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Abstract

Millimeter wave (mmWave) frequency spectrum can mitigate severe spectrum shortage
caused by the explosive growth of mobile data demand. To overcome the high propagation
loss of mmWave signals, massive multi-input multi-output (MIMO) and hybrid architecture
are employed. As in microwave communication systems, channel state information (CSI) is
essential to fully achieve the advantages of mmWave communication. However, due to the
massive number of antennas and hybrid architecture, the CSI acquisition is challenging. The
sparsity of mmWave channel can be utilized to reduce the training overhead. In addition to
sparsity, real-world measurements in dense urban propagation environments reveal that the
mmWave channel may spread in form of cluster of paths over the angular domains, namely
the angular spread. In this paper, it is utilized to formulate the channel estimation as a
block-sparse signal recovery problem. The block orthogonal matching pursuit (BOMP) is
used to validate the model. Then, block fast Bayesian matching pursuit (BFBMP) algorithm
is proposed to solve the above problem. Compared with other existing channel estimation
methods, simulation results show that the angular spread feature and the proposed BFBMP
can considerably improve the CSI estimation with less complexity.

1 INTRODUCTION

Millimeter wave (mmWave) is a promising approach for the fifth
Generation (5G) and beyond wireless networks by virtue of
huge available bandwidth [1]. However, mmWave communica-
tion has to overcome the high propagation loss which is typical
in this frequency range. Thanks to the small wavelength, mas-
sive MIMO can be deployed at both transmitter and receiver to
provide sufficient beamforming gains. Hybrid architecture has
been proved to achieve desirable beamforming performance
with much less power consumption compared with fully digital
architecture. As in microwave communications, reliable chan-
nel state information (CSI) is also required for mmWave com-
munication to fully unleash the advantages. However, applying
hybrid beamforming and massive MIMO makes CSI acquisition
challenging because of the large number of antennas and hybrid
architecture [2].

Recently, the mmWave channel has been proved to have
sparsity in angular domain [3]. The virtual channel represen-
tation [4] can be exploited to avoid estimating all the entries
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in the channel matrix. Instead only the angle-of-departure
(AoD), the angle-of-arrival (AoA), and the corresponding
path gains of dominant paths need to be estimated. Then the
channel estimation problem can be formulated as a sparse
signal recovery problem and compressive sensing (CS) methods
are widely applied to estimate the CSI efficiently. A closed-loop
beam scanning technique was proposed in [5]. This method
can avoid an exhaustive beam search and significantly reduce
the search complexity by the multistage process but the perfor-
mance of beam scanning is greatly affected by beamforming
dictionary (codebook). For example, an improved codebook
was proposed in [6]. Through using continuous basis pursuit
(CBP), it significantly improves the estimation accuracy. How-
ever, close-loop beam scanning techniques are difficult for the
outdoor environment where the communication needs larger
beamforming gain, because it is difficult to achieve sufficient
beamforming gain for wide searching beams at initial stages
with limited transmitted power. An alternative approach is to
use an open-loop channel estimator which applies fixed width
training beam and does not need feedback from the receiver
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196 YOU AND ZHANG

[7]. In [7], the orthogonal matching pursuit (OMP) algorithm
was used to solve the sparse signal recovery problem.

In order to further improve the channel estimation perfor-
mance, Bayesian based compressive sensing methods such as
sparse Bayesian learning (SBL) [8] and fast Bayesian matching
pursuit (FBMP) [9] have been applied in mmWave channel esti-
mation. SBL is a learning method. It assumes that each element
follows Gaussian distribution with unknown variances which
are assigned Gamma conjugate prior. SBL utilizes Expectation
maximization (EM) method to learn the variances and com-
pute a maximum a posteriori (MAP) estimate. FBMP is another
Bayesian based method. It makes appropriate assumptions of
noise variance and non-zero element variance according to the
characteristics of mmWave channel and searches a set of can-
didate sparsity patterns (SP) with high posterior probabilities
to estimate the CSI. Both SBL and FBMP show superior per-
formance than OMP but with much higher complexity. SBL
has the largest complexity among them because of the learning
process.

The characteristics of mmWave channel are further studied.
For instance, different delay taps of the wideband channel may
share the same AoD/AoAs. This is utilized in [10] to reduce the
training overhead. The clustering block sparse Bayesian learn-
ing (CBSBL) algorithm for mmWave channel estimation is pro-
posed in [11]. It exploits the correlation between the mmWave
channel to avoid the suboptimal solutions.

In addition to the above characteristic, mmWave channels
are expected to exhibit limited scattering with only a few prop-
agation paths even in urban environments. Several real-world
measurements in dense-urban propagation environment reveal
the clustered nature of the mmWave channels in the angular
domains, with a few non-negligible angular spreads in both AoA
and AoD [1, 12]. In this paper, we focus on limited scattering
environment. the real-world channel measurements at 28 and
73 GHz were shown to have an angular spread of 15.5◦ and
15.4◦, respectively, in terms of root mean-squared (rms) beam
spread at AoA [1, 12]. While the measured AoD spreads (in
terms of rms) are 10.2◦ and 10.5◦, respectively. For example, in
Figure 1, a signal sent from the transmitter reaches the receiver
via a few clusters of paths. Since the wavelength of electromag-
netic waves in the mmWave system is likely comparable with
the roughness of the object surfaces that bounce off the waves,
the departures at the transmitter and arrivals at the receiver are
likely to be spread in angular domain as a, b and c, d at trans-
mitter and receiver respectively. Path cluster power profiles were
generated in [13] using the proposed statistical channel model
with fitted large-scale parameters in [12]. As demonstrated in
[13], the angular spreads give rise to a structured sparsity pattern
that can be exploited to improve the mmWave channel estima-
tion performance. Thus, the structurally limited scattering chan-
nel model has been adopted in the literature [14] [13] and [15].
A two-stage compressed sensing scheme was proposed and it
was shown that the proposed scheme achieves a lower sam-
ple complexity than a conventional compressed sensing method
that exploits only the sparse structure of mmWave channels[14].
The proposed methods in [13] essentially couple the channel
path power at one angular direction with its two-dimensional

FIGURE 1 Angular spreads in mmWave communication [16]

AoD-AoA neighboring directions and adopt coupled sparse
Bayesian learning to estimate the CSI. The proposed methods
in[15] address the channel estimation problem within a Bayesian
framework. Specifically, they adopt a matrix factorization for-
mulation and translate the problem of channel estimation into
searching for two-factor matrices. Then a variational Bayesian
inference method is proposed for the mmWave channel esti-
mation. However, both [13] and [15] are based on the Bayesian
learning method which adopts expectation-maximization (EM)
algorithm to estimate the hyperparameters with huge computa-
tional complexity.

