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Comparing current and emerging practice 
models for the extrapolation of survival data: 
a simulation study and case-study
Benjamin Kearns1*, Matt D. Stevenson1, Kostas Triantafyllopoulos2 and Andrea Manca3 

Abstract 

Background: Estimates of future survival can be a key evidence source when deciding if a medical treatment should 

be funded. Current practice is to use standard parametric models for generating extrapolations. Several emerging, 

more flexible, survival models are available which can provide improved within-sample fit. This study aimed to assess 

if these emerging practice models also provided improved extrapolations.

Methods: Both a simulation study and a case-study were used to assess the goodness of fit of five classes of survival 

model. These were: current practice models, Royston Parmar models (RPMs), Fractional polynomials (FPs), Generalised 

additive models (GAMs), and Dynamic survival models (DSMs). The simulation study used a mixture-Weibull model as 

the data-generating mechanism with varying lengths of follow-up and sample sizes. The case-study was long-term 

follow-up of a prostate cancer trial. For both studies, models were fit to an early data-cut of the data, and extrapola-

tions compared to the known long-term follow-up.

Results: The emerging practice models provided better within-sample fit than current practice models. For data-rich 

simulation scenarios (large sample sizes or long follow-up), the GAMs and DSMs provided improved extrapolations 

compared with current practice. Extrapolations from FPs were always very poor whilst those from RPMs were similar 

to current practice. With short follow-up all the models struggled to provide useful extrapolations. In the case-study 

all the models provided very similar estimates, but extrapolations were all poor as no model was able to capture a 

turning-point during the extrapolated period.

Conclusions: Good within-sample fit does not guarantee good extrapolation performance. Both GAMs and DSMs 

may be considered as candidate extrapolation models in addition to current practice. Further research into when 

these flexible models are most useful, and the role of external evidence to improve extrapolations is required.
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Background
Accurate extrapolations of future survival can be pivotal 

evidence sources for decision-makers when determining 

if a medical treatment should be funded. In England, the 

National Institute for Health and Care Excellence (NICE) 

– which provides national guidance on if treatments 

should be funded – requires that all relevant health bene-

fits of a treatment be quantified. This is to enable consist-

ent and fair decision making across diverse treatments. 

Hence if a treatment impacts on survival this should be 

extrapolated to provide estimates of lifetime survival 

benefit. Recent reviews of cancer treatments appraised by 

NICE found that between 2011 and 2017, every appraisal 

involved extrapolation [1]. On average, evidence on 
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treatment effectiveness was available for 2.9 years, and 

extrapolated to 25.2 years [2].

Current practice is to use standard parametric survival 

models (such as the exponential and Weibull) when ana-

lysing and extrapolating survival data [1]. There is a grow-

ing awareness that such models may not be sufficiently 

flexible to accurately capture the complex hazard patterns 

that may arise in practice [3, 4]. There are several more-

advanced survival models which may give improved fit to 

the observed data [5]. However, it is unclear if improved 

within-sample fit will lead to improved extrapolation 

performance, and there is dearth of comparative studies 

which include these flexible emerging practice models. 

The aim of this study was to compare both the within-

sample goodness of fit and the extrapolation perfor-

mance of current and emerging practice models. This 

was achieved using both a simulation study and a case-

study. Use of a case-study demonstrates the performance 

of survival models using real data, whilst use of a simula-

tion study avoids estimates of performance being driven 

by the quirks of a single dataset.

Methods
This section begins with an overview of the survival 

models used, followed by details of the simulation study 

and case-study.

Survival models

For brevity, the descriptions here focus on the qualitative 

properties of the models. Technical details may be found 

in the references provided. A key distinction between 

the models is if they are global, piecewise, or local. For 

global models, parameter estimates are the same at all 

time points (constant over time). For piecewise models, 

parameter estimates are constant over time within speci-

fied time intervals but allowed to vary across time inter-

vals. For local models, parameter estimates vary over 

time. Five classes of survival model were considered:

1. Current practice [6, 7]. Eight standard parametric 

global survival models were considered: exponential, 

Weibull, Gompertz, log-logistic, lognormal, gamma, 

generalised gamma, and generalised F. The first five 

models may be written as linear models; this assump-

tion of linearity is relaxed by the emerging practice 

models of the other four model classes.

