
This is a repository copy of Experimental Test of Sequential Weak Measurements for 
Certified Quantum Randomness Extraction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/182152/

Version: Accepted Version

Article:

Foletto, Giulio, Padovan, Matteo, Avesani, Marco et al. (3 more authors) (2021) 
Experimental Test of Sequential Weak Measurements for Certified Quantum Randomness 
Extraction. Physical Review A. 06206. ISSN 1094-1622 

https://doi.org/10.1103/PhysRevA.103.062206

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Experimental test of sequential weak measurements for certified quantum randomness

extraction

Giulio Foletto,1, ∗ Matteo Padovan,1, ∗ Marco Avesani,1 Hamid

Tebyanian,1 Paolo Villoresi,1, 2 and Giuseppe Vallone1, 3, 2, †
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Quantum nonlocality offers a secure way to produce random numbers: Their unpredictability is
intrinsic and can be certified just by observing the statistic of the measurement outcomes, without
assumptions on how they are produced. To do this, entangled pairs are generated and measured
to violate a Bell inequality with the outcome statistics. However, after a projective quantum mea-
surement, entanglement is entirely destroyed and cannot be used again. This fact poses an upper
bound to the amount of randomness that can be produced from each quantum state when projec-
tive measurements are employed. Instead, by using weak measurements, some entanglement can be
maintained and reutilized, and a sequence of weak measurements can extract an unbounded amount
of randomness from a single state as predicted in Phys. Rev. A 95, 020102(R) (2017). We study
the feasibility of these weak measurements, analyze the robustness to imperfections in the quantum
state they are applied to, and then test them using an optical setup based on polarization-entangled
photon pairs. We show that the weak measurements are realizable, but can improve the performance
of randomness generation only in close-to-ideal conditions.

I. INTRODUCTION

Classical random number generators cannot produce
genuine randomness as they rely on algorithms or de-
terministic phenomena. However, quantum physics of-
fers several solutions for producing secure and private
random numbers [1, 2]. The simplest one arises from
the superposition principle, which makes quantum mea-
surements probabilistic on most states. This idea can
be exploited, for example, by identifying two mutually
unbiased bases, preparing a physical system in a state
belonging to one, and measuring it with respect to the
other. Neglecting experimental imperfections, in the long
run, the measurement outcomes will be random and uni-
formly distributed. However, this relies on at least two
strong assumptions: knowledge of the quantum state and
accurate control of the measurement being made. These
are often hard to verify in practice, and hence leave an
opening for potential attacks.
A different approach to quantum randomness starts

from the concept of nonlocality [3], for which the out-
comes of measurements on some multipartite systems
generate correlations that cannot be explained by the-
ories that are local and realistic. In arguably one of
the most important results of quantum theory, J. S. Bell
showed that there are relations between the statistics of
the measurement outcomes that must hold for such the-
ories but are violated by quantum physics [4]. These re-
lations, now called Bell inequalities, have been violated
experimentally countless times, thus proving that local
realistic theories are incompatible with the experimen-
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tal data [5–10]. Assuming that no-signaling still holds,
the measurements that violate the inequalities are intrin-
sically unpredictable, and hence they can produce ran-
dom numbers [11]. Protocols that exploit the violation
of a Bell inequality are often termed device independent,
because this violation does not require any assumption
on the nature of the state nor the measurements, and
hence is independent of the inner workings of the de-
vices in use. This level of security is higher than that of
other frameworks (e.g., trusted device [2] or semi-device-
independent [12–15]), which require full or partial trust
on the devices and cannot allow them to be controlled by
an adversary, something that, instead, is tolerated in the
device-independent case.
This abstract intuition has been made more quan-

titative with the study and development of device-
independent random number generators [16–22]. In gen-
eral, these instruments consist of a source of entangled
states, which are necessary for violating a Bell inequality,
and some measurement stations that receive each subsys-
tem, measure it, and attempt to observe nonlocality using
the result statistics. The amount of randomness that can
be extracted from the measurement outcomes depends
on the strength of the violation. For instance, most im-
plementations use two-qubit states, such as polarization-
entangled photon pairs and exploit the CHSH inequal-
ity [23]. A limitation of this scheme is that the pro-
jective measurements irreversibly destroy entanglement,
hence each pair can contribute to only one violation and
produce at most one bit of randomness if the outcomes
on one subsystem are used, or 1.23 bits if both parties
are considered [16].
Although there are other ways to overcome this bound