In this paper, we exploit the sparsity in the angular domain
and make use of the angular spread of path clusters in the AoA
domain. Two-dimensional joint AoD-AoA spread will be our
future work. Different from [13], [14], and [15] which study
angular spread based on the low-rank structure or statistical
probability, we derive the AoA angular spreads as blocks in
channel matrix directly with some assumptions and utilize the
block sparsity by formulating the channel estimation to a block
signal recovery problem. Block orthogonal matching pursuit
(BOMP) algorithm is applied to validate our channel estimation
formulation. We then utilize this block property in the Bayesian
matching based mmWave channel estimation and proposed the
block fast Bayesian matching pursuit (BFBMP) method. Sim-
ulation results show that BFBMP produces superior perfor-
mance compared with the existing methods including BOMP at
all SNRs with fixed block patterns (without overlaps). BFBMP
also performs better than most algorithms at low SNRs without
fixed block patterns (with overlaps). The contribution of this
paper can be summarized as follows.

1) We formulate channel estimation as a block sparse signal
recovery problem exploiting the angular spread at AoAs.
BOMP algorithm is applied to validate the channel estima-
tion formulation.

2) In the proposed BFBMP algorithm, angular spread feature
is utilized in mmWave channel estimation to further improve
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YOU AND ZHANG 197

the estimation performance. The extension from FBMP
to BFBMP is not straightforward: The channel modelling
and problem formulation are derived to show block struc-
ture and the parameters in BFBMP algorithm are calculated
block by block instead of element by element. In addition,
the update of metrics must also be redesigned.

3) Simulation results show that BFBMP is able to achieve accu-
rate channel estimation at all SNR without overlaps. And it
has less computational complexity compared with conven-
tional Bayesian learning based and Bayesian matching pur-
suit based methods. Moreover, with overlaps of the AoA
angular spread, BFBMP still achieves superior performance
at low SNR.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the mmWave communication system model
and formulate the CE as a sparse signal recovery problem. In
Section 3, we formulate channel estimation as a block sparse
recovery problem exploiting AoA angular spreads. BOMP is
applied to validate the formulation. Section 4, we propose the
BFBMP algorithm to further improve the channel estimation
performance and reduce the high complexity induced by the
searching process in FBMP. In Section V, simulation results are
presented to demonstrate the superiority of the BFBMP. In Sec-
tion VI, we conclude the paper.

2 SYSTEM MODEL AND PRIOR WORK

We consider a single-user hybrid MIMO system, where the base
station (BS) is equipped with NT antennas and NRF RF chains
communicating with a mobile station (MS) with NR antennas
and NRF RF chains (NRF ≪ min(NT ,NR )).

In the channel estimation stage, BS and MS apply N Beam
T

(N Beam
T

≤ NT ) different pilot beam training patterns denoted
as {fm ∈ ℂ

NT ×1 ∶ m = 1, … ,N Beam
T
} and N Beam

R
(N Beam

R
≤ NR )

different receive beam patterns denoted as {wn ∈ ℂ
NR×1 ∶ n =

1, … ,N Beam
R
}, respectively. We consider pilot beams are sent to

MS successively and each fm is received through all receive beam
patterns. Because the MS is equipped with NRF RF chains, MS
is only able to generate NRF different receive beams simul-

taneously so that receive beam patterns need N Block
R

=
N Beam

R

NRF

time slots to scan over. The received signal for the mth pilot
beam in the qth time slot is denoted as yq,m ∈ ℂ

NRF×1 for
q ∈ {1, … ,N Block

R
}. We assume N Beam

R
and N Beam

T
are multiples

of NRF . The received vector for the qth time slot and the mth

transmit beam is given by

yq,m = WH
q Hfmxp +WH

q nq,m, (1)

where Wq = [w(q−1)NRF+1, … ,wqNRF
] ∈ ℂNR×NRF is the

receive beam pattern matrix for fm in the qth time slot. xp is the
transmitted pilot symbol. H ∈ ℂNR×NT represents the channel
matrix, and nq,m ∈ ℂ

NR×1 is the noise vector in the qth time

slot. Collecting yq,m for q ∈ {1, … ,N Block
R
}, we get complete

signal ym ∈ ℂ
N Beam

R
×1 for pilot beam pattern fm as

ym = WH Hfmxp + diag

(
WH

1 , … ,W
H

N Block
R

)

×

[
nT

1,m, … , n
T

N Block
R

,m

]T

,

(2)

where W = [W1, … ,WN Block
R

] ∈ ℂNR×N Beam
R . To represent the

signals for all N Beam
T

transmit beams, we collect ym for m ∈

{1, … ,N Beam
T
} to get

Y = WH HFX +N

=
√

PWH HF +N,
(3)

where Y = [y1, … , yN Beam
T

] ∈ ℂN Beam
R

×N Beam
T , F =

[f1, … , fN Beam
T

] ∈ ℂNT ×N Beam
T and N ∈ ℂN Beam

R
×N Beam

T is the
noise matrix given by

N = diag

(
WH

1 , … ,W
H

N Block
R

)[[
nT

1,1, … , n
T

N Block
R

,1

]T

,

… ,

[
nT

1,N Beam
T

, … , nT

N Block
R

,N Beam
T

]T
]
.