2. Royston Parmar models (RPMs) [8, 9]. These extend 

linear models by the incorporation of piecewise cubic 

polynomials, which are restricted to have the same 

value at a set of `knots’, with the number of knots 

determining the complexity of the model. Up to five 

internal knots were considered, with two specifica-

tions which correspond to extensions of the Weibull 

and log-logistic models, respectively.

3. Fractional polynomials (FPs) [10, 11]. These are 

global models; one and two polynomial terms of 

the logarithm of time were considered, giving FP (1) 

and FP (2) models, respectively. Powers were taken 

from the set [− 2, − 1, − 0.5, 0, 0.5, 1, 2, 3], result-

ing in eight FP (1) and 36 FP (2) models. It is possible 

to choose between FP (1) and FP (2) models using a 

closed-test procedure [12], but for this study FP (1) 

and FP (2) models were kept separate. This is because 

FP (2) models are more complex than FP (1) models, 

and there was interest in seeing if extrapolation per-

formance varied by model complexity.

4. Generalised additive models (GAMs) [13, 14]. The 

models considered start with a Weibull, and add 

complexity via additional parameters, known as 

bases. For this study regression splines were used, 

with a maximum dimension of ten. The likelihood 

for these models includes a term that penalises for 

model complexity, which leads to shrinkage of model 

parameters. GAMs are global models.

5. Dynamic survival models (DSMs) [5, 15]. These are 

local models which introduce flexibility by allowing 

model parameters to evolve over time, as described 

by a time-series. Two models were considered. Both 

extend a linear Weibull model by allowing the trend 

parameter to follow a random walk. The first model 

(‘local trend’) extrapolated this trend indefinitely. 

The second model (‘damped trend’) successively 

decreased the extrapolated trend as the time hori-

zon increased so that eventually the trend became 

zero and extrapolations were constant. The degree of 

dampening was estimated from the data.

Simulation study

The reporting of the simulation study follows published 

guidance [16]. Components of the simulation study are 

reported based on their aims (provided in the introduc-

tion), data generating mechanisms, methods (models), esti-

mand, and performance measures.

Data generating mechanism

A two-component mixture-Weibull model was used; it 

may be interpreted as representing two sub-populations 

of patients with either a high hazard (short survival) or a 

low hazard (long survival) The survival and hazard func-

tions are given by [17]:

Sti = ρexp
(

−�1t
γ1

i

)

+ (1 − ρ) exp
(

−�2t
γ2

i

)
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respectively, where γ and Λ are the respective shape and 

scale parameters (indexed by component), and ρ is the 

mixing proportion. The values used are: γ1 = 1.8, Λ1 = 

0.02, γ2 = 1.4, Λ2 = 2.3, and ρ = 0.5. This was designed to 

reflect a ‘true’ hazard with two turning points (at approx-

imately 0.5 and 1.75 years), and a long-term increasing 

hazard (reflecting the impact of ageing).

Nine scenarios were simulated, with 200 datasets simu-

lated for each scenario. These scenarios corresponded to 

three different sample sizes (small = 100, medium = 300, 

large = 600), and three different lengths of follow-up 

(short =  2 years, medium =  3 years, long =  4 years). 

Hence all scenarios included both turning points in the 

hazard function but varied by how soon after the last 

turning point follow-up ended. The sample sizes were 

chosen to be representative of those typically seen in 

clinical practice at the point of reimbursement deci-

sion making. Details on these scenarios are provided in 

Table 1 and visualised in Fig. A1 in Additional file 1.

