positive definite. Thus, this requires the building of a positive definitive

covariance matrix L from a correlation function. A candidate for such functions is

the Gaspari-Chon function [13], which cuts off the correlations at longer distances.

However, to stay consistent with the 3DVAR formulation, the correlation function as

used in the 3DVAR algorithm i.e., Li,j = exp
(

− (i−j)2

L

)

will be used for localisation.

In order to obtain the full rank matrix L ◦ Pb, one performs this regularisation in

the Kalman gain step (14), it is noted here that the computation of
(

L ◦Pb
)

HT and

H
(

L ◦ Pb
)

HT +R becomes unfeasible for moderate to large cell numbers. To avoid

the multiplication of large matrices, the computational complexity is reduced by using

localistion in the observation space which generally has a much smaller dimension than

the state space. Thus
(

L ◦Pb
)

HT → Lc ◦
(

PbHT
)

and

H
(

L ◦ Pb
)

HT +R −→ Ls ◦
(

HPbHT
)

+R,

where Lc ∈ RN×O and represents the correlations of the sensor readings with the

surrounding cells, while Ls ∈ RO×O represents the correlations between the simulated

sensor readings.



The modelling of Lc requires some care, in particular, if the mesh grid of the area

is given by G =
[

gx, gy, gz

]

∈ RN×3 and vector of the index of the cells where sensors

are located is given by j, then Lc can be determined as

[Lc]i,j = exp

{

−

[

(gx (i)− j (j))

Lx

2

+

(

gy (i)− j (j)
)

Ly

2

+
(gz (i)− j (j))

Lz

2
]}

(17)

for i = 1, ..., N and j = 1, ..., O. One can then easily determine the correlations along

the x, y and z axis with the decorrelation distances Lx, Ly and Lz respectively.

Ls on the other hand is given by Ls = exp
{

−
[

(i−j)
Ls

2
]}

, however in this study, the

simulated sensor measurements are assumed to be uncorrelated with each other thus

Ls = IO.

Inflation. For a limited number of ensemble members the sampling error will accumu-

late over time resulting in the sampled covariance matrix Pb to be a poor estimate of

the true covariance, this inevitably will lead to filter divergence. One way counter this

to inflate the covariance matrix by a factor λ i.e., Pb = λPb where the value of λ is

greater than 1. The EnKF steps are presented in Algorithm 3.

Algorithm 3: EnKF algorithm

Required: Ensemble xb
i,ts = Ti,ts, and initiate EnKF parameters listed in

table 5

1: Perturb observation ŷi,ts = yts + n i, n i ∼ N (0,R) , i = 1, ...,M

2: Calculate ensemble means x̄ b
ts =

1
M

∑M
i=1 x

b
i,ts

3: Compute the normalised anamolies
[

Xb
]

i,ts
=

x
b
i,ts−x̄

b
ts√

M−1

4: Compute the background covariance Pb
ts = Xb

i,ts

(

Xb
i,ts

)T

5: Perform inflation Pb
ts = λPb

ts

6: Compute the Kalman gain with localisation

Kts = Lc ◦
(

Pb
tsH

T
) (

Ls ◦
(

HPb
tsH

T
)

+R
)−1

7: Updating ensemble xa
i,ts = xb

i,ts +Kts

(

ŷi,ts −H
(

xb
i,ts

))

8: T a
ts = xa

i,ts,

Go to be step 4 in algorithm 1.

4. Model Application and Simulation Results

In this section, the performance of LBM-DA and its comparison with LBM without

DA is presented. All simulations are carried out using our in-house code written in

MATLAB R2017a. The choice of MATLAB is purely to demonstrate the viability of

our proposed methodology. An office environment with nx = 40, ny = 20, nz = 20 is

represented by a room of non-dimensional lattice units for the purpose of testing. The

geometry of the office environment is shown in Fig. 2.



