
This is a repository copy of Implementation of Reduced Precision Integer Epigenetic
Networks in Hardware.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/182150/

Version: Published Version

Proceedings Paper:
Walter, Andrew, Bale, Simon Jonathan and Tyrrell, Andy orcid.org/0000-0002-8533-2404
(2021) Implementation of Reduced Precision Integer Epigenetic Networks in Hardware. In:
IEEE International Conference on Evolvable Systems. IEEE , Orlando

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Implementation of Reduced Precision Integer
Epigenetic Networks in Hardware

Dr. Andrew Walter
Department of Computer Science

University of York

York, UK

 andrew.walter@york.ac.uk

Dr Simon Bale
Department of Electronic Engineering

University of York

York, UK

simon.bale@york.ac.uk

Prof Andy Tyrrell
Department of Electronic Engineering

University of York

York, UK

andy.tyrrell@york.ac.uk

Abstract—This paper details the development of a resource

efficient implementation of the Artificial Epigenetic Network

(AEN) concept, based on reduced precision integer

mathematics, and the translation of this implementation into

hardware via a Field Programmable Gate Array (FPGA) to

provide improvements in resource utilisation and execution

speed while not sacrificing the unique benefits provided by the

epigenetic mechanism. Validation of the implementation’s
performance on the inverted pendulum task is obtained and

compared to that of previous AENs, as well as experiments to

determine how far the precision of the network may be reduced

while still maintaining an acceptable degree of performance.

Keywords—Artificial Epigenetic Networks, Field

Programable Gate Array, Reduced Precision Computation,

Digital Hardware.

I. INTRODUCTION

As with many bio-inspired computing concepts, Artificial
Epigenetic Networks (AENs), devised by Dr. Alex Turner,
seeks to leverage the strengths of biological mechanisms such
as adaptability and resilience to dynamic change [1] for
engineering applications. However, the original AEN
architecture is very computationally intensive to implement
due to a number of factors such as its utilisation of floating-
point mathematics and modelling of biologically accurate
elements that are unnecessary and computationally inefficient
[2]. This paper described a more resource efficient version of
the AEN concept, based on reduced precision integer
mathematics and the streamlining of the original biological
model, while keeping the fundamental bio-inspired
advantages of the original AEN. Furthermore, this paper also
details a hardware implementation of this kind of AEN on a
Field Programable Gate Array (FPGA), intended to bring
additional resource utilisation improvements and further
expand possible use cases.

II. ARTIFICAL EPIGENETIC NETWORKS

The AEN expands upon the concepts of Artificial Gene
Regulatory Networks (AGRNs): a computational paradigm
inspired by the mechanisms that control the expression or
suppression of genes within a biological genome [3]. The first
iteration, referred to as Artificial Epigenetic Regulatory
Networks (AERNs), simply added a series of Boolean
switches to the genes in a normal AGRN. When active, these
switches suppressed the activity of their associated genes,
altering the behaviour of the network, as illustrated in Fig 1.

Fig. 1. An AERN with epigenetic switch inactive, top, and active, bottom.

Note how the activation of the epigenetic mechanism, and hence

suppression of the genes, dramatically changes the characteristics of

the network.

Full AENs replace the Boolean switches with
computational elements similar to the genes themselves,
effectively allowing the network to alter its own structure in
response to varying stimuli by suppressing the activity of
different parts of itself. The original work carried out by
Turner demonstrated that this topological self-modification
allowed AENs to outperform their AGRN counterparts in
various control tasks, specifically: navigating a Chirikov’s
standard map; controlling single and multiple coupled
inverted pendulums; and the control of transfer orbits in
gravitational systems [4].

A. Shortcommings of the Original Networks

As indicated in the introduction to this paper, the original
AEN architecture is computationally intensive, which limits
its potential applications and makes the process of creating a
dedicated hardware implementation more difficult. This
computational overhead comes from two factors: first, the use
of high precision floating point mathematics as the basis for
network; and second the modelling of various elements that,
while biologically accurate, bring either no benefit to the
network’s computational abilities, or are an active detriment
to its efficacy. To address these issues, a new version of the
AEN was designed that streamlined the network model and
reduced computational overhead by switching to an integer
mathematics based approach. This switch also allowed for the
easy employment of reduced precision in the network’s
calculations, bringing further improvements.

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

III. ARCHITECTURAL ALTERATIONS

Starting with the changes to the architecture of the
network, there are three elements to the original AEN model
that are biological accurate but computationally unnecessary.

A. Removal of Gene to Protein Transcription

In biological systems, the genome stores information
which is then used to create proteins that perform useful work.
The original AENs replicated with mechanism, having a gene
network that was then translated at each time step into a so-
called protein network to actually perform computations, with
the translation process being controlled by the epigenetic
elements, referred to as Epigenetic Molecules or just
Molecules. The pseudo-code below illustrates this process.

for number of epigenetic molecules

Execute epigenetic molecule

for number of genes

if gene is suppressed by molecule

mark gene

clear the current protein network

for number of genes

if gene is not marked

Copy to the protein network

for number of genes in protein network

Execute gene

Copy state back to gene network

 This not only introduces additional steps that must be

performed each time the network operates, but it increases the

storage needs by requiring two versions to the network in

memory. The new version of the architecture presented here

replaces this with a simple Boolean flag within each gene.