(4)

The matrix X ∈ ℂN Beam
T

×N Beam
T is a diagonal matrix with xp on

its diagonal. Throughout the paper, we assume identical pilot

symbols so that X =
√

PIN Beam
T

where P is the pilot power.
In mmWave communication, hybrid MIMO architecture

is employed. The hybrid beamforming matrix as shown in
(3) can be decomposed as F = FRF FBB and W = WRF WBB ,

where FRF ∈ ℂ
NT ×N Beam

T and WRF ∈ ℂ
NR×N Beam

R represent the

RF beamforming matrices, FBB ∈ ℂ
N Beam

T
×N Beam

T and WBB ∈

ℂN Beam
R

×N Beam
R represent the baseband processing matrices. In

this case, (3) can be formulated as

Y =
√

P (WRF WBB )H H(FRF FBB ) +N. (5)

RF beamforming design and baseband processing design will be
discussed in Section 5.

The mmWave channel can be approximated by a narrowband
physical channel model with L scatters due to its limited scat-
tering feature [5]. Each scatterer contributes only one path of
propagation between BS and MS. The channel matrix can be
written as

H =

√
NT NR

L

L∑
𝓁=1

𝛼𝓁aR (𝜃r
𝓁

)aH
T

(𝜃t
𝓁

), (6)

where 𝛼𝓁 is the complex gain of the l th path, 𝜃r
l

and 𝜃t
l

are the
AoA and AoD of the l th path, respectively. aT (𝜃t

l
) and aR (𝜃r

l
)
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198 YOU AND ZHANG

are array response vector for BS and MS. Assuming that we use
NT and NR uniform linear array (ULA), aT (𝜃t

l
) and aR (𝜃r

l
) can

be given by

aT (𝜃t
l
) =

[
1, e− j2𝜋

d

𝜆
cos 𝜃t

l , … , e
− j2𝜋

d

𝜆
cos 𝜃t

l
(NT −1)

]T

,

aR (𝜃r
l
) =

[
1, e− j2𝜋

d

𝜆
cos 𝜃r

l , … , e
− j2𝜋

d

𝜆
cos 𝜃r

l
(NR−1)

]T

,

(7)

where d denotes the antenna spacing, 𝜆 denotes the wavelength

of operation. In this paper, we consider d =
𝜆

2
. The channel

gains {𝛼𝓁}
L
𝓁=1 are modelled by i.i.d. random variables with dis-

tribution  (0, 𝜎2). The AoAs and AoDs are modelled by a
Laplacian distribution whose mean is uniformly distributed over
[0, 𝜋), and the angular standard deviation is 𝜎AS . (6) can be
rewritten in matrix form as

H = ARHaAH
T
, (8)

where Ha =
√

NT NR

L
diag(𝛼1, … , 𝛼𝓁, … , 𝛼L ), AR = [ar (𝜃r

1),

… , ar (𝜃r
𝓁

), … , ar (𝜃r
L )] ∈ ℂNR×L , and AT = [at (𝜃t

1), … , at (𝜃t
𝓁

),
… , at (𝜃t

L
)] ∈ ℂNT ×L .

To apply CS techniques to channel estimation, virtual channel
representation is used. Specifically, we assume that all the angles
fall onto a set of discrete angles called grid. In this paper, we
choose uniform grid as [

𝜋

2G
,
𝜋

2G
+
𝜋

G
, … ,

𝜋

2G
+
𝜋

G
(G − 1)], and

G ≫ L to achieve the desired resolution. Using discrete angle
grid, the channel matrix H in (3) can be approximated as

H = ARHAĀH
T
, (9)

where ĀR = [aR (
𝜋

2G
), aR (

𝜋

2G
+
𝜋

G
), … , aR (

𝜋

2G
+
𝜋

G
(G − 1))] ∈

ℂNR×G , ĀT = [aT (
𝜋

2G
), aT (

𝜋

2G
+
𝜋

G
), … , aT (

𝜋

2G
+
𝜋

G
(G −

1))] ∈ ℂNT ×G and HA ∈ ℂ
G×G is an L-sparse channel gain

matrix. The virtual channel representation is not exactly equal
to the real channel matrix H because of the quantized grid error
as demonstrated in the simulation in [17].

Considering the system model in (5) and channel model in
(6), the mmWave channel estimation problem can be formu-
lated as a sparse signal recovery problem by vectorizing Y in
(2). Using the property of Khatri-Rao product vec(ABC) =
(CT ⊗ A) ⋅ vec(B) for Y and H, we can get

yv =
√

P (FT ⊗WH ) ⋅ vec(H) + vec(N)

=
√

P (FT ⊗WH )vec(ĀRHAĀH
T

) + nQ

=
√

P (FT ⊗WH )ADhA + nQ

= QhA + nQ ,

(10)

where yv ∈ ℂ
N Beam

T
N Beam

R
×1 is the vectorized received signal. Q =√

P (FT ⊗WH )AD ∈ ℂ
N Beam

T
N Beam

R
×G 2

is the sensing matrix.
AD = Ā∗

T
⊗ ĀR is a dictionary matrix that consists of the G 2

column vectors of the form aH
T

(𝜃u )⊗ aR (𝜃v ), with 𝜃u and 𝜃v ,
the uth and vth points, respectively, of the angle uniform grid.
hA = vec(HA ) represents the path gains of the corresponding
quantized directions. Because hA ∈ ℂ

G 2×1 is an L(L ≪ G 2)
sparse vector, it can be recovered by CS algorithms.