Figure 2: Simulated office geometry, with all dimensions in non-dimensional lattice units

The walls of the room are insulated while the floor is heated to a particular tem-

perature to emulate human activity and office electronics. An inlet and an outlet with

known fixed temperature and airflow velocity is simulated in the ceiling. A window is

also simulated on one of the walls, its temperature changes emulating variable outdoor

temperature. The inlet, outlet and window velocities are 0.1 ∆x
∆t

and are assumed to

be known. The Rayleigh number for the simulation is 11,691 which is calculated by

Ra =
ρβ∆TL3g

νD
, (18)

where ∆T = 20 (difference between reference temperature T0 and maximum temper-

ature in the simulation environment), the values of the other parameters are given

in table 2. The simulation aims to demonstrate the efficacy of the proposed method

under circumstances with dynamic boundary conditions (BC). The initial room and

floor temperature is assumed to be not known accurately. The window temperature is

variable and also not known. The LBM-DA algorithm is operated to update the state

based on simulated sensor measurements within the room. The changing BC is given

in table 1.

An initial LBM simulation with the correct changing boundary conditions in Table

1 is carried out to simulate the correct temperature conditions in the model room which



Boundary condition (BC) Window Floor Inlet

1 25 °C 15 °C 25 °C
2 20 °C 15 °C 25 °C
3 15 °C 15 °C 25 °C
4 5 °C 15 °C 25 °C
5 -5 °C 15 °C 25 °C

Table 1: Variable boundary conditions

we will refer to as the ground truth solution. The change in the window temperature is

purely to highlight the efficacy of the proposed method, and is not based on real data.

This is an exaggerated temperature change to show that if the boundary conditions

change drastically then the proposed methods are able to steer back the simulation

to reality. To evaluate the robustness of the proposed DA methods, the LBM-DA

simulation is initiated with an incorrect initial boundary condition and is allowed to

approximate the ground truth with four simulated sensor temperature measurements

taken from the ground truth solution. The flow field at each boundary condition is

shown by a cross section at y = 10 in Fig. 3. The flow fields show that as the

window temperature drops the air mixing in the room changes. As expected at a

higher temperature, there is evidence of short circuiting in the flow, with the warm

inlet air being extracted from the room without significant mixing in the space. At

lower window temperatures, the inlet air is cooled creating a greater degree of mixing

into the lower zone of the room.

Parameter LBM (Lattice Units)

Reference temperature T0 5 °C
Wall temperature 10 °C

Temperature density (ground truth) T 10 °C
Temperature density (DA) 8 °C

Temperature density (without DA) 8 °C
Fluid density ρ 1

Prandtl number Pr 0.7
Kinematic viscosity ν 0.08
Thermal diffusivity D 0.114

Coefficient of thermal expansion β 0.000034
Box dimension Length (L) × Width (W ) × Room Height (H) 40× 20× 20

Reynolds number 100
Number of grid points 16000

Lattice space ∆x 1
Time step ∆t 1

Acceleration due to gravity g (0, 0, -9.8)

Table 2: LBM parameters

The performance of LBM-DA relies heavily on the accurate modeling of the back-

ground covariance matrix from the sensor data, which in this study has been modeled

with the Gaussian correlation function. In real indoor scenarios, these can be obtained

with an offline measurement campaign and appropriate modeling based on real data.



For this study, the temperature is assumed to be highly correlated on the x and y

axis, while low correlation is assumed on the third axis. Fig. 4 shows the performance

of three LBM simulations: i) the ground truth with correct boundary conditions, ii)

LBM-3DVAR algorithm with an initial incorrect boundary condition and iii) LBM

without implementation of DA and an initial incorrect boundary condition.