(see, e.g., Ref. [24]), we shall focus on the use of the weak
measurement [25]. Throughout the last three decades,
this tool has found many diverse applications, from the
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amplification of feeble quantities [26–28], to the measure-
ment of incompatible observables [29–31], through quan-
tum state reconstruction [32–35]. Recently, it has been
exploited for sequential protocols, in which a system un-
dergoes multiple measurements without ever completely
collapsing or losing its useful quantum features, which
can be harvested repeatedly. In this manner, Bell in-
equalities can be violated more times [36–40], quantum
random access codes can be used by two parties [41, 42],
and quantum instruments can be tested [43]. More im-
portant for this work is using weak measurements to pro-
duce random bits from the same physical system repeat-
edly [44, 45]. The authors of Ref. [44] proposed a device-
independent protocol based on the sequential violation of
a CHSH-like inequality on a bipartite entangled state. In
the case of perfect state preparation and an infinite se-
quence of ideal measurements, their scheme can produce
an unbounded amount of random bits from the outcomes
of local measurements on one subsystem.
Albeit valid only in an ideal scenario, this fact encour-

ages an evaluation of the practical feasibility of this pro-
tocol, which is the aim of this work. We first theoretically
analyze its robustness to imperfections and then show a
proof-of-concept experimental implementation based on
bulk polarization optics that highlights the difficulties in-
herent in these measurements, but can be a starting point
for further developments using setups of higher accuracy.

II. THEORETICAL MODEL

In Secs. II A, II B, and IIC, we summarize and ex-
tensively comment on the protocol proposed in Ref. [44]
to set the framework we are working in and explain the
notation. Then, in Sec. IID, we present the main the-
oretical result of this work. We first introduce a simple
model to characterize the robustness of the protocol to
experimental imperfections, and then apply it in numer-
ical simulations to study how much randomness can be
generated under different noise conditions.

A. The sequential measurement protocol

The protocol, schematically depicted in Fig. 1, starts
with a pure two-qubit entangled state, shared between
two parties called Alice and Bob1:

|ψ1〉 = cos θ1 |00〉+ sin θ1 |11〉 , (1)

where θ1 ∈ [0, π/4] is an indicator of the amount of entan-
glement in the state, indeed if θ1 = 0, |ψ1〉 is separable,
whereas if θ1 = π/4, the state is a maximally entangled
Bell pair. In the best-case scenario, the protocol starts
with θ1 = π/4 and hence can achieve the best perfor-
mance. We now focus on the action of Bob1, who is the
first in a sequence of observers that work on the same
half of the entangled pair. We will describe Alice’s role

Source

Bob1 Bob2

Alice

+1 _1 _1 _1

Binary input

Binary output

...

(0) (1) (0) (1)(0) (1)

+1 +1

Bobn

FIG. 1. Scheme of the sequential protocol. The dotted black
line indicates that, before attempting to violate the Bell in-
equality with a Bob, Alice requires the history of outcomes of
the previous observers. This communication can also be re-
placed by post-selection. Alice’s measurements are described
by Eq. (4), whereas the Bobs’ are in Eq. (2).

in Sec. II B. Bob1 selects one of two observables to be
measured:

B(0) = σz,

B
(1)
1 = cos (2ξ1)σx,

(2)

in which ξ1 ∈ [0, π/4] quantifies the strength of the mea-
surement of σx, which is projective for ξ1 = 0, completely
noninteractive for ξ1 = π/4, and generically weak for any

value in between. In this way, the observable B
(1)
1 corre-

sponds to a generalized measurement of σx with Kraus
operatorsK1,± = 1

2 [(cos ξ1+sin ξ1)11±(cos ξ1−sin ξ1)σx].
Both observables return binary outcomes y1 = ±1, col-
lected by Bob1. The state of Eq. (1) is balanced with

respect to the measurement of B
(1)
1 , meaning that both

outcomes can happen with 1
2 probability. These out-

comes are used to generate random bits, whereas those
of B(0) are needed to violate a Bell inequality and cer-
tify that state and measurements are indeed those we are
describing.
After the measurement, the state takes the form,
∣

∣

∣
ψ2,~h

〉

= U
A,2,~h⊗UB,2,~h(cos(θ2) |00〉+sin(θ2) |11〉), (3)

where the unitary operations U
A,2,~h, UB,2,~h depend on

Bob1’s strength and outcome. We use symbol ~h to label
the history of outcomes at the past steps (which in this
case contains only one datum, y1). The value of the
parameter θ2 does not depend on Bob1’s outcome but still
depends on his strength, although we do not highlight
this in the notation.
Using his knowledge of the outcome, Bob1 applies

U†

B,2,~h
to his local state and sends it to Bob2, who can

proceed with a similar step. The purpose of this action is
to make Bob2’s state again balanced with respect to the
outcomes of B(1), so that he can again produce random
bits by measuring the B(1) observable. The protocol can
continue with an unlimited sequence of measurements of
B(1) or can be stopped with a strong measurement of
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B(0). There is no reason to continue the protocol af-
ter this because the post-measurement state is no longer
entangled. To make a long sequence of measurements,
we can imagine that B(0) is chosen with low probability,
just enough to provide the statistics that violate a Bell
inequality.

B. Extraction of random bits

We now move to the other half of the entangled pair,
held by Alice. The outcomes of her measurements do
not directly provide random bits, but are correlated with
those of the Bobs to violate a Bell inequality. For each
quantum system, Alice selects a step k and one of the
two projective observables:

A
(0)
k = cos(µk)σz + sin(µk)σx,

A
(1)
k = cos(µk)σz − sin(µk)σx,

(4)

where µk = arctan(sin(2θk)). These choices change
for each quantum state and the Bobs must not know
them until after all actions and measurements are com-
pleted. Before measuring her selected observable, Al-

ice applies the unitary transformation U †

A,k,~h
, so that

again the global state takes the form of Eq. (1) (with
the generic angle θk). To do this, she must wait for
Bob1, · · · ,Bobk−1 to measure their half of the state and

to send her their history ~h of outcomes. However, she is
careful to measure her state outside of the light cone of
Bobk’s basis choice, otherwise the estimation of the Bell
quantity would be affected by the locality loophole [46].

By correlating their outcomes on multiple statistical
repetition of this test, Alice and Bobk can compute the
quantity

Ik = βk

〈

B(0)
〉

+
〈

A
(0)
k B(0)

〉

+
〈

A
(0)
k B

(1)
k

〉

+
〈

A
(1)
k B(0)

〉

−
〈

A
(1)
k B

(1)
k

〉

,
(5)

where βk = 2 cos(2θk)/
√

1 + sin2(2θk), and the brackets

denote the expectation value. A local-hidden-variables
model would restrict Ik with the CHSH-like Bell inequal-
ity Ik ≤ βk +2, however, quantum theory allows a larger
upper bound [47]:

Imax,k =
√

2(4 + β2
k). (6)

Crucially, observing this maximal value certifies that the
state is the one described by Eq. (1) and the measure-
ments are those of Eqs. (2), (4), with ξk = 0, because
this is the only configuration (up to unitary transforma-
tions) that can reach this upper bound. Moreover, since
〈

B
(1)
k

〉

= 0 on this state, this also certifies that the out-

comes of B
(1)
k are uniformly distributed and private, and

therefore can be used as random bits, the ultimate goal

of this scheme. This is because of the monogamy of en-
tanglement, which is reflected by the fact that the state
(1) is bipartite and pure, and hence cannot be correlated
with any information held by a third party.

