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Abstract—Channel estimation is challenging for millimeter-
wave (mmWave) communications because of the use of hybrid
architecture and massive multiple-input multiple-output (MIMO)
technology. By utilizing the sparsity in the angular domain,
conventional on-grid compressive sensing methods can efficiently
recover the channel state information (CSI). However, the channel
estimation accuracy is severely affected by the off-grid errors and
the selection of grid angles. The off-grid compressive sensing
methods and the non-uniform grid angles can improve the chan-
nel estimation accuracy. In this paper, we investigate the impact
of the non-uniform grid angles for the off-grid compressive
sensing methods and the on-grid compressive sensing methods.
We propose to employ the orthogonal matching pursuit (OMP)
algorithm with interior point (IP) method based off-grid error
mitigation to implement the channel estimation using the selected
angle design. The simulation results demonstrate the advantages
of the proposed off-grid compressive sensing method and show
the impact of the non-uniform grid angles.

Index Terms—channel estimation, compressive sensing, opti-
mization methods, off-grid errors.

I. INTRODUCTION

Millimeter-wave (mmWave) communication is considered a

promising technology for the future wireless systems because

of the large amount of available spectrum [1]. In order to

overcome the huge propagation loss, massive multiple input

multiple output (MIMO) can be used to provide desirable

beamforming gains. To reduce the power consumption and the

hardware cost caused by the fully digital architecture, a hybrid

MIMO architecture consisting of an analog beamformer in the

radio frequency (RF) domain cascaded with a digital MIMO

processor in baseband has been proposed for the mmWave

communication [2]. However, the hybrid architecture and the

large number of antennas at both transmitter and receiver make

it challenging to obtain accurate channel state information

(CSI) which is essential for hybrid precoding.

MmWave channel has been proved to have sparsity in

the angular domain [1]. Instead of estimating all the entries

in the channel matrix, only the angle-of-departures (AoDs),

angle-of-arrivals (AoAs) and corresponding path gains of the

dominant paths are estimated. By using the virtual channel

representation [3] and the compressive sensing algorithms [4],

CSI acquisition can be efficient. Several channel estimation

schemes for mmWave Massive MIMO systems have been

proposed recently. Specifically, [5] is a close-loop codebook-

based beam training scheme. The authors of [5] propose a

multistage process that the transmitter emits the pilot beams

with wide beams based on the designed code-book that cover

all of the angles of interest at the first stage. According

to the feed back from receiver, transmitter is able to select

beam patterns wisely in the following stages. However, the

performance for close-loop methods are limited by the design

of codebooks. On the other hand, without the feedback from

receiver, several open-loop channel estimation schemes are

developed [6]. By exploiting the sparsity in angular domain,

CSI can be efficiently estimated by the orthogonal matching

pursuit (OMP) algorithm [6]. However, such solutions in [6]

are all on-grid methods which assume that the AoDs /AoAs

lie on discrete grid angles (called on-grid AoAs/AoDs). This

assumption results in power leakage problem caused by angle

quantification, because the actual AoDs/AoAs are continuous

angles (called off-grid AoAs/AoDs) as shown in Fig. 1. Several

off-grid methods are proposed to mitigate the power leakage

problem such as [7] for close-loop solutions and [8] for open-

loop solutions. But, these off-grid methods are all based on the

uniformly distributed grid angles. The selection of grid angles

also effects the channel estimation performance significantly

for both on-grid methods and off-grid methods. Paper [6]

shows, compared with the uniformly distributed grid angles,

using non-uniform virtual gird angles achieves better channel

estimation performance. In this paper, we propose an OMP

algorithm with optimization method and non-uniform grid

angles to improve the channel estimation performance and

investigate the impact of different virtual grid angles on both

on-grid methods and off-grid methods.

Specifically, we adopt non-uniform grid angles for our

proposed method. First, conventional OMP algorithm is used

to estimate the ’rough’ AoAs/AoDs. Then we optimize the

’rough’ AoAs/AoDs iteratively using the interior point (IP)

method to increase the coherence between the received signal

and the sensing matrix. Comparing with the conventional OMP

algorithm, the proposed off-grid mitigation method with the

non-uniform grid angles significantly improve the channel

estimation accuracy. In addition, comparing with the off-grid

mitigation method with uniform grid angles, employing non-

uniform virtual grid angles achieves super-resolution channel

estimation at high signal-to-noise ratio (SNR).

The organization of the paper is as follows. Section II intro-



Fig. 1. An illustration of angle grid and the off grid angles [8].

duces the system model and CS based problem formulation.