The parameters for the LBM are given in table 2 and the parameters for the LBM-

3DVAR are given in table 3. The simulation begins with BC 1 (table 1) with the

temperature density of the ground truth in Fig. 4a at 10 °C, the floor at 15 °C

and inlet temperature at 25 °C. The simulation is run for 400-time steps before the

BC changes to BC 2 and then allowed to run for another 400 time steps until the

BC changes to BC 3 and so on. Incorrect initial conditions are given to the LBM-

3DVAR and LBM without DA with temperature density, floor temperature at 8 °C

and window temperature at 10 °C. Four simulated sensors are placed at locations

[(20,10,19);(39,10,10);(20,2,10);(20,10,2)], these are represented by circles in the 2nd

column of Fig. 4. When the BC changes from BC 1 to BC 2, the LBM-3DVAR and

LBM without DA algorithms are ignorant to it. The LBM without DA continues to

assume the wrong BC. The LBM-3DVAR model on the other hand aims to compensate

for this change via sensor measurements from within the domain. The simulated sensor

measurement in Fig. 4, 2nd column are taken from corresponding cell points in the

ground truth with a small Gaussian noise added to represent sensor measurement error.

Fig. 4 also presents the root mean squares error (RMSE) of the LBM-3DVAR and LBM

without DA. The RMSE is obtained at the end of each of the 5 BC periods. The RMSE

of the LBM-3DVAR is obtained as

RMSELBM−DA =

√

√

√

√

(

5
∑

t=1

nx
∑

i=1

ny
∑

j=1

nz
∑

k=1

(

T a
i,j,k,t − Ti,j,k,t

)2

)

/5, (19)

where T a is the macro temperature of the LBM-DA and T is the macro temperature

of the ground truth. The RMSE for LBM without DA is similar but with macro T a

replaced by the macro temperature with no DA. It can be seen from Fig. 4 that

the LBM-3DVAR approximates the ground truth with changing BC. This can also

be observed from the RMSE comparison, where the RMSE initially with DA is not

significantly less than when no DA is performed; this is because both simulations

started with the same incorrect initial condition and DA did not perform enough cycles

to approximate the ground truth. However as can be seen in Fig. 4 with more DA

cycles the RMSE drops more rapidly than in the case without DA, which also coincides

with the window temperature dropping. For the simulation in Fig. 4, 5 DA cycles are

performed before each BC change at time step 100, 150, 200, 250 and 300.



(a) Flow field of LBM with window tempera-
ture of 25 °C

(b) Flow field of LBM with window tempera-
ture of 20 °C

(c) Flow field of LBM with window tempera-
ture of 15 °C

(d) Flow field of LBM with window tempera-
ture of 5 °C

(e) Flow field of LBM with window temperature of
-5 °C

Figure 3: Flow field on cross section at y = 10 showing velocity vectors as temperature
boundary conditions change for the simulated ground truth

Parameter value

CLx
exp

(

− (i−j)2

n2
x/4

)

CLy
exp

(

− (i−j)2

n2
y/4

)

CLz
exp

(

− (i−j)2

3

)

S IN
R 0.1IO
ϵ 5

Table 3: 3DVAR parameters

The RMSE shown in Fig. 5a to Fig. 5c is the average over BC1 to BC5 and unless

mentioned, all parameters are kept same as for Fig. 4 and given in table 2 and table

3. Fig. 5a compares the RMSE of the LBM-3DVAR algorithm with an increasing



(a) Temperature field of LBM with window temperature of 25 °C

(b) RMSE

(c) Temperature field of LBM with window temperature of 20 °C

(d) RMSE

(e) Temperature field of LBM with window temperature of 15 °C

(f) RMSE

(g) Temperature field of LBM with window temperature of 5 °C

(h) RMSE

(i) Temperature field of LBM with window temperature of -5 °C

(j) RMSE

Figure 4: Temperature field on central planes showing results as temperature boundary
conditions change for ground truth, with 3DVAR DA, and without DA



number of DA cycles within each BC. It is observed that with more DA cycles, the

RMSE decreases due to more information being assimilated. However, this comes at a

higher computational cost.