The certification does not apply only to the outcomes

of B
(1)
k that are used in the estimation of Ik, but also

to all the other outcomes of the same measurement and
with the same history ~h generated by other entangled
pairs (regardless of Alice’s actions for those pairs). In-
deed, the Bobs’ devices cannot know a priori which step k
will be chosen for each entangled pair, and therefore can-
not apply different strategies to the quantum systems.
Any attempt to cheat is detected in the estimation of Ik,
although only a subset of the outcomes contributes to
said estimation. Similarly, each entangled pair produces
many outcomes, one at each step, and only one of these
contributes to the estimation of the Bell quantity, the one
corresponding to the step k chosen by Alice for this pair.
This does not mean that the others are useless: after suf-
ficiently many runs of the experiment, all the steps and
all the possible histories undergo the certification and the
randomness of all these outcomes is validated.

As previously mentioned, Alice requires to know the

history ~h of Bob1, · · · ,Bobk−1’s outcomes to apply

U†

A,k,~h
. This is an important limitation to the practi-

cality of this scheme. Indeed, the Bobs need a fast com-
munication channel to send their outcomes to Alice just
after they have produced them, so that she can apply the
unitary transformation and measure her state before en-
tering the light cone of Bobk’s basis choice, otherwise she
would open the locality loophole. If this communication
is deceitful or contains error, the amount of certifiable
randomness is reduced because Alice applies the wrong
unitary transformation (but this is a denial of service,
not a security risk).

A probably easier alternative is that Alice randomly
chooses among the 2k−1 possible histories and learns
whether her guess was correct only afterward, without
the need for communication between the measurements.
Whenever her guess is wrong, she and Bobk do not use
their outcomes in the estimation of the Bell quantity, but
none of the bits generated by the Bobs are thrown away:
they will be certified later when Alice guesses correctly.
Just as above, even if the Bobs’ devices are dishonest,
they cannot predict Alice’s chosen history, therefore they
cannot apply different strategies to different entangled
pairs and make those for which Alice’s guess is wrong
less secure. This strategy introduces a larger delay be-
tween the production of the outcomes and their certifi-
cation, because many more runs are needed to achieve
the necessary statistics. Yet, it does not decrease the
randomness generation rate, because once the certifica-
tion is done, it applies to all outcomes, not only to the
few that were generated when Alice guessed right. The
net generation rate is still reduced because Alice spends
randomness in the choice of history, but this cost can be
lessened using an unbalanced distribution.
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Like in event-ready Bell tests [8], discarding out-
comes from the certification does not open any loop-
hole [46]. Indeed, the application of the random trans-

formation U †

A,k,~h
followed by one of the two measure-

ments A
(0)
k or A

(1)
k , can be interpreted as a measure-

ment randomly chosen between 2k different observables

(defined as U
A,k,~h

A
(0)
k U†

A,k,~h
and U

A,k,~h
A

(1)
k U †

A,k,~h
with

the 2k−1 possible choices of ~h). The actual history of
outcomes provided to Bob1, · · · ,Bobk−1 by their devices
plays the role of a description of the prepared entan-
gled state shared between Alice and Bobk, given by
∣

∣

∣
ψ
k,~h

〉

= U
A,k,~h

⊗ 11B(cos(θk) |00〉+ sin(θk) |11〉). There-
fore, this scenario can be seen as a Bell test where Alice
can choose between 2k observables and Bobk can choose
between two observables, corresponding to 2k−1 Bell in-

equalities. Depending on the prepared state
∣

∣

∣
ψ
k,~h

〉

, only

one of the 2k−1 Bell inequalities is optimally violated and
used to certify the randomness of the outcomes. Hence,
measured data from Alice and Bobk are post-selected ac-

cording to the prepared state
∣

∣

∣
ψ
k,~h

〉

. It is important to

underline that it is always possible for Alice and Bobk’s
to choose their bases outside of the light cones of the
outcomes obtained by Bob1, · · · ,Bobk−1, physically en-
forcing independence between the inputs of the Bell test
and the post-selection. In this way, dishonest devices
cannot influence the outcomes of the test by exploiting
the post-selection.
Finally, regardless of whether she takes a guess or not,

Alice needs to be able to perform an exponentially grow-
ing number of different unitary transformations, which is
a further practical difficulty.