Section III presents the proposed off-grid mitigation method

and the non-uniform grid angles. Simulation results illustrating

the performance of the proposed algorithm are presented in

Section IV. Finally, the conclusion is drawn in Section V.

II. SYSTEM MODEL

We consider a single user hybrid massive MIMO mmWave

system, where the transmitter equipped with NT antennas

and NRF
T RF chains communicating with a receiver equipped

with NR antennas and NRF
R RF chains (NRF

T ≤ NT ,

NRF
R ≤ NR ). In the hybrid system, RF chains are much

fewer in number than the total adopted antenna numbers. Each

RF chain is connected to all antennas via phase shifters. The

precoding/combining processing is divided between the analog

and digital domains. The discrete-time model for the received

signal r ∈ C
N

RF

R
×1 of a single symbol period s ∈ C

N
RF

T
×1

can be formulated as

r = CHHFs+CHn, (1)

where n ∈ C
NR×1 is the noise vector with CN (0, σ2

n)

entries. C ∈ C
NR×NRF

R is the hybrid combining matrix.

F ∈ C
NT×NRF

T is the hybrid precoding matrix. H ∈ C
NR×NT

is the channel matrix. s ∈ C
NRF

T ×1 is the pilot signal in one

symbol period.

In the channel estimation stage, x = Fs ∈ C
NT×1 is

the pilot sequence, where the n-th element of x is trans-

mitted by the n-th antenna at transmitter. We assume that

the transmitter sends NBeam
T (NBeam

T < NT ) different pi-

lot sequences x1,x2, . . . ,xNBeam
T

and the receiver obtains

NBeam
R dimension of received pilot sequence. Because the

receiver only has NRF
R RF chains, M time slots are required

to to obtain an NBeam
R dimension received pilot sequence,

where M = NBeam
R /NRF

R . We assume NBeam
R is multiples

of NRF
R so that the training time is MNBeam

T . Considering

the m-th time slot for the p-th pilot sequence, received vector

yp,m ∈ C
NRF

R ×1 is given by

yp,m = WH
mHxp +WH

mnp,m, (2)

where Wm ∈ C
NR×NRF

R is the combining matrix, np,m ∈
C

NR×1 is the noise vector. Collecting yp,m for m ∈
{1, 2, . . . ,M}, we get the received pilots in M time slots as

yp = WHHxp +WHnp, (3)

where np ∈ C
NR×1 is the noise vector and

yp = [yT
p,1,y

T
p,2, . . . ,y

T
p,M ]T ∈ C

NBeam
R ×1,

W = [W1,W2, . . . ,WM ] ∈ C
NR×NBeam

R .
(4)

Collecting yp for p ∈ {1, 2, . . . , NBeam
T }, we get the received

pilots for all NBeam
T transmitted pilot sequences as

Y = WHHX+N, (5)

where

Y = [y1,y2, . . . ,yNBeam
T

] ∈ C
NBeam

R ×NBeam
T ,

X = [x1,x2, . . . ,xNBeam
T

] ∈ C
NT×NBeam

T ,

N = [n1,n2, . . . ,nNBeam
T

] ∈ C
NBeam

R ×NBeam
T .

(6)

A. Channel model

A geometric channel model [2] is widely adopted to ap-

proximate the mmWave narrowband channel as

H =

√

NTNR

L

L
∑

ℓ=1

αℓaR(θR,ℓ)a
H
T (θT,ℓ), (7)

where L is the number of scatterers, αℓ is the complex

gain, θR,ℓ and θT,ℓ are the AoA and AoD of the l-th path,

respectively. The mmWave channel is regarded unchanged

within the channel coherence time for channel estimation

and each scatterer only contributes one propagation path.

aR(θR,ℓ) and aHT (θT,ℓ) are the steering vector at receiver

and transmitter respectively. The steering vectors depend on

the array geometry. Ignoring the subscripts without loss of

generality, we consider an N-element uniform linear arrays

(ULA) geometry so that the steering vectors are denoted as

a(θ) = [1, e−j2π d
λ
cos θ, e−j4π d

λ
cos θ, ..., e−j2π(N−1) d

λ
cos θ]T ,

(8)

where d is the antenna spacing, λ denotes the wavelength of

operation. The channel model in (7) can be also written in

matrix form as

H = ARHaA
H
T , (9)

where

Ha = diag(α1, α2, . . . , αL),

AR = [aR(θR,1),aR(θR,2), . . . ,aR(θR,L)],

AT = [aT (θT,1),aT (θT,2), . . . ,aT (θT,L)].