Number of sensors location (x, y, z)

1 [(20,10,19)]
2 [(20, 10, 19); (39, 10, 10)]

3
[(20,10,19); (39,10,10);

(20,2,10)]

4
[(20,10,19); (39,10,10);
(20,2,10); (20,10,2)]

5
[(20,10,19); (39,10,10);
(20,2,10); (20,10,2);

(20,10,10)]

Table 4: Simulated sensor location in Fig. 4

Fig. 5b compares the RMSE of the LBM-3DVAR with an increasing number of

simulated sensor measurements. The location of the sensor used in the simulation is

given in the table 4. It is noted that the location of sensors has a profound impact on

the performance of LBM-DA. Although the optimal location of sensors for an indoor

scenario is not the focus of this work, to capture the variability in the environment it is

noted that sensors must be placed where they are able to cover the entire domain. In

Fig. 5b, the simulated sensor locations that show the best performance in terms of lower

RMSE are selected; this is achieved by trial and error. A few random combinations

of sensor locations were tested and the locations generating the lowest RMSE were

selected. These are by no means optimal sensor location, which could for example be

achieved by using an optimisation algorithm such as simulation annealing or genetic

algorithm. It is noted that no significant difference in RMSE is observed with using

4 and 5 sensors which could be due to the small dimension of the room. The results

suggest that the transient nature of any indoor environment can be represented by a

minimum number of sensors. This minimum number can for example be determined

via simulating all sensor locations and comparing the RMSE of individual setup. It is

also noted that using just one sensor has negligible performance improvement and in

fact from our testing we observed that at certain sensors locations the DA performance

is worse than when no DA is performed.

The performance of DA also depends on the quality of the sensor readings. With

highly erroneous measurements the RMSE of the LBM-3DVAR increases. This is

shown in Fig. 5c where the RMSE is plotted against the standard deviation (Std) in

the simulated sensor measurements. The simulations are run 10 times independently

for every Std value and the average RMSE is obtained. It can be seen that with highly

erroneous measurements the performance of the LBM-3DVAR degrades.

For the LBM-EnKF, the same LBM parameters as set in table 2 are used. The

parameters for the EnKF algorithm are given in table 5. Fig. 6 shows the flow evolu-



(a) RMSE of 3DVAR DA with number of DA cycles (b) RMSE of 3DVAR DA with number sensors

(c) RMSE of 3DVAR DA with sensor error

Figure 5: 3DVAR RMSE analysis

tion with changing BC and the corresponding flow of the LBM-EnKF, LBM without

DA, and the RMSEs. Similar to the LBM-3DVAR algorithm, the LBM-EnKF also

approximates the ground truth and performs considerably better than without DA.

Parameter value

Number of ensemble members (M) 10
Lx n2

x/4
Ly n2

y/4

Lz 3
Ls IO
R 0.1IO
λ 1.5

Table 5: EnKF parameters

The RMSE results shown in Fig. 7a to Fig. 7d are the average over BC1 to BC5.

Four sensors are used in this simulation (except for Fig. 7b) with the rest of the

parameters kept same as for Fig. 6 and given in table 2 and table 5. Fig. 7a presents

the performance of the LBM-EnKF with a different number of ensemble members. As



(a) Temperature field of LBM with window temperature of 25 °C

(b) RMSE

(c) Temperature field of LBM with window temperature of 20 °C

(d) RMSE

(e) Temperature field of LBM with window temperature of 15 °C

(f) RMSE

(g) Temperature field of LBM with window temperature of 5 °C

(h) RMSE

(i) Temperature field of LBM with window temperature of -5 °C

(j) RMSE

Figure 6: Temperature field on central planes showing results as temperature boundary
conditions change for ground truth, with EnKF DA, and without DA



expected the performance improves with ensemble size. Yet again, this comes with an

additional computational cost.

Fig. 7b shows the performance of the EnKF DA approach with a different number

of simulated sensor measurements; the location of the sensors is shown in table 4. Like

the LBM-3DVAR, the LBM-EnKF performs better with additional sensors, and again

degraded performance is observed with only one sensor. Interestingly, using a single

sensor in the LMB-EnKF case shows worse performance than with no DA. Fig. 7c

shows the LBM-EnKF performance improvement with the number of DA cycles. It

is noted that even with 1 DA cycle the RMSE is lower than with no DA. Also, it is

noted that the performance does not improve significantly after 3 DA cycles. This

is expected as the flow does not have enough time to evolve between DA cycles to

assimilate any new information from the simulated sensor measurements. Fig. 7d

shows the performance of the LBM-EnkF against the standard deviation (Std) in the

sensor measurements. The simulations are run 10 times independently for every Std

value and the average RMSE is obtained. The RMSE follows a similar trend as in the

LBM-3DVAR case with highly erroneous measurements resulting poor performance.