C. Nonmaximal violations

The authors of Ref. [44] also conjecture and numer-
ically verify a relation that bounds the guessing prob-

ability Gk of the outcomes of B
(1)
k with a nonmaximal

violation of the Bell inequality:

Gk ≤ Gmax,k =
1

2
+

√

I2max,k − I2k

2(2− βk)
. (7)

This is important not only because experimental imper-
fections make maximal violations effectively impossible
to observe, but also because the protocol itself requires
ξk > 0 for all but at most the very last step, which means
that Ik = Imax,k would be unattainable even if a perfect
apparatus were used.
This means that after observing Ik, Alice and Bobk can

conclude that the min-entropy of each outcome of B
(1)
k is

Hmin,k = − log2Gmax,k, with Gmax,k calculated as in Eq.
(7). Therefore, at any step k a close-to-maximal violation
of the Bell inequality allows to extract close-to-1 random
bits from each outcome. The outcomes of B(0) do not

contribute to this extraction, but the performance loss
can be minimized by choosing B(1) with high probability.

D. Robustness to imperfections

To account for real-world imperfections, we consider
an initial state described by the density matrix

ρ1 = (1− p− c) |ψ1〉〈ψ1|+p
1

4
+c

|00〉〈00|+ |11〉〈11|
2

, (8)

where we are setting θ1 = π
4 in the definition of |ψ1〉 to

use the best possible state as a starting point. The sec-
ond addend introduces diagonal terms in the ideal den-
sity matrix so that the state becomes depolarized. It
models the mixing of the ideal state with uncorrelated
noise, such as, in the case of a photonics-based experi-
ment, background light, dark counts or accidental coin-
cidences. The third addend induces decoherence in the
state because the extreme antidiagonal terms of the ma-
trix are reduced with respect to the diagonal ones. It
is especially realistic for states produced via SPDC, for
which the indistinguishability between the |00〉 and |11〉
components is the result of precise alignment. Unavoid-
able small inaccuracies generate the classical superposi-
tions described by this addend. This simple model is
convenient because parameters p and c are easy to esti-
mate experimentally. Indeed, they are directly related to
the visibilities VZ and VX of the state:

VZ = Tr(σZ ⊗ σZρ1) = 1− p,

VX = Tr(σX ⊗ σXρ1) = 1− p− c,
(9)

where we are assuming VZ ≥ VX . This is common in
sources of polarization-entangled photon pairs, whose po-
larizing elements define a privileged basis, usually labeled
Z, for which visibility is higher. Visibilities are a straight-
forward characterization technique for such sources, and
allow us to easily calculate p and c and to compare the
experimental results with the theoretical predictions.
By applying the protocol described in Sec. II to the

initial state of Eq. (8), we can evaluate how robust the
results can be to imperfections in the preparation of the
entangled pair. For simplicity, we set c = 0 in this initial
characterization, and we will use the full model compared
to the experimental results in Sec. IV.
In Fig. 2, we show the min-entropyHmin for a sequence

of only two steps, with the last being projective, for sev-
eral values of p. The curves, which show the sum of the
contributions of the two steps, have two kinks and there-
fore can be divided in three regions. In the leftmost one,
the first measurement is too strong to preserve entangle-
ment, therefore Hmin,2 = 0 and only the first step con-
tributes. The opposite happens in the rightmost region,
in which Hmin,1 = 0. The region between the two kinks
is the most interesting, because here both measurement
steps contribute to the production of random bits. For

p < p
(12)
thr ≈ 3.7 ·10−3 the global maximum of the curve is
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achieved inside this region, indicating that a weak mea-
surement is optimal. For instance, for p = 1.4 · 10−3, the
protocol can achieve about 1 bit of min-entropy from the
sum of the two steps, using ξ1 ≈ 0.3, whereas a single
projective measurement would reach only 0.9 bits. As
predicted in Ref. [44], the optimal value of ξ1 is very
close to 0 for nearly ideal states, but grows with the in-