Methods

The five classes of survival model previously described 

were included. For current practice, the generalised F 

was not included due to a lack of convergence. Further, 

the main results do not include the Gompertz model due 

its very poor extrapolation performance. Results includ-

ing the Gompertz are provided in Additional file  1. For 

the two DSM specifications (local trend, damped trend), 

a constant level (intercept) as well as a time-varying local 

intercept was considered, resulting in four DSMs. For the 

first three model classes multiple specifications are pos-

sible. In practice, the choice between these specifications 

would be based on a combination of clinical considera-

tions and empirical goodness of fit. For this study, the 

λti =
Λ1γ1t

γ−1
1

i
ρexp

(

−Λ1t
γ1
i

)

+ Λ2γ2t
γ−1
2

i
(1 − ρ) exp

(

−Λ2t
γ2
)

Sti

choice between model specifications was based solely on 

Akaike information criteria (AIC) for current practice, 

RPM, FP [1] and FP [2] models [18]. All analyses were 

performed in R, using a variety of packages [7, 19, 20]. 

Full details on the packages used and implementation 

and provided in Additional file 2.

Estimand and performance measures

The estimand was the mean of the natural logarithm of 

the time-varying hazard function λt. The primary perfor-

mance measure used was the mean (of the) squared error 

(MSE), with bias as a secondary performance measure. 

For MSE smaller values indicate better model perfor-

mance, for bias this is indicated by values closer to zero. 

Further details on the justification for these measures and 

their definition are provided in Additional file 1.

Case‑study

Patient-level data were obtained for the clinical trial COU-

AA-301 (NCT00638690) from the Yale University Open 

Data Access Project [21]. This trial compared abiraterone 

acetate (henceforth referred to as abiraterone) to placebo in 

people with castration-resistant prostate cancer previously 

treated with docetaxel-based chemotherapy. The available 

data was for 1183 people (abiraterone = 791, placebo = 392) 

with almost complete follow-up: median 36.2 months, by 

which time 984 (82.3%) people had died. An early cut of the 

data has been published, based on a median follow-up of 

12.8 months and 552 deaths (46.2%) [22]. The five classes 

of survival model were applied to the early cut of the data, 

with the more complete data used to evaluate the extrap-

olation performance. More details on the available data, 

including how the early cut was replicated, are provided 

in Additional file 1. For classes one to three, multiple mod-

els may be fit. The choice of model(s) to use for extrapo-

lations was based on a combination of the plausibility of 

Table 1 Details of the nine scenarios simulated

Scenario Follow‑up (survival %) Sample size

Short follow-up, small sample size 2 years (46.8%) 100

Short follow-up, medium sample size 300

Short follow-up, large sample size 600

Medium follow-up, small sample size 3 years (43.3%) 100

Medium follow-up, medium sample size 300

Medium follow-up, large sample size 600

Long follow-up, small sample size 4 years (39.2%) 100

Long follow-up, medium sample size 300

Long follow-up, large sample size 600
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extrapolations and the goodness of fit to the observed data, 

quantified by both the AIC and Bayesian information crite-

ria (BIC) [18].

Results
Simulation study

For each model, the visual patterns of within-sample fit 

and extrapolations were broadly similar across the nine 

scenarios considered. Increasing the sample size led to a 

reduction in the variation of extrapolations as expected 

but had little other effect. Results were more sensitive to 

changes in length of follow-up. For a sample size of 300 

and all three follow-ups and all nine models, Fig. 1 dem-

onstrates visual fit whilst Fig.  2 provides time- varying 

estimates of the MSE and bias (due to their very poor fit, 

FPs are excluded from Fig. 2). Plots for the remaining sce-

narios are provided in Additional file 1 (Figs. A2 to A5).