3 PROPOSED MODEL FOR
EXPLOITING AOA ANGULAR SPREAD IN
MMWAVE CHANNEL ESTIMATION

3.1 System model and formulation of
mmWave channel estimation problem

We consider that each scatterer contributes only one path of
propagation and the AoAs have angular spreads. The continu-
ous angular spreads are modelled as M grid points length blocks
with discrete angle grid G . M can be approximated by round-

ing up (
𝜃s

180◦
G − 0.5) where 𝜃s is the AoA angular spread in

degree based on real-world measurements [12]. Then the chan-
nel model (6) can be formulated as

H =

√
NT NR

LM

L∑
𝓁=1

M∑
m=1

𝛼𝓁,maR (𝜃r
𝓁,m

)aH
T

(𝜃t
𝓁

), (11)

where 𝜃t
l

is the AoD of the 𝓁th path, {𝜃r
𝓁,m
}M
m=1 are the discrete

AoA points for angular spread of the 𝓁th, 𝛼𝓁,m is the complex
path gain for the path between 𝜃t

𝓁
and 𝜃r

𝓁,m
. Considering the

sparsity of the mmWave channel, the limited number of the clus-
ters are unlikely to overlap with each other. So it is reasonable
to make the non-overlapping assumption to simplify the chan-
nel estimation problem. The overlapping scenario will also be
discussed briefly in Section 5. In summary, we assume that the
AoA angular spread of different paths do not overhead each
other and each AoA angular spread is approximated to a pre-
determined group pattern as shown in Figure 2 where the num-
ber of columns and rows represent the grid points for AoDs
and AoAs, respectively. Then, (11) can be rewritten as a matrix
form

H = BRHbBH
T
, (12)

where

BR = [Br (𝜃r
1), … ,Br (𝜃r

𝓁
), … ,Br (𝜃r

L
)] ∈ ℂNR×ML ,

Br (𝜃r
𝓁

) = [aR (𝜃r
𝓁,1), … , aR (𝜃r

𝓁,m
), … , aR (𝜃r

𝓁,M
)] ∈ ℂNR×M ,

BT = [Bt (𝜃t
1), … ,Bt (𝜃t

𝓁
), … ,Bt (𝜃t

L )] ∈ ℂNT ×ML ,

Bt (𝜃t
𝓁

) = [aT (𝜃t
𝓁

), … , aT (𝜃t
𝓁

), … , aT (𝜃t
𝓁

)] ∈ ℂNT ×M ,

 17518636, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cm

u2.12329 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [30/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



YOU AND ZHANG 199

FIGURE 2 Block sparse structure of HB

Hb = diag(𝜶b(1), … , 𝜶b(𝓁), … , 𝜶b(L)) ∈ ℂML×ML ,

𝜶b(𝓁) = diag(𝛼𝓁,1, … , 𝛼𝓁,m, … , 𝛼𝓁,M ) ∈ ℂM×M . (13)

We choose G as times of ML. (12) can be represented as

H = ĀRHBĀH
T
, (14)

where HB ∈ ℂ
G×G is an ML-sparse channel gain matrix.

To apply compressive algorithms, we vectorize the received
signal Y, as we did in (10), and we get

yv=QhB + nQ , (15)

where Q and nQ are the same as in (10). hB = vec(HB ) is an
G 2 × 1 vector with block sparsity. (15) is a block sparse signal
recovery problem. Structure CS methods can be leveraged to
recover hB from noisy received signal yv .

3.1.1 Block orthogonal matching pursuit
method for mmWave MIMO channels

The standard sparsity model in the conventional sense assumes
that non-zero elements can appear anywhere in hB [18]. As dis-
cussed in block-sparse model [19], the non-zero entries of hB

appear in blocks rather than arbitrarily spread over the vector.
We assume that the vector hB ∈ ℂ

G 2×1 is a concatenation of

N =
G 2

M
blocks and each block has M elements. The vector hB

is described as:

hB = [hT
B

[1], hT
B

[2], … , hT
B

[N ]]T , (16)

where hB[i] ∈ ℂM×1 for i = 1, … ,N . The vector hB has only
L non-zero blocks. In mmWave communication, the centre of

the blocks appears randomly and these blocks will be adjusted
to the nearest block pattern to fit (16). Accordingly, the sensing
matrix Q is divided as a concatenation of N matrix as

Q = [Q[1],Q[2], … ,Q[N ]], (17)

where size Q[i] ∈ ℂN Beam
T

N Beam
R

×M for i = 1, … ,N are termed
as blocks.

The block OMP has been proposed for this block sparse
recovery problem [19]. In Section 5, simulation results are pre-
sented to demonstrate that BOMP achieves better accuracy of
estimation than OMP with less complexity. However, the per-
formance of OMP and BOMP will deteriorate at low SNR [5].
In this case, hB is overwhelmed by noise, and the support of
hB detected by classic non-Bayesian based compressive sensing
method is inaccurate, leading to the deteriorated performance
as demonstrated by the simulation results. In addition, sparsity
information is usually unknown in mmWave channel estimation.
To increase the accuracy of estimation without sparsity infor-
mation, a Bayesian based block compressive sensing method
exploiting angular spreads is proposed in the next section.

4 PROPOSED BLOCK BAYESIAN
MATCHING PURSUIT BASED MMWAVE
CHANNEL ESTIMATION

4.1 Assumptions for mmWave channel

FBMP method is first proposed for sparse signal recovery in
[20]. By making appropriate statistical assumptions according to
the characteristics of the mmWave channel, FBMP is employed
for the mmWave channel estimation in [9]. In this section,
we further consider the characteristic of angular spreads. The
extension from FBMP to BFBMP is not straightforward. New
assumptions and metric update methods are proposed.