(10)

To exploit the sparsity of the mmWave channel, virtual

channel representation and on-grid compressive sensing al-

gorithms are widely exploited in mmWave CE. Specifically,

the continuous true AoDs/AoAs are approximated as discrete



angles based on pre-defined virtual angles called ’grid angles’,

defined as

{ϕg : ϕg ∈ [0, π], g = 1, . . . , G}, (11)

where ϕ1 = 0, ϕG = π. Uniform grid is widely applied in

mmWave CE as ϕg ∈ {0, π
G−1 , . . . ,

π(G−1)
G−1 }), with G ≫ L

to achieve the desired resolution [5], [6]. In this paper, we use

non-uniform grid angles for our proposed algorithm. The non-

uniform grid is determined so that {cos(ϕg)} are uniformly

distributed in (−1, 1]: specifically, ϕg satisfies

cos(ϕg) =
2

G
(g − 1)− 1, (12)

for g ∈ {1, 2, . . . , G}. Note that, this grid is distributed non-

uniformly in angular interval [0, π] . When d = λ
2 , the rows

of these array response matrices are orthogonal as proved in

[6] that ĀT Ā
H
T = G

NT
INT

and ĀRĀ
H
R = G

NR
INR

. In [6], the

orthogonality property has been proved to be able to reduce

the coherence of the proposed CS formulation.

Collecting all the steering vectors with angles {ϕg},

we assume that the AoD and AoA use the same grid

and named as ϕT,g = ϕg and ϕR,g = ϕg . ĀT =
[aT (ϕT,1),aT (ϕT,2), . . . ,aT (ϕT,G)] ∈ C

NT×G and ĀR =
[aR(ϕR,1),aR(ϕR,2), . . . ,aR(ϕR,G)] ∈ C

NR×G are the array

response matrices of non-uniform grid angles. H can be

approximated in terms of a L-sparse matrix Hb ∈ C
G×G,

with L non zero elements in the positions on the non-uniform

grid AoDs/AoAs as

H = ĀRHbĀ
H
T +E. (13)

E is the off-grid errors and caused by quantizing the

AoDs/AoAs by the grid angles. Increasing the grid size G can

improve the angle resolution and reduce the off-grid errors, but

the grid size G can not be too large to break the Restricted

Isometry Property (RIP) for compressive sensing algorithms.

Too large grid size leads to even worse estimation performance

with exponentially increasing complexity [8]. In this paper, we

propose to employ interior point (IP) method to mitigate the

impact of the off-grid errors for on-grid compressive sensing

method (OMP) with different virtual grids.

B. Formulation of channel estimation

Considering the system model in (5), we can formulate

the mmWave CE problem as a signal recovery problem by

vectorizing the received signal matrix Y in (5) as

yv = (XT ⊗WH) · vec(H) + vec(N)

= Q · vec(H) + nQ.
(14)

Using the property of the Khatri-Rao product

vec(ABC) = (CT ⊗A) · vec(B). (15)

The matrices WH , H and X in (14) are regarded as A, B and

C in (15) respectively. nQ is the vectorized noise. Let Q =

(XT ⊗WH) ∈ C
NBeam

T NBeam
R ×NTNR . Least square (LS) is a

widely used method to estimate vec(H) as (QHQ)−1QHyv .

However, the LS solution requires NBeam
T NBeam

R ≥ NTNR

so that QHQ has full rank. Considering the large number of

antennas in the mmWave MIMO system, training overhead

with LS method is huge. This difficulty can be overcome

by using CS methods, because the number of entries to be

estimated is proportional to the sparsity level which is much

less than NTNR.

Using the virtual channel representation in (13) but neglect-

ing the grid error E, (14) can be rewritten as a sparse recovery

problem as

yv = Q · vec(ĀRHbĀ
H
T ) + nQ

= QAD · hb + nQ

= Q̄ · hb + nQ.

(16)

AD = Ā∗

T ⊗ ĀR is an NTNR × G2 dictionary ma-

trix that consists of the G2 column vectors of the form

aHT (ϕT,g)⊗ aR(ϕR,g), where {g = 1, . . . , G}. Q̄ = QAD is

a NBeam
T N beam

R ×G2 sensing matrix. hb is a G2 × 1 sparse

vector that has only L non-zero elements and L ≪ G2. Given

the formulation in (16), CS algorithms such as OMP can be

employed to solve this sparse signal recovery problem.