For the within-sample period, the current practice 

models provided a poor fit to the observed data for all the 

scenarios: the hazard was under-estimated for the first 

year and over-estimated for subsequent years, with nei-

ther turning-point in the hazard captured. The remaining 

models all provided visually improved within-sample fit, 

although they also typically had more variability in their 

estimates. With the shortest follow-up (2 years) none of 

the models identified the long-term increasing trend in 

the hazard function. With the longest follow-up (4 years) 

two dynamic models (local trend and damped trend 

models; both with a global level) along with the GAM 

identified the long-term increasing hazard; the remain-

ing models did not. For the three models that identified 

the long-term increasing hazard, the bias in the extrapo-

lations decreased with increasing sample-size; for the 

largest sample size they provided approximately unbi-

ased estimates. The extrapolation performance of the 

two DSMs with a local level also improved with increas-

ing sample size, but they consistently under-estimated 

the true hazard. In contrast, for the current practice 

models and RPMs, the bias was not reduced by increas-

ing sample size. Results for a follow-up of 3 years were 

similar to those for 4 years, but with more uncertainty in 

the extrapolations. This uncertainty led to some extreme 

departures from the true hazard values for the GAMs 

and DSMs. In contrast, use of standard models or RPMs 

led to extrapolations that were always biased, but there 

were never any extreme departures from the truth.

In general, GAMs required less data (sample size or fol-

low-up) than DSMs to identify the turning-point in the 

hazard, but GAMs also produced more variable extrapo-

lation estimates than the DSMs. This large variation is a 

particular concern as in each appraisal (or analysis) only 

a single extrapolation would be obtained and there is a 

danger that it would correspond to one of the very poor 

extrapolations. For the DSMs, dampening the trend led 

to less variable extrapolations and lower average MSE 

and bias than the corresponding local trend models. Both 

FP model classes provided extremely poor extrapolations 

which very quickly tended towards zero or very large 

numbers and lacked face validity. Despite generally hav-

ing the worst within-sample fit, current practice mod-

els often provided some of the best extrapolations with 

short-to-medium follow-up. However, as demonstrated 

in Fig. 1, the good extrapolation performance of the cur-

rent practice models is an artifact of their poor within-

sample fit, as the extrapolated (decreasing) hazards were 

by chance close to the true (increasing) hazards. Esti-

mates from individual current practice models, includ-

ing the Gompertz, are provided in Additional file 1. The 

GAMs and RPMs are both spline-based models but pro-

duced very different extrapolations. Further comparison 

of these models is provided in Additional file  1, which 

shows that GAMs were generally more complex than the 

RPMs.

Overall values of MSE and bias (averaged across the 

within- and out-of-sample time periods) are provided in 

Table  2. For each of the nine scenarios considered, the 

DSM with a damped trend and a local level provided the 

lowest MSE values. The next lowest MSE values were 

typically observed for the current practice and RPMs, 

despite these two model types predicting a long-term 

decrease in hazards for all nine scenarios. As the scenar-

ios became more data rich (increasing follow-up and/or 

sample size), the performance of the DSMs improved rel-

ative to the other models. For example, with a sample size 

of 600 and four-years follow-up, the four DSMs had the 

lowest MSE of all the models considered. The class of FPs 

give the worst extrapolations for every scenario. This may 

be due to their sensitivity to extreme values, combined 

with extrapolating polynomial trends [23]. Omitting the 

FPs, the largest MSE values were observed for the GAM 

in seven of the nine scenarios. The poor performance of 

the GAMs is primarily driven by the large variability in 

extrapolations, as it provided the least-biased estimates 

in four scenarios. For the remaining five scenarios a DSM 

provided the least-biased estimates (two each for the two 

DSMs with a damped trend, one for the local trend global 

level DSM).

Case‑study

Within-sample estimates and extrapolations from the 

models selected for extrapolations are provided in Fig. 3, 

which also includes general population hazard values as 

a reference. Information criteria for the standard models 

and RPMs are provided in Additional file  1 (Table  A4). 