In order to apply the Bayesian based compressive sensing
method to estimate the mmWave channel, appropriate statis-
tic assumptions need to be made according to the character-
istics of mmWave channel. The noise nQ in (15) is assumed
to be white circular Gaussian with variance 𝜎2, that is, nQ ∼

 (0, 𝜎2IMs
) where Ms = N Beam

T
N Beam

R
is the number of mea-

surements. {hi}
Ns

i=1 are the elements in sparse vector hB where
Ns = G 2 is the number of elements in channel matrix. We
assume that {hi}

Ns

i=1 are drawn from two specific Gaussian dis-
tributions. Considering the block structure shown in (16), the
block sparsity can be explicitly expressed as

hB[n] = hc
B

[n]sn, (18)

where hc
B

[n] = {hi}
Mn
i=M (n−1) are the channel coefficients of the

nth block. sn ∈ {0, 1} is a binary index used as a mixture param-
eter for the distribution of the nth block

Pr (sn = t ) =

{
p1, for t = 1,

1 − p1, for t = 0.
(19)

 17518636, 2022, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cm

u2.12329 by U
niversity O

f L
eeds T

he B
rotherton L

ibrary, W
iley O

nline L
ibrary on [30/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



200 YOU AND ZHANG

{sn}
N
n=1 are treated as i.i.d random variables as Pr{sn = 1} = p1

(0 < p1 ≤ 1). s = [s1, s2, … , sN ] is the mixture vector of N

blocks. p1 is the probability that the channel coefficients in the
nth block follow Gaussian distribution indexed by sn = 1. When
sn = 0, (𝜇0, 𝜎

2
0 ) = (0, 0) is set to make sure that hB[n] = 0.

When sn = 1, (𝜇1, 𝜎
2
1 ) = (0, 100) is set as the assumed distri-

bution for the active non-zero coefficients. In fact, 𝜎2
1 can be

any positive value. We set 100 because relative large variance
can improve the accuracy. Simulation based analysis shows that
variance larger than 100 would not improve performance fur-
ther [9]. More details will be discussed in the following deriva-
tion. We make p1 ≪ 1 to ensure the sparsity. zn is the support
of the nth block

zn = sn ⊗ IM , (20)

where IM ∈ ℂ
M×1 is a vector with all entries equal

to 1. Considering hB = [hT
B

[1], hT
B

[2], … , hT
B

[N ]]T and
z = [z[1]T , z[2]T , … , z[N ]T ]T is the support pattern (SP)
of hB , the priors can be written as

hB ∣ z ∼  (0,R(z)), (21)

where covariance matrix R(s) has the structure-property, that
is,

R(z) =

⎡⎢⎢⎢⎢⎢⎣

𝜎2
s1

IM 0 … 0

0 𝜎2
s2

IM … 0

⋮ ⋱ ⋮

0 0 … 𝜎2
sn

IM

⎤⎥⎥⎥⎥⎥⎦
MN×MN

. (22)

Considering (15), the channel vector hB and the received signal
yv are joint Gaussian conditioned on the mixture parameters z

as [
yv

hB

] ||||z ∼ 

([
0

0

]
,

[
𝚽(z ) QR(z )

R(z)QH
R(z)

])
, (23)

where

𝚽(z ) ≜ QR(z)QH + 𝜎2IM . (24)

4.1.1 MMSE coefficient estimation

For channel estimation, MMSE estimate of hB from yv is

ĥmmse ≜ E{hB|yv} =
∑
z∈Z

p(z|yv )E{hB|yv , z}. (25)

From (23) it is straightforward [21] to obtain

E{hB|yv , z} = R(z)QH𝚽(z )−1
yv . (26)

We collect the set of all possible SPs in the matrix Z. p(z|yv )z∈Z ,
(13) can be calculated when all the possible posterior probabil-
ities are known. Although employing block structure is able to
reduce the number of possible SPs from 2MN to 2N , it remains
impractical to compute all possible 2N posterior probability.
Fortunately, the size of ZΩ which includes the SPs with non-
negligible posterior probability p(z|yv )z∈ZΩ

can be small and
practical to compute because of the sparsity. Making use of the
dominant SPs in ZΩ yields the approximate MMSE estimate

ĥammse ≜ E{hB|yv} =
∑

z∈ZΩ

p(z|yv )E{hB|yv , z}. (27)

We first leverage a fast method to search for ZΩ.

Search for dominant SPs
We search for ZΩ by selecting z ∈ Z with the significant poste-
rior probability p(z|yv ). According to Bayesian rule, the poste-
rior probability can be written as

p(z|yv ) =
p(yv|z)p(z)∑

z′∈Z
p(yv|z′ )p(z′ )

, (28)

where p(z|yv ) are equal to p(yv|z)p(z) up to a scale. For conve-
nience, we work in logarithm domain and define 𝛼(z, yv ) as SP
selection metric:

𝛼(z, yv ) ≜ ln p(yv|z)p(z)

= ln

(
1

(2𝜋)
Ms

2 |𝚽(z )| 1

2

exp
(
−

1
2

yH
v 𝚽(z )−1

yv

)

pL
1 (1 − p1)N−L

)
= −

Ms

2
ln(2𝜋) −

1
2

ln |𝚽(z )| − 1
2

yH
v 𝚽(z )−1

yv

+
‖z‖0

M
ln

p1

(1 − p1)
+N ln(1 − p1).

(29)

The significant p(z|yv ) corresponds to the significant value of
𝛼(s, yv ). As a result, ZΩ can be selected based on metric 𝛼(z, yv )
using the non-exhaustive tree search method.

The search starts with z = 0. In the first stage, only one block
elements zn is changed to 1. It has N different ‘one block ele-
ments active’ SP. All these possible SPs are stored as Z(1) and the
metric of these SPs can be calculated. We choose D SPs with
the largest metrics and store them as Z

(1)
Ω

. In the second step,
we activate one more block elements from the D chosen SPs in
Z

(1)
Ω

so that we have (N − 1) + (N − 2) +⋯+ (N −D) pos-
sible ‘two block elements active’ SPs in Z(2). Then we choose
D SPs with the largest metrics among these possible SPs and
store them as Z

(2)
Ω

. We do this procedure J times to get D ‘J
block elements active’ SPs with the largest posterior possibility
as candidate SPs.
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YOU AND ZHANG 201

The value of D is fixed and chosen as 5 because simulation
shows the benefits of increasing D diminish quickly for D > 5.
The value of J is determined by the sparsity of the channel.
However, we do not know the real sparsity of mmWave chan-
nel. So we define a virtual sparsity L

′
. We choose an arbitrary

small integer (from 5 to 10) as the virtual sparsity. Based on vir-
tual sparsity, p1 can be calculated as: L′∕N , L′ follows Binomial
(N , p1) distribution. Simulation results will show that our pro-
posed algorithm is able to achieve superior performance with-
out the need to know the real sparsity.