III. PROPOSED OFF-GRID CHANNEL ESTIMATION METHOD

In this section, OMP method is used in conjunction with the

IP method with non-uniform grid angles to effectively estimate

the AoDs/AoAs and path gains. The proposed algorithm is

named as IP-OMP-D. Compared with the method proposed in

[8], we apply non-uniform grid angles and different optimiza-

tion process.

The proposed IP-OMP-D algorithm for recovering the

sparse channel vector hb is summarized in Algorithm 1.

Algorithm 1 requires known sensing matrix Q̄, measurement

vector yv , sparsity K and grid size G. In the initial stage,

the iteration counter is set as t = 1 and the residual is

set as r0 = yv . When t ≤ K, this algorithm chooses the

column j of Q̄ which is the most strongly correlated with

the residual rt−1 in step 3. The chosen column number

j is stored in set Ωt in step 4. In step 5, based on the

column number j and predetermined dictionary matrix

AD, a rough AoD/AoA estimated value can be obtained.

Specifically, AD = Ā∗

T ⊗ ĀR is an NTNR × G2 dictionary

matrix that consists of the G2 column vectors corresponding

to G2 possible discrete AoD/AoA pairs according to the

grid {ϕT,g} and {ϕR,g}. For the t-th iteration, the rough

AoD/AoA pair is estimated as the m-th and n-th virtual

angle in the grid as ϕT,m = arccos( 2
G
(m − 1) − 1) and

ϕR,n = arccos( 2
G
(n − 1) − 1), where m = ceil( j

G
) and

n = mod(j,G). Note that, if mod(j,G) = 0, n = G. The

main problem for rough AoD/AoA pair is the off grid angles

caused by quantization. Specifically, the maximum value in

|Q̄(i)Hrt−1| can be larger the results in the step 3, if we can

modify the discrete grid angles to decrease to the off-grid

errors. In step 6, a more accurate AoD/AoA pair is estimated

by maximizing |Q̄(i)Hrt−1|.



Algorithm 1 IP-OMP-D method for mmWave channel

estimation

Require: sensing matrix Q̄, measurement vector yv ,

sparsity K and grid G
1: Ωt−1 =empty set, residual r0 = yv , set the iteration

counter t = 1
2: while t ≤ K do

3: j = arg max
i=1,...,G2

|Q̄(i)Hrt−1|

4: Ωt = Ωt−1 ∪ {j}

5: m = ceil( j
G
), n =

{

mod(j,G) (m 6= 0)

G (m = 0)

AoDt = arccos( 2
G
(m− 1)− 1)

AoAt = arccos( 2
G
(n− 1)− 1)

xt = (AoDt, AoAt)
6: max

AoD′

t,AoA′

t

f(AoD′

t, AoA′

t)

x′

t = (AoD′

t, AoA′

t)
7: p = (XT ⊗WH)(a∗(AoD′

t)⊗ a(AoA′

t))
8. Q̄j = p

9: ht = argmin
h

‖yv − Q̄Ωt
h‖2

10: rt = yv − Q̄Ωt
ht

11: t = t+ 1
12: end while

13: hb(i) = ht−1 for i ∈ Ωt−1 and

hb(i) = 0 otherwise

14: return hb

IP method is employed and xt = (AoDt, AoAt) is set as
the original point corresponding to the jth column in Q̄.
Objective function is defined as the correlation between the
sensing column and the residual as f(AoD′

t, AoA′

t) = |(XT ⊗
WH)(a∗T (AoD

′

t) ⊗ aR(AoA′

t)
H
)rt−1|. Through maximizing

the objective function between the adjacent grid angles, a more
accurate angle pair x′

t = (AoD′

t, AoA′

t) can be obtained. This
optimization process in step 6 is formulated as

max
AoD′

t,AoA′

t

f(AoD
′

t, AoA
′

t)

s.t.

{

AoDt −
ϕT,m−ϕT,m−1

2
< AoD′

t < AoDt +
ϕT,m+1−ϕT,m

2

AoAt −
ϕR,n−ϕR,n−1

2
< AoA′

t < AoAt +
ϕR,n+1−ϕR,n

2
.