The Weibull and gamma models had very similar AIC 

and BIC values and for both treatment groups were the 
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Fig. 1 Model estimates of the log-hazard (blue lines) and true values (black lines)
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Fig. 2  Mean squared error and bias values by time (within-sample and extrapolations)
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two best standard models. Hence both were considered 

for extrapolation. For the abiraterone group, the RPM 

corresponding to the Weibull had the lowest AIC and 

BIC; models with increasing complexity had decreasing 

within-sample fit. For the placebo group use of AIC and 

BIC led to contrary findings. The BIC supported the use 

of a Weibull, whilst more complex models had better AIC 

values. Visually the more complex models appeared to 

be over-fitting the data, suggesting that in this instance 

AIC may not be sufficiently penalising model complex-

ity. Since the best-fitting (and plausible) RPM was the 

Weibull for both groups and this was already chosen as 

a standard model, no RPMs were used for extrapolation. 

For both groups, the FP1 with the lowest AIC was the 

same model as a Weibull. This model provided very simi-

lar visual estimates (within-sample and extrapolations) to 

the best-fitting FP2 but had lower AIC. As such, the FP1 

model corresponding to the Weibull was chosen for both 

groups.

The fitted GAM provided visual estimates that were 

very similar to the RPM with the lowest AIC, suggest-

ing a Weibull for abiraterone and a function with six 

turning points in the hazard for the placebo group. 

These are used for extrapolation even though it is 

noted that the placebo GAM may be over-fitting the 

data (resulting in very large extrapolated hazards). 

For the abiraterone group, both DSMs provide similar 

estimates to the Weibull model up to about 9 months. 

After this time, the local trend model estimates higher 

hazards than the Weibull and the damped trend model 

estimates lower hazards. Similar extrapolations were 

observed for the placebo group, with the damped trend 

providing the lowest extrapolated hazards of all mod-

els considered and the local trend the second highest 

(below the GAM).

A visual comparison of the model-estimates to the 

longer-term data is provided in Fig. 4, which also include 

a smooth non-parametric estimate (black-dashed line). 

For both treatment groups, the trend observed in the 

early data cut does not persist in the long-term. For the 

placebo group, the short-term increase in the hazard 

during the period of the interim data is followed by an 

almost immediate decrease. As such, none of the models 

provide good extrapolations. For the abiraterone group, 

the hazard continues increasing to about 2.5 years albeit 

at a lower rate than was observed in the early cut. The 

damped trend model provides adequate extrapolations 

up to about 2.5 years. After this time, the observed haz-

ards decrease, and none of the models provide a good 

description. Extrapolations beyond 3 years were not 

Table 2 Goodness of fit over the entire time horizon

FU Follow-up

Overall mean Sample size: 100 Sample size: 300 Sample size: 600

squared error FU: 2 years FU: 3 years FU: 4 years FU: 2 years FU: 3 years FU: 4 years FU: 2 years FU: 3 years FU: 4 years

Damped trend, local level 0.51 0.34 0.42 0.23 0.38 0.29 0.26 0.41 0.27

Current practice 1.01 1.19 1.26 0.94 1.15 1.19 0.90 1.12 1.15

Royston-Parmar model 1.98 2.38 1.87 2.21 2.38 1.50 2.25 2.36 1.40

Damped trend, global level 3.75 4.98 2.36 7.88 2.29 0.52 8.07 1.41 0.35

Local trend, local level 3.33 4.41 2.96 6.86 4.13 1.26 9.18 3.39 0.71

Local trend, global level 6.03 7.12 4.27 15.61 6.67 1.36 18.04 4.65 0.57

Generalised additive model 32.89 18.16 6.85 18.49 6.59 2.12 20.27 4.09 1.53

Fractional polynomial: order 1 312.40 103.82 22.49 326.43 41.25 8.61 331.78 35.71 9.14

Fractional polynomial: order 2 531.90 258.30 147.35 205.23 55.05 85.21 121.62 24.07 65.57

Overall bias

 Damped trend, local level 0.38 −0.03 − 0.19 − 0.12 − 0.35 − 0.40 − 0.30 −0.30 − 0.31