Fast metric update
In the above search, metric 𝛼 needs to be calculated for each
possible SP. We adopted a fast metric update method based on
[20] to reduce the computational complexity.

For the case that z[n] = 0 and znew[n] = 1, where z and
znew are identical except for the coefficients in the nth block.
For brevity, we use Δn(z, yv ) ≜ 𝛼(znew, yv ) − 𝛼(z, yv ) below.
According to (29), the root node (Z

(0)
Ω
= 0) has the following

metric

𝛼(0, yv ) = −
Ms

2
ln(2𝜋) −Ms ln𝜎n −

1

2𝜎2
n

‖yv‖2
2

+ L ln(1 − p1).

(30)

When SP is updated, the primary challenge in the computation
of metrics is to obtain 𝚽(znew) and 𝚽(znew)−1. First of all, we
compute𝚽(znew) due to the support update. For any n and znew,
we have

𝚽(znew) = QR(znew)QH + 𝜎2IMs

= QR(z)QH + 𝜎2IMs
+

Mn∑
i=(n−1)M+1

𝜎2
1qiq

H
i

= 𝚽(z ) + 𝜎2
1Q[n]Q[n]H ,

(31)

where qn is the nth column of Q. Q[n] is defined in (17). The
matrix inversion lemma (A + BCD)−1 = A−1 − A−1B(C−1 +
DA−1B)−1DA−1 implies

𝚽(znew)−1 = 𝚽(z )−1 − 𝚽(z )−1
Q[n]

(
1

𝜎2
1

IM+

Q[n]H𝚽(z )−1
Q[n]

)−1
Q[n]H𝚽(z )−1

= 𝚽(z )−1 − Cn𝚷nCH
n ,

(32)

where

Cn ≜ 𝚽(z )−1
Q[n], (33)

𝚷n ≜

(
1

𝜎2
1

IM +Q[n]H Cn

)−1

. (34)

According to (33), we can observe that the update of Cl includes
matrix inversion which has high complexity. Fortunately, the
previous information can be exploited. We assume that z is the
SP which is obtained from changing zpre. z and zpre are identical
except for the coefficients in the npre

th block that zpre[npre] = 0

and z[npre] = 1. Based on (32), we have

𝚽(z)−1 = 𝚽(zpre )−1 − C
pre
npre𝚷

pre
npre C

pre
npre

H
, (35)

so that Cn can be calculated by applying previous information
as

Cn =
(
𝚽(zpre )−1 − C

pre
npre
𝚷

pre
npre

C
pre
npre

H
)

Q[n]

= C
pre
n − C

pre
npre
𝚷

pre
npre

C
pre
npre

H
Q[n],

(36)

where

C
pre
n = 𝚽(zpre)−1

Q[n], (37)

C
pre
npre
= 𝚽(zpre)−1

Q[npre], (38)

𝚷
pre
npre
=

(
1

𝜎2
1

IM +Q[npre]H𝚽(zpre )−1
Q[npre]

)−1

. (39)

To this end, we are able to calculate metrics fast and we have

𝛼(znew) = −
Ms

2
ln(2𝜋) −

1
2

ln |(𝚽(znew)|
−

1
2

yH
v 𝚽(znew)−1

yv +
‖znew‖0

M
ln

p1

(1 − p1)

+N ln(1 − p1)

= −
Ms

2
ln(2𝜋) −

1
2

(
ln |(𝚽(z)| +M ln𝜎2

1 − ln |𝚷n|)
−

1
2

(
yH

v 𝚽(z )−1
yv − yH

v Cn𝚷nCH
n yv

)
+

(‖z‖0

M
ln

p1

(1 − p1)
+ ln

p1

(1 − p1)

)
+N ln(1 − p1)

= 𝛼(z) + Δn(z), (40)

where

Δn(z) = −
M

2
ln𝜎2

1 +
1
2

yH
v Cn𝚷nCH

n yv

+
1
2

ln |𝚷n| + ln
p1

(1 − p1)
.

(41)

Δn(z) quantifies the change to 𝛼(z) corresponding to the change
of the coefficients in z[n] from 0 to 1. In this way, once the SP
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202 YOU AND ZHANG

is updated, the metric of new SP can be fast computed base on
the metric of the previous SP.

In summary, the proposed block Bayesian Matching Pursuit
based method is a non-exhaustive tree-search using the SP selec-
tion metric (29) with a fast metric update method. The algo-
rithm is shown in Algorithm 2, where the approximate posterior
probability of z is estimated as

p(z|yv ) =
exp{𝛼(z, yv )}∑

z′∈Z
exp{𝛼(z′, yv )}

≈
exp{𝛼(z, yv )}∑

z′∈ZΩ
exp{𝛼(z′, yv )}

.

(42)

According to the characteristics of mmWave channel,
(𝜇0, 𝜎

2
0 ) = (0, 0), (𝜇1, 𝜎

2
1 ) = (0, 100),D= 5,L′ =6, p1=L

′
∕N

and J = L′ are applied.
In Algorithm 2, lines 1 and 2 are the initialization. Lines 3–6

compute the metric when only one block is active. Steps 7–24
update the metrics with the fast method and apply a tree search
for significant SPs. After obtaining D candidate J elements SPs,
we can compute the posterior probability based on (42). At the
end, according to (27), the algorithm would return the channel
approximate MMSE estimate ĥammse.

5 SIMULATION RESULTS

In this section, computer simulations are presented to evaluate
performance of the proposed methods. All the simulations are
averaged over 500 channel realizations and the system parame-
ters are listed in Table 1. Specifically, NT , NR, N Beam

T
and N Beam

R
are the number of transmitter antennas, receiver antennas, trans-
mit beam patterns and receive beam patterns. L is the number
of scatterers. 𝛼𝓁,m is the Gaussian distributed ( (0, 1)) com-
plex path gain for the paths between the AoD (𝜃t

𝓁
) and AoA

(𝜃r
𝓁,m

) as defined in (11). The AoA and AoD are randomly dis-
tributed over [0, 𝜋]. The carrier frequency is 60 GHz. Size of
the set of discrete angles is 64 as defined in (9). And we assume
that the angular spreads are randomly distributed from 9.95◦ to
12.78◦.