troduction of depolarization. For p > p
(12)
thr , this value

is 0, indicating that the best strategy is to use a single
projective measurement.
We also evaluate the protocol with two weak steps and

a third projective one. From Fig. 3(a), we can see that
p = 1.4 · 10−3 is too large to reach one bit except near
the axes of the graph, i.e. when only two extractions
are meaningful. We numerically verified that with p ≈
3.2·10−4 it is possible to reach one bit with three nonzero
extractions: this means that adding a third step to the
protocol only worsens its robustness to depolarization.
Furthermore, in Fig. 3(b) we also show the value of p
needed to reach two bits (≈ 4.3 · 10−9).
Finally, we investigate whether incrementing the se-

quence of measurements can increase the amount of ex-
tractable randomness. Our analysis considers at most
three steps (the last of which projective) and consists of
a numerical maximization of the achievable min-entropy
over the strength parameters ξ1 and ξ2 for each value of
p. We show the results in Fig. 4, where we highlight
three possible cases with three different colors. In the

rightmost region (cyan), for which p > p
(12)
thr , the maxi-

mal extraction is achievable by setting ξ1 = 0, i.e. with
just one projective measurement. By continuing to the

left we find the interval for which p
(23)
thr < p < p

(12)
thr , where

p
(23)
thr ≈ 1.39 ·10−7 (yellow). Here, the strategy that max-

imizes randomness is to begin with a weak measurement
(ξ1 6= 0), and then stop after a second projective one
(ξ2 = 0). The leftmost region (red) indicates where two
weak extractions plus a projective one outperform the
previous two cases: indeed, the maximal min-entropy is
achievable if ξ1 6= 0 and also ξ2 6= 0. From these results,
we can conclude that longer sequences are only beneficial
for smaller and smaller amounts of depolarization.

III. EXPERIMENTAL METHOD

We verified experimentally whether these weak mea-
surements could violate the Bell inequality strongly
enough to generate randomness.
The source of polarization-entangled photons is a 30

mm long periodically poled potassium titanyl phosphate
(PPKTP) crystal, placed inside a Sagnac interferome-
ter. A continuous-wave laser at 404 nm provides the
pump light, that enters the polarizing beam splitter of
the Sagnac interferometer with a diagonal polarization.
The exiting photons at 808 nm are then collected into two
single-mode fibers and brought to Alice and the Bobs’
measurement sides. Here, a half-wave plate (HWP) and
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FIG. 2. Achievable secure bits from one weak extraction and a
subsequent projective one, for several values of the parameter
p. The two highlighted solid lines are related to the values of p
that allow to reach 1 total secure bit (blue) and for which one
projective measurement starts to outperform the two-steps

protocol (p
(12)
thr , red).
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thr ≈ 3.7 · 10−3 and p

(23)
thr ≈

1.39 · 10−7.

FIG. 5. Scheme of the experimental setup.

a quarter-wave plate are used by both parties to remove
the unitary evolutions due to the fibers and to transform
the state into the desired one

|ψ1〉 =
1√
2
(|HH〉+ |V V 〉), (10)

where the horizontal (|H〉) and vertical (|V 〉) polarization
components correspond to the |0〉 and |1〉 states of the
theoretical protocol. Furthermore, Alice uses a liquid-
crystal retarder (LCR) to fine tune the phase between the
two different polarization components. Since Alice needs
to measure only linear polarizations, her measurement
setup consists of an HWP and a linear polarizer (LP).
The complete scheme of the setup is depicted in Fig. 5.
On the Bobs’ side we used a series of two Mach-