5. Discussion

Predicting accurate thermal conditions and IAQ is becoming exceedingly important

for commercial and domestic buildings especially in light of the COVID-19 pandemic.

Information on how the indoor temperatures and IAQ will change with changes in ven-

tilation, thermal conditions, or with occupancy will be vital for building owners and

designers. The proposed methods in this study provide accurate real time temperature

forecast due to faster simulation times of the LBM over conventional CFD and also pe-

riodic corrections of the DA cycles mitigate the errors due to miss-specified boundary

conditions in transient indoor environments. The choice between LBM-3DVAR and

LBM-EnKF is a trade-off between accuracy and computational cost; with the LBM-

EnKF outperforming LBM-3DVAR with large ensemble size. There is also a trade-off

between grid size, dimension of the indoor environment and computational cost, with

much finer grid or larger rooms requiring higher computational overhead both for the

LBM and DA algorithms; in such cases, the LBM-3DVAR is preferred.

To demonstrate the viability of the LBM-DA method and the performance of the

two DA algorithms we have focused this study on computational simulation only. This

allows an evaluation of how the airflow parameters, DA method and simulated sensor

locations affect the outcomes of the model without the complexity added by noisy

sensor measurements and more uncertain flow fields that would be present in a real

environment. We have also compared the DA models to a simulated ground truth



(a) RMSE of EnKF with number of ensemble mem-
bers (b) RMSE of EnKF DA with number of sensors

(c) RMSE of EnKF DA with number of DA cycles (d) RMSE of EnKF DA with sensor error

Figure 7: EnKF DA RMSE analysis

that is generated using the LBM model. While this isn’t validated against a real-

world environment, we have confidence from previous studies that the LBM results

are realistic. We have compared LBM to a traditional large eddy simulation (LES)

methodology for a small room flow similar in size to the case in the current paper,

and shown that the LBM model can reliably simulate transient indoor airflows and

capture both velocity and temperature characteristics [19]. We have also compared

the LBM approach with both LES simulations and experimental data for an urban

natural ventilation flow case, and again shown the LBM model to be accurate with

significantly faster computational times [20].

Several open research questions still need to be addressed to develop the approaches

presented here to be used in real-world applications. Most importantly, the design of

the background covariance matrix which in this work has been based on a Gaussian

function. Other similar models such as the Gaspari-Cohn correlation function [13]

could also be used. To capture the true correlations between cell points information



regarding the room’s ventilation flow pattern should be incorporated. Moreover, in

this study, only a single parameter i.e., the temperature is used, for multiple parameter

formulation, the correlations between these need to be modeled. A simplistic approach

would assume these parameters are independent however extensive data collection in

buildings could conclusively determine these dependencies. If the aim is the real-time

prediction of IAQ parameters, then attention needs to be given to the trade-off between

performance and speed. In particular, how many sensors would suffice to accurately

update the flow prediction with DA. It was shown in this work that even for a simple

room, one sensor performs almost as poorly (or worse than) as no DA, and at the same

time, the addition of more sensors after an optimum number of the sensor does not

provide any significant improvement.

Then there is the issue of sensor placement which is another important and interest-

ing topic that needs exploration [12]. In real buildings, there are physical constraints

on where these sensors can be placed. Analytical solutions may be intractable however

brute force methods or optimization algorithms such as the genetic algorithm could

be used to arrive at the optimal sensor location. Furthermore, it has been shown that

highly erroneous measurements degrade the DA performance, which may mean that

the approach is better suited to some parameters over others. For example tempera-

ture and humidity changes in buildings tend to be gradual, while parameters relating

to pollutants such as CO2 or particulate matter may fluctuate more significantly. Al-

though very high errors in the measurement are unrealistic, cheap low-quality sensors

may potentially divert the flow prediction away from reality. Due the lack of real data,

this study is limited to simulated sensor measurement only and thus has the limita-

tion that it does not present the error in sensor measurements and its impact on the

effectiveness of the proposed algorithms.