We use phase shifts to generate DFT beams for analog
beamforming. FRF and WRF can be designed as DFT matri-
ces. We use the approach in [7] to design the precoding
matrix for baseband through minimizing the coherence of
sensing matrix Q. Specifically, FBB and WBB are block diago-
nal matrices given by FBB = diag(FBB,1, … ,FBB,i , … ,FBB,N block

T
)

and WBB = diag(WBB,1, … ,WBB,i , … ,WBB,N block
R

) whose diag-
onal entries, FBB,i and WBB,i , consist of NRF ×NRF com-

plex valued matrices. N Block
R

=
N Beam

R

NRF

and N Block
T

=
N Beam

T

NRF

are the

number of receive blocks and transmit block, respectively. It is
shown in [7] that the optimal solution of WBB and FBB to min-
imize coherence of sensing matrix are given by (43) and (44).

WBB,i = U1(𝚲1
−1∕2)H , 1 ≤ i ≤ N Block

R
, (43)

ALGORITHM 1 block Bayesian Matching Pursuit mmWave Channel
Estimation

Input:

Received signal yv , sensing matrix Q, block length M , number of transmit
and receive antenna NT ,NR , number of transmit and receive beam
patterns N Beam

T
,N Beam

R
and hypotheses of channel statistics 𝜎2

1 , 𝜎
2
n ,

L′;

Output:

Channel approximate MMSE estimate ĥammse in (27);

1: Ms = N Beam
T

N Beam
R

, N =
NT NR

M
, p1 =

L′

N
, ZΩ = ∅

2: 𝛼0 = −
Ms

2
ln(2𝜋) −Ms ln𝜎n −

1

2𝜎2
n

‖yv‖2
2 + L ln(1 − p1 )

3: for n = 1 ∶ N do

4: C0
n = 𝚽(z )−1

Q[n], 𝚷0
n = (

1

𝜎2
1

IM +Q[n]H Cn )−1

5: 𝛼0
n =

𝛼0 + −
M

2
ln𝜎2

1 +
1

2
yH

v Cn𝚷nCH
n yv+

1

2
ln |𝚷n| + ln

p1

(1−p1 )

6: end for

7: for d = 1 ∶ D do

8: n=[], ẑ(d ,0) = 0,

9: for n = 1 ∶ N do

10: Cn = C0
n ,𝚷n = 𝚷

0
n

11: 𝛼n = 𝛼
0
n

12: end for

13: for j = 1 ∶ J do

14: n∗ = n indexing the largest element in {𝛼n}n=1∶N which leads
to an as-of-yet unexplored node.

15: 𝛼(d , j ) = 𝛼n∗
, update ẑ(d , j )

z[n∗ ]=1M×1

←%%%%%%%%%% ẑ(d , j−1)

16: n = [n, n∗]

17: for n = 1 ∶ N do

18: Update Cn via (36)

19: Update𝚷n via (34) and Δn (z) via (41)

20: Obtain 𝛼n = 𝛼
(d , j ) + Δn (z)

21: end for

22: end for

23: ZΩ = ZΩ ∪ ẑ(d , j )

24: end for

25: Compute p(z|yv ) via (42)

26: Compute estimation ĥammse via (27)

TABLE 1 System parameters in the simulations

Parameters Values

(NT ,NN ), (N Beam
T
,N Beam

R
) (32, 32), (32, 32)

Sparsity (L) max{P10, 1}

Channel gain (𝛼𝓁,m )  (0,1)

AoA,AoD [0, 𝜋]

Carrier frequency 60 GHz

Grid size (G ) 64

Size of AoA angular spread [9.95◦, 12.78◦]

∗ P10 is the outcome of the Poisson random variable with mean 2.The channel gains in each
cluster are assumed to have internal coherence as 0.95.
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YOU AND ZHANG 203

FIGURE 3 NMSE performances (without overlaps) at different
SNR [dB]

where U1 and 𝚲1 are the matrices of the eigenvectors
and eigenvalues, respectively, satisfying WH

RF ,iĀRĀH
R

WRF ,i =

U1𝚲1U1
H .

FBB,i = U2
∗(𝚲2

−1∕2)T , 1 ≤ i ≤ N Block
T
, (44)

where U2 and 𝚲2 are the matrices of the eigenvectors
and eigenvalues, respectively, satisfying FT

RF ,iĀ
∗
T

(FT
RF ,iĀ

∗
T

)H =

U2𝚲2U2
H .

In Figure 3, the performance of channel estimation preci-
sion is measured by the normalized mean square error (NMSE)
defined as 10 log10(𝔼(‖H −Hestimate‖2

F
∕‖H‖2

F
)). We compare

the NMSE performance for OMP, extended OMP, BOMP and
BCS. According to real-world measurement [12], we assume
that the AoA angular spread is between 9.95◦ and 12.78◦ and
this results in a block length of M = 4 when G = 64. OMP
takes L (number of non-zero paths) and extended OMP takes
ML (number of non-zero elements) as the sparsity. BOMP
adapts L as the block sparsity. BCS is included for comparison
because it is a Bayesian based learning method that is able to
achieve stable performance at all SNR without sparsity infor-
mation. As shown, the worst performance is achieved by OMP
because L is the number of paths which is far less than the num-
ber of non-zero elements. Extended OMP takes ML as the spar-
sity and it achieves much better performance at high SNR with
sufficient iterations. However, extended OMP is worse than
BOMP at all SNR because it does not take advantages of the
block structure. BCS is better than extended OMP at high SNR.
In summary, Figure 3 shows that the angular spreads can be
utilized to improve the accuracy of the mmWave channel esti-
mation.