Zehnder interferometers (MZI) that implement the weak
measurements described in the protocol. Each of them is
composed by two polarizing beam displacers (PBD) that
separate and rejoin the horizontal and vertical polariza-
tion components, two small HWPs (one per arm) and a
shared HWP that selects the strength of the measure-
ment. Two more HWPs, one before and one after the
MZI choose the basis for the measurement and apply the

unitary operations U†
B . The small HWP in the H path

has its fast axis horizontal, while the one in the V path
is rotated by π/4. The strength ξ of the measurement is
regulated by setting the shared HWP at π/4− ξ/2.
After the two MZIs, a third projective polarization

measurement is implemented by an HWP and a LP. At
each side, after the evolution of the state, the photons
are collected into a fiber and sent to a single-photon
avalanche diode connected to an 80-ps resolution time
tagger that returns coincidence counts within a ±1-ns
window.
By rotating the HWPs between the interferometers,

we set not only the measurement bases, but also the out-
comes that correspond to the photons that pass through
the only exit of the PBDs that is connected to the rest
of the setup. We can then scan all the different com-
binations of bases and outcomes sequentially, and, for
each of them, record the number of coincident events.
The exposure time is fixed and chosen to gather enough
statistics to obtain small statistical errors (details in Sec.
IV). Then, linear combinations of the coincidence rates
allow us to estimate the expected values in Eq. (5) and
ultimately Ik.
In order to truly observe all outcomes without choosing

them beforehand, as is necessary to produce random bits,
this setup would require a treelike structure on Bob’s
side, which would grow exponentially with the number
of steps. We also note that the violations of the Bell
inequality that we report are affected by several loop-
holes, such as the locality and detection ones [46]. More
profoundly, we do not choose the bases randomly, and
do not record random outcomes from each measurement,
but only expectation values, hence this is not a true Bell
experiment. A faithful implementation of the protocol
should address all these issues. However, our setup allows
the feasibility study of the weak measurements, which is
the focus of this work.

IV. RESULTS

We first characterize the protocol as a function of the
strength parameters, adopting the model of Eq. (8) for
the initial state. After finding the best strength, we
perform longer-exposure experiments with that setting,
like a real implementation of a randomness generator
would do. We choose an exposure time of about 60s
(∼ 2 · 105 detected coincidences) for the long-exposure
tests and about 30s (∼ 105 detected coincidences) for
the variable-strength tests. This makes statistical errors
small enough. We do not consider any finite-statistics
effect in the estimation of the min-entropy. As we can
see from Sec. IID, the protocol is very demanding in
terms of purity of the state and, with our experimental
visibilities, we must stop at two extraction steps, since
we cannot violate the Bell inequality afterward.
Figure 6(a) shows the number of secure bits achievable

from one weak step at different values of ξ1 compared
with the prediction of our model calculated with the ini-
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FIG. 6. Results of the feasibility tests with variable strength.
The continuous line is the model prediction while the dots rep-
resent the experimental data with their standard deviations,
calculated with a Monte Carlo simulation which considers the
Poissonian error on photon counting.

tial visibilities reported in the chart. In Fig. 6(b) we
can see the previous bits summed with the bits extracted
from a subsequent projective step, while Fig. 6(c) shows
the result of a second weak step after a first one with
ξ1 = 0.47.
In order to estimate the quality of our state, we mea-

sure the initial visibilities in bases X = {|D〉 , |A〉} and
Z = {|H〉 , |V 〉} before the experiments. To do this, we

use an half-wave plate and a linear polarizer in front
of the SPAD in the same way that we perform projec-
tive measurements for the protocol. We calculate their
standard deviations via propagation assuming Poissonian
counting errors at the detectors. We report these values
in Fig. 6. From them, we can use Eq. (9) to obtain pa-
rameters p and c, which we insert in the model to predict
the amount of extractable randomness.
We can clearly see that our imperfect preparation

prevents us from generating more than one bit of ran-
domness per entangled pair, and enlarges the region of
strength parameters where we cannot violate the Bell in-
equality at all. Although we can generate some random-
ness at both the first and the second step, we achieve
the best results when one measurement is noninteractive
and the other is projective: Our state is too depolarized
to make the weak measurement useful. Yet, our results
closely follow the theoretical predictions, especially at the
first step. The second interferometer, by introducing fur-
ther imperfections in the measurement, makes our data
slightly separate from the solid line, as seen in Fig. 6(c).
Table I shows the results of the long-exposure feasibil-