A final trade-off that needs to be considered is the number of DA cycles vs per-

formance. For large dimensions, the DA cycles are computationally expensive, which

may limit application in larger or more complex spaces. To determine, how often one

requires to update the flow prediction will depend on how transience of the indoor

environment and also on the accuracy/speed requirement.

Although this study performs the simulations for a simple office environment, the

proposed methods can potentially be extended for more complex indoor scenarios.

Moreover, the parameter used in this study is temperature, however other IAQ pa-

rameters such as CO2 and relative humidity can be simulated similarly. High CO2

prediction which is driven by sensor measurements can indicate a high occupancy in

the building relative to the ventilation rate, and hence warrant preventive measures to

mitigate adverse effects such as the risk of infection transmission. In this regard, sen-

sors such as developed by us in [31] could be used to wirelessly transmit IAQ data and



update the LBM algorithm. Other applications of the proposed work include demand

controlled ventilation, early detection of accidents such as gas leaks or fire, and energy

conservation.

6. Conclusion

This study presents a new data assimilation approach for near real-time prediction

of temperature coupled with sensor data for improving predictive accuracy in indoor

environmental conditions. The LBM was used for flow and temperature prediction and

coupled with two DA algorithms. Key conclusions from the study are:

• Both the LBM-3DVAR and LBM-EnKF approaches are able to effectively use

sensor data to correct the flow simulation as boundary conditions change, and

showed superior performance compared to stand-alone LBM with variable BC;

• The accuracy of both models improves with an increased number of sensors,

however for the case presented here there was little benefit in using more than 4

sensor data points;

• The DA simulations with a single sensor data point are not accurate and could

potentially lead to worse predicted conditions than the LBM simulation without

DA;

• The accuracy of DA simulations are sensitive to sensor error and are less accurate

with highly varying sensor data;

• The model performance is dependent on the design of the background covariance

matrix and therefore understanding of correlations between sensor data in an

indoor environment is important to enable accurate model predictions.

• The results obtained in this study have to be seen in light of some limitations.

First, simulated sensor measurements were assumed instead of real sensor data.

Real data may impact the performance of the proposed methods. Second, a

simple office environment is considered instead of a more complex indoor scenario

with more convoluted flow patterns.

The model represents a first step in developing accurate sensor driven real-time pre-

dictive control for indoor environments. Future work aims to employ the proposed

techniques to indoor scenarios with real sensor data for a wider range of IAQ parame-

ters.

Acknowledgment.

This work is funded by the EPSRC HECOIRA Project EP/P023312/1. The MAT-

LAB code for the simulation is available at: https://github.com/Nav-101/LBM-DA-

matlabcode.



References

[1] M. Asch, M. Bocquet, and M. Nodet. Data assimilation: methods, algorithms,

and applications. Society for Industrial and Applied Mathematics, 12 2016. ISBN

978-1-611974-53-9.

[2] O. Asfour and M. Gadi. A comparison between cfd and network models for predict-

ing wind-driven ventilation in buildings. Building and Environment, 42:4079–4085,

12 2007. doi: 10.1016/j.buildenv.2006.11.021.

[3] R. N. Bannister. A review of forecast error covariance statistics in atmospheric

variational data assimilation. i: Characteristics and measurements of forecast error

covariances. Quarterly Journal of the Royal Meteorological Society, 134(637):1951–

1970, 2008. doi: 10.1002/qj.339. URL https://rmets.onlinelibrary.wiley.

com/doi/abs/10.1002/qj.339.

[4] A. Bartoloni, C. Battista, S. Cabasino, P. S. Paolucci, J. Pech, R. Sarno, G. M.

Todesco, M. Torelli, W. Tross, P. Vicini, R. Benzi, N. Cabibbo, F. Massaioli,

and R. Tripiccione. Lbe simulations of rayleigh-bÉnard convection on the ape100
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