 Current practice −0.36 − 0.37 − 0.35 − 0.55 −0.55 − 0.54 −0.60 − 0.58 −0.56

 Royston-Parmar model −0.92 −1.07 − 1.10 − 1.07 − 1.10 − 1.11 −0.88 − 0.79 −0.77

 Damped trend, global level −0.35 − 1.83 − 1.80 − 1.17 −0.78 − 0.56 −0.76 − 0.18 −0.14

 Local trend, local level −0.93 − 1.80 −2.14 − 1.32 −1.36 − 1.23 −1.06 − 0.64 − 0.48

 Local trend, global level − 1.36 − 2.85 −3.13 −1.73 − 1.72 −1.30 − 1.31 − 0.45 − 0.11

 Generalised additive model −1.55 −2.18 − 1.99 − 0.06 − 0.09 0.05 0.15 0.31 0.23

 Fractional polynomial: 
order 1

−10.52 −11.87 − 12.24 −5.36 −4.10 − 3.91 −2.37 −1.75 − 1.83

 Fractional polynomial: 
order 2

−5.45 −8.03 −6.72 1.45 − 0.79 −1.84 4.05 3.53 3.08
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Fig. 3  Within-sample fit and extrapolations from candidate extrapolation models



Page 9 of 11Kearns et al. BMC Medical Research Methodology          (2021) 21:263  

considered due to the small sample sizes (at 3 years the 

number of patients remaining in the study was 62 and 23 

for the abiraterone and placebo arms, respectively, whilst 

at 3.5 years the numbers were 24 and 3, respectively).

Discussion
The within-sample fit and extrapolation performance of 

several survival models was evaluated in nine simulated 

scenarios covering different lengths of follow up and dif-

ferent sample sizes. A single data-generating mechanism 

was used, with two turning points in the hazard function. 

Only the global-level DSMs and GAMs were able to cor-

rectly extrapolate an increasing hazard function, but only 

in the more data-rich scenarios, and extrapolations were 

highly variable.

Current practice models provided the worst within-

sample estimates of all the models considered in the 

simulation study. The DSMs and emerging practice mod-

els were able to provide improved within-sample fit due 

to their increased flexibility. However, this extra flex-

ibility sometimes resulted in overfitting and extrapolat-

ing short term trends in the data that were not present 

in the longer term. A stark example of this was observed 

for the two FP model classes, for which extrapolations 

tended sharply towards implausibly small or large values. 

The danger of the more flexible models overfitting was in 

general reduced with increased sample size or follow-up, 

which led to improved extrapolation performance. A cor-

responding improvement in extrapolation performance 

for the more data-rich scenarios was not observed for 

current practice models.

A strength of the simulation study is the large number 

of survival models considered. For each scenario DSMs, 

current practice, spline-based models, and fractional 

polynomials were all evaluated. When including differ-

ent model specifications, collectively 62 different models 

were fit for each scenario, with nine models retained for 

estimating extrapolation performance. The use of model 

selection also showed that within-sample goodness of fit 

plays a very limited role in identifying models that pro-

vide accurate extrapolations. For example, the current 

practice model with the best within-sample fit typically 

provided the worst extrapolations. A further strength 

of the study is the novel use of time-varying estimands 

instead of a single summary measure of accuracy such as 

the estimate of lifetime mean survival, which is affected 

Fig. 4  Comparisons of extrapolations against longer follow-up (dashed-lines)
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by both within and out-of sample fit (an accurate esti-

mate may occur if short-term over-estimates of hazard 

and long-term under-estimates cancel out, or vice-versa).

There are limitations to the simulation study. Only a sin-

gle data generating mechanism (a mixture Weibull) was 

considered, with only one set of parameters. The within-

sample fit and extrapolation performance of the candidate 

models in other settings is currently unknown and would 

be a fruitful area for future research. The existing data gen-

erating mechanism included two turning points, so in this 

sense favoured the more flexible models. However, survival 

data are inherently complex with a multitude of potential 

competing effects, such as ageing, frailty, treatment ben-

efits, and adverse events. Collectively these are likely to 

cause complex shapes in the hazard function. Cure models 

may also be used for survival data with a turning-point [24]. 