Figure 4 adds FBMP, extended FBMP, and the proposed
BFBMP into comparison. FBMP and extended FBMP take L′

and ML′ as virtual sparsity, respectively. BFBMP adopts L′ as

FIGURE 4 NMSE performances (without overlaps) at different
SNR [dB]

virtual block sparsity. Considering the sparsity of the mmWave
channel, we choose L′ = 6 in the simulations. In Figure 4,
extended FBMP performs better than BOMP at cost of a large
computational complexity caused by Bayesian based searching.
FBMP has an almost flatten performance because the adopted
virtual sparsity is too small to provide an accurate estimation.
Among all algorithms, BFBMP has the best performance. It
achieves nearly 4 dB better performance than BOMP and 2 dB
better performance than extended FBMP at all SNR.

BCS is a learning based method that is difficult to calculate
the exactly computational complexity. In order to compare
the magnitude of complexity among OMP based methods,
FBMP based methods, and Bayesian learning based methods, in
Figure 5, non-optimized MATLAB codes are used to show the
average runtime of OMP, BCS and extended FBMP as base-
lines. The computational complexity of OMP based methods
and FBMP based methods are straightforward to be verified.
From Algorithm 1, the number of multiplications required by
FBMP based algorithms is (N Beam

N
N Beam

R
G 2PD). FBMP and

BFBMP choose P = L′, and extended FBMP adapts P = ML′.
As a result, extended FBMP has a much larger computational
complexity compared with FBMP and BFBMP. BOMP and
OMP are on the same order of computational complexity as
(LN Beam

N
N Beam

R
G 2). Extended OMP has M times higher

complexity as (MLN Beam
N

N Beam
R

G 2) because of M times
iterations. Figure 5 shows that BCS is the slowest even with
the given noise power. Extended FBMP is faster than BCS but
also requires nearly ML′D∕L longer time than OMP. Note
that, OMP based methods require real sparsity. FBMP based
methods only require a range of the possible sparsity and utilize
virtual sparsity to achieve accurate channel estimation. BCS
does not need any information on sparsity. It can be found that
less computational complexity is required with more accurate
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204 YOU AND ZHANG

FIGURE 5 Runtime at different SNR [dB]

TABLE 2 Computational complexity analysis of proposed methods

Algorithms Computational complexity

FBMP (N Beam
N

N Beam
R

G 2L′D)

BFBMP (N Beam
N

N Beam
R

G 2L′D)

Extended FBMP (N Beam
N

N Beam
R

G 2ML′D)

OMP (N Beam
N

N Beam
R

G 2L)

BOMP (N Beam
N

N Beam
R

G 2L)

Extended OMP (N Beam
N

N Beam
R

G 2ML)

BCS Runtime shown as Figure 5

∗ In the mmWave system, we have D = 5.

sparsity information. The complexity analysis of the proposed
methods is summarized in Table 2.

Figure 6 compares the performance of the above methods
with a varying number of scatters L at 4 dB SNR. We assume
that L′ = 6. Although OMP, extended OMP, BOMP have the
real sparsity, the performances are slightly worse when sparsity
increases because of the growing number of non-zero elements
in the channel matrix. BCS is a learning based method which is
almost the same at all SNR with varying L. FBMP decreases sig-
nificantly when the real sparsity L grows. It is because that the
virtual sparsity L′ is much smaller than the growing real non-
zero elements in the channel matrix. Compared with FBMP, the
larger virtual sparsity ML′ of extended FBMP ensures the algo-
rithm to achieve stable performance. BFBMP achieves the best
accuracy of estimation when L grows to 6 which is exactly the
same as the assumed virtual block sparsity L′. This best accu-
racy decreases when the true block sparsity further grows larger
than assumed L′. But BFBMP still performs better than most
algorithms even at L = 2 or L = 10.

In the above simulations, we assume that the angular spreads
fall in the pre-determined block patterns perfectly without over-
laps. It is worth noting that, considering the size of the surface

FIGURE 6 NMSE performances (without overlaps) at varying scattering
paths

FIGURE 7 NMSE performances (with overlaps) at different SNR (dB)

roughness and the small wavelength of mmWave, the diffusion
scattering effect is more obvious and results in non-negligible
angular spread (or clustering) feature compared with microwave
communications in the limited scattering environment. How-
ever, the scattering effect is based on the material properties,
type of environment and physical parameters. Thus, a prior
information of the angular spread is hard to be acquired. There-
fore, in the following simulations, we consider some more com-
plex scenarios (i.e. isotropic scattering environment) which have
overlapped angular spreads and off-grid errors. In Figure 7, we
consider the scenario that the AoA angular spreads may overlap
with others. We use the same parameters as Figure 4 and show
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the worst case for comparison. Compared with Figure 4, it can
be found that only the performances of BFBMP and BOMP
changes and other algorithms remain almost the same perfor-
mance. In Figure 7, BOMP becomes unstable at all SNR and
it has slightly worse NMSE performance compared with Fig-
ure 4. But BFBMP performance becomes more unstable and
deteriorates seriously at all SNR. Compared with the coherence
based support estimation method in BOMP, BFBMP utilizes a
Bayesian based searching method which is high precision but
more sensitive to the block pattern mismatch. However, BOMP
is not able to achieve accurate channel estimation with large
noises. As a result, BFBMP still performs better than BOMP
when SNR<5 dB.

In summary, when the real sparsity is known and the SNR is
high, BOMP is suitable to be employed for the mmWave chan-
nel estimation. Otherwise, the proposed BFBMP is more suit-
able to be employed to achieve better performance with afford-
able computational complexity.

6 CONCLUSION

In this paper, we utilized the AoA angular spread feature by for-
mulating the mmWave channel estimation as a block sparse sig-
nal recovery problem. BOMP method was first employed to val-
idate the efficiency of the formulation. BFBMP was proposed
to further improve the channel estimation performance effi-
ciently without the real sparsity. Simulation results demonstrated
that through utilizing angular spreads, BOMP and BFBMP are
able to achieve superior channel estimation performance with
less computational complexity compared with the conventional
methods such as OMP and FBMP.
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