After obtaining x′

t by optimization, the new most correlated

column is calculated as p = (XT ⊗ WH)(a∗(AoD′

t) ⊗
a(AoA′

t)) in step 7. In step 8, the column j in sensing matrix

Q̄ is replaced by p, so that the AoD′

t and AoA′

t become the

new ϕT,m and ϕR,n in the grid. In this way, the estimated

AoDs/AoAs are moved towards the optimal solutions. In step

9, the channel gains associated with the estimated AoDs/AoAs

are obtained by evaluating the LS solution of yv = Q̄Ωt
h,

where Q̄Ωt
∈ C

NBeam
t NBeam

r ×t is the sub-matrix of Q̄ that

only contains the columns whose indices are included in Ωt

and h ∈ C
t×1 is a vector with varying size. In step 10, the

contributions of the column j to yv are subtracted to update

the residual. After obtaining the new residual, in step 11,

t = t + 1. This procedure is repeated from step 3 to step 11

until t = K. In step 13, the sparse channel vector hb ∈ C
G2

×1

is made by recording the K estimated channel gains into the

corresponding position according to elements in Ωt, so that

hb(i) = ht−1 for i ∈ Ωt−1 and hb(i) = 0, otherwise. hb is

the channel matrix as in (16).

IV. SIMULATION RESULTS

In this section, performance of the proposed method is

examined by simulations. We consider a mmWave massive

MIMO system with NT = NR = 64 antennas (ULA) and

NRF
R = NRF

T = 4 RF chains at both transmitter and receiver.

NBeam
T = NBeam

R = 32 training beams are used in the simu-

lation. Note that NBeam
T NBeam

R < NTNR. The path gains are

assumed i.i.d. random variables with distribution CN (0, σ2
α),

where σ2
α = 1. The AoAs and AoDs are modelled by the

Laplacian distribution whose mean is uniformly distributed

over [0, π), and angular standard deviation is σAS = 1. Each

element of the transmitted pilots X satisfies xi,j=
√

P
NT

ejwi,j ,

where P = 1 is the transmitted power, wi,j is the random

phase uniformly distributed in [0, 2π). The SNR is defined by

SNR=
Pσ2

α

σ2
n

, where σ2
n is the noise variance. All the simulation

results are averaged over 100 channel realizations with a

carrier frequency of 60GHz. At each channel realization, we

assume that the number of scatterers L is determined by

L = max{P10, 1}, where P10 is the outcome of the Poisson

random variable with mean 10. OMP algorithm[6] and IP-

OMP [8] are adopted for performance comparison and show

the impact of the non-uniform grid angles on both on-grid

algorithms and off-grid algorithms.
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Fig. 2. NMSEs of IP-OMP-D with G=64 at different SNRs (dB)

Fig. 2 compares the normalized mean square error (NMSE)

defined as 10 log10
(

E(‖H − HCS‖2F /‖H‖2F )
)

, where HCS

is the estimated channel matrix. OMP and IP-OMP with

uniform grid angles (uniformly distributed over [0, π)) are used

for comparison. OMP with designed non-uniform grid angles

(defined as (12)) is also adopted for comparison and named

as OMP2. The grid size G is 64 for all the algorithms. As

shown in Fig. 2, as expected, the performances of OMP2 and
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IP-OMP-D are better than OMP and IP-OMP at all SNRs due

to non-uniform grid angles when the grid size is small. The

non-uniform grid angles are able to help reduce the coherence

of the sensing matrix and improve the CE accuracy.

Fig. 3 compares the NMSE of IP-OMP-D at different SNRs

but G = 128. As expected, OMP and IP-OMP are able to

perform better with larger G at cost of higher computational

complexity. OMP2 and IP-OMP-D also achieve better CE

accuracy at high SNRs. However, OMP2 and IP-OMP-D

deteriorate at low SNRs and are even worse than OMP and

IP-OMP. With large noise and large grid size, OMP are

more likely to obtain wrong ’rough’ estimated AoDs/AoAs, so

that the optimization process in IP-OMP-D can not perform

correctly.

Fig. 4 shows the runtime of IP-OMP-D at different SNRs

with G = 128. Considering the optimization process in

IP-OMP and IP-OMP-D, we use runtime in MATLAB to

compare the computational complexity. Compared with OMP,

the results show that the non-uniform grid angles leads to

slightly higher complexity for OMP2. But IP-OMP-D has

almost 3 times complexity compared with IP-OMP because

of the non-uniform range of optimization.

In summary, with small grid size, adopting non-uniform grid

angles is able to improve the CE accuracy at cost of slightly

increased complexity. But with large grid size, non-uniform

grid angles only perform better at high SNRs and large noise

deteriorate the CE accuracy significantly.

V. CONCLUSION

In this paper, we propose to employ non-uniform grid angles

with an off-grid compressive sensing method for mmWave

CE. The simulation results demonstrate that the proposed off-

grid compressive sensing method with non-uniform grid angles

are able to achieve better performance at cost of affordable

complexity, especially at high SNRs. But, with large grid

size, employing non-uniform grid angles is difficult to perform

superior CE accuracy at low SNRs.
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