ity tests compared with the model prediction. We choose
a strength ξ1 = 0.4 when the next step is projective,
while we choose ξ1 = 0.47 and ξ1 = 0.52 in order to
perform a second nonprojective step with ξ2 = 0.1. The
two rightmost columns show the min-entropy predicted
by the model and measured experimentally: Our results
are slightly below the predictions, probably because of
systematic misalignments in the optical setup.
Albeit not shown in the table, we also add a third

projective step after the second weak one, but the corre-
lations between Alice and Bob3’s results are not strong
enough to violate the CHSH-like inequality, and hence
provide Hmin,3 = 0. We attribute this to the visibili-
ties of the state we produced, which do not allow more
than two extractions of randomness, as predicted by our
analysis.

V. CONCLUSIONS

In this work, we have studied the feasibility of using se-
quential weak measurements to extract more randomness
from entangled pairs. We have evaluated the protocol
of Ref. [44] and focused on its robustness to imperfec-
tions in the preparation of the initial quantum state. Our
analysis shows that even small amounts of depolarization
nullify the performance gain (in terms of produced ran-
dom bits per entangled pair) offered by the addition of
a new measurement in the sequence, and the longer the
sequence, the closer to ideal the state has to be in order
to fully exploit all measurements. For instance, a second

step is useful only for p < p
(12)
thr ≈ 3.7 · 10−3 and a third

for p < p
(23)
thr ≈ 1.39 · 10−7.

Our experiment fully confirms the validity of this pro-
tocol and of the model summarized by Eq. (8), which
includes most of the inaccuracies of our setup, as can
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TABLE I. Results of the long-exposure feasibility tests. Standard deviations are calculated with a Monte Carlo simulation
which considers the Poissonian error on photon counting.

Strength Hmin,k (Model) Hmin,k (Experiment)
Step k Previous outcome (rad) (bits) (bits)

1 Not applicable 0.4 0.165 0.13± 0.002
2 0 Projective 0.263 0.38± 0.04
2 1 Projective 0.263 0.13± 0.02

1 Not applicable 0.47 0.085 0.057± 0.002
2 0 0.1 0.303 0.32± 0.02
2 1 0.1 0.303 0.25± 0.02

1 Not applicable 0.52 0.035 0.005± 0.001
2 0 0.1 0.369 0.38± 0.02
2 1 0.1 0.369 0.33± 0.01

be seen by the resemblance between the data points and
theoretical predictions in Fig. 6. Moreover, it produces
correlations that would allow to extract up to approxi-
mately 0.6 bits of randomness from two sequential steps
[Fig. 6(b)]. Yet, it further highlights the challenges in
applying this protocol and even just in the preparation
of an accurate enough entangled state. Although there
are reports of better visibilities [48], the unavoidable im-
perfections of bulk optical components make it difficult

to reduce the value of p much below p
(12)
thr .

However, a simple model such as ours indicates the
minimum quality of the initial entangled state required
to make the sequential protocol useful. Through it, other
experimental platforms could be investigated. Integrated
optics can offer polarizing beam splitters with compara-
ble extinction ratio [49–51], and although entanglement
sources do not yet reach the same visibilities, their qual-
ity [52] and capabilities [53] are developing quickly. In the
field of quantum computing, two-qubit gates with fideli-
ties well above 99% have been demonstrated [54, 55], and
perhaps, with some more improvements, the same tech-

nologies could be used to produce entangled states of the
necessary quality for protocols like this. Alternatively,
similar schemes that are more robust to noise could be
considered. For instance, the protocol of Ref. [56] uses a
weak measurement followed by a three-outcome POVM.
Albeit limited to only two steps, it can overcome the
bound of two bits generated from one-half of an entan-
gled pair, even in experimentally viable noise conditions.
Techniques like this will probably allow sequential weak
measurements to improve the performance of randomness
extraction with presently available optical components.
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