They were not used here as the simulation study did not 

involve a cured fraction nor was there any indication that 

the case-study included one. Future research could explore 

the performance of cure models under misspecification.

In the case-study, for both treatment groups the hazards 

observed in the early data cut were increasing and use of 

current practice models favoured either the Weibull or 

gamma. These both provided monotonically increasing 

extrapolated hazards. Similar extrapolations were obtained 

from the more flexible FPs, RPMs and GAMs, along with 

the local trend model. In contrast, the damped trend 

model provided extrapolations that increased at a much 

lower rate for both groups. For both treatment groups the 

true long-term hazards eventually decreased. As none of 

the considered models were able to extrapolate a turn-

ing point, their predictions were generally all poor. The 

damped trend model assumes that the hazard function will 

eventually change from increasing to constant; this is clos-

est to what occurred in the full dataset. However, as this 

is a single case-study, the generalisability of this finding 

to other scenarios is unclear. This case-study emphasises 

that any extrapolations are only as good as the dataset that 

is used. If the unobserved future contains turning points, 

then any extrapolation model would do poorly unless it 

incorporates external data to identify the turning points.

The simulation study was relatively simple, compris-

ing two monotonic (Weibull) hazard functions. Yet pro-

ducing accurate extrapolations was challenging, even 

with a follow-up of 3 years. The dataset and results of 

this manuscript will provide useful test-cases and bench-

marks for future research to see if it is possible to provide 

improved extrapolations. Collectively, the simulation study 

and case-study suggest several areas for future research. 

Future studies could seek to identify if there are certain 

situations when one or more of the model classes out-per-

forms the other models, and so may be used as the default 

approach. The current results suggest that whilst use of a 

damped-trend DSM may be beneficial, there is a danger 

that it will provide worse extrapolations than current prac-

tice models, especially in data-poor scenarios. This moti-

vates consideration of a variety of different models, with 

model choice made on a case-by-case basis. This choice 

would consider the specifics of the extrapolation prob-

lem, such as the plausibility of extrapolations, the rich-

ness of the available data, and the qualitative differences in 

extrapolations arising from different models. The results 

currently suggest that simpler models may be appropri-

ate in data-poor settings, although there is a danger that 

no extrapolations will be useful in these situations. Further 

research is required to understand the conditions under 

which evidence are rich enough to justify a more complex 

model. As an alternative to model selection, model averag-

ing could be performed [25]. The case-study demonstrated 

that extrapolations were poor when the available follow-up 

did not include all the turning-points in the hazard func-

tion. The simulation study showed that even if all the turn-

ing points are included extrapolations may still be poor. 

This illustrates the potential importance of incorporating 

external evidence to improve extrapolations [26]. Nei-

ther the case-study nor the simulation study explored the 

impact on extrapolations of including covariates effects. In 

general incorporating additional information is expected 

to improve within-sample fit, but is unlikely to alter the 

conclusions of this manuscript.

The simulation study demonstrated that in  situations 

when survival outcomes may arise from distinct patient 

populations, current practice models are unlikely to pro-

vide accurate estimates of the observed data or realistic 

extrapolations. Of the emerging practice models consid-

ered, DSMs and GAMs were the only ones able to capture 

the long-term behaviour of the hazard function. However, 

extrapolations from these more flexible models were more 

variable than extrapolations from current practice models 

and had the potential to be less accurate. In the case-study 

neither the current nor emerging practice models were able 

to provide accurate extrapolations. To conclude, emerging 

practice models may be currently viewed as another option 

in the toolkit of methods for the analysis and extrapolation 

of survival data. More experience of these models when 

used with different datasets is required to provide more 

specific guidance about their role, including the situations 

when they are likely to be the most useful.
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