When the epigenetic molecules update the activity of the

genes, these flags are altered accordingly (TRUE, active, by

default; FALSE, inactive, if set by a molecule). When the

genes are executed, only those whose flags are set TRUE

have their expressions updated. In addition, only active genes

will have their outputs used as part of the weighted sum of

other active genes. The pseudo-code below illustrates this

new process.

set all genes flags to TRUE

for number of epigenetic molecules

Execute epigenetic molecule

for number of genes

if gene is suppressed by molecule

set gene flag FALSE

for number of genes

if gene flag is TRUE

Execute gene

B. Switching to Input Applied Weights

Rather than the traditional approach of having each

processing element (gene, neuron etc) have a different set of

weights that are applied to their inputs, the original AENs

employed a system where all connections drawn from a

particular gene would have the same weight, regardless of

which genes they were serving as inputs for, by applying the

weights at the output of each gene. While this does reduce the

complexity of the network, as well as the evolutionary

processes, it is an uncommon approach that limits the

potential functionality of the network; for example, two

different genes, all other things being equal, cannot react to

the actions of a third in different ways. With this in mind, a

new multiple weight system was implemented, although it

does come with a problem of its own: as the number of

connections each gene possesses changes, both during the

evolutionary process and execution, the number of weights

also changes. Therefore each gene holds a number of weights

equal to the maximum number of possible connections it

could have (conveniently equal to the number genes plus the

number of inputs). These weights are treated as being directly

mapped to a particular possible connection, so when gene A

uses gene B as an input, it uses weight B.

C. Introduction of Dedicated Input/Output Elements

Finally, instead of possessing dedicated input/output

elements as part of the network architecture, the original

AENs instead mapped inputs/outputs to genes within the

network at run time. Each gene possesses an input and output

number, which functioned as location values within two

separate 1-dimentional regions. Each of these regions was

then divided up into partitions, one for each input, or output,

with any space left over being ignored. In a correctly

functioning network, each Input/Output region would

therefore have at least one gene within it, although this is not

always the case as Fig 2 illistrates.

Fig. 2. The input and output spaces of an example network. This network

has 7 genes, 3 inputs and 1 output. Note the difference in gene position

between the two regions, as well as the fact the input 3 has no gene

mapped to it at this time. Figure taken from [5].

 With outputs, the output value of the first translated gene

within the partition is used and fed out of the network. The

method for inputs is a little more complex, as the external

input value replaces the expression of the first translated gene

within the partition. In effect, this injects the input value into

the normal network space at the location of the replaced gene.

This system has been replaced with a set of dedicated

Input/Output elements, with inputs connecting to genes

throughout the network as if they were other genes; and

outputs taking the value of the first active gene they are

connected to. This new system ensures there is no reduction

in the network’s capacity due to the re-tasking of genes as

inputs. Additionally, it also allows for more of the network’s
functionality to be encapsulated with discreet units (the

Input/Output elements), rather than relying on an overall

algorithm, a feature that becomes more relevant during the

translation to hardware.

IV. TRANSLATION TO INTERGER MATHEMATICS

Turning now to the switch from floating-point based
networks to integer-based ones. The benefits of this are
twofold: firstly, integer values, and their corresponding
mathematical operations, are significantly easier to implement
in digital hardware. Field Programmable Gate Array (FPGA)
manufacturers do produce various IP cores intended to
streamline the use of floating-point maths, such as the Xilinx
LogiCORE Floating-Point Operator [6] however, using these
increases the hardware footprint of the network, which goes
against the ethos of reducing resource utilisation.

This leads to the second reason for switching to an integer
network: ease of reducing the network’s data width. In the
same way that integer mathematics consume less resources
than its floating-point counterpart, the smaller the bit width of
the values used, the less resources that are required to utilise
them; not just in terms of computational elements, like adders
and multipliers, but also with more basic components such as
registers, and even the connections between components.

Consider two networks, one with 64-bit values, the other
8 bits, implemented on a Xilinx series 7 FPGA. From Xilinx’s
documentation, each Configurable Logic Block (CLB) in a
series 7 has: 8 6-input Look Up Tables; 16 1-bit Flip-Flops; 2
Carry Chains; 256 bits of Distributed RAM, for data storage;
and 128 bits of Shift Registers [7]. If the networks required
something as simple as two signals to undergo a bitwise AND
operation, the 8-bit network would fit the required hardware
with a single CLB. The 64-bit network on the other hand
would not only need multiple CLBs, but also the additional
complexity of the routing elements that connect the CLBs
together. The same problem exists with memory: if the two
networks each have, say, 4 inputs and 4 genes; then each gene
requires 12 parameter values (identification, proximity, slope,
offset and 8 weights). In this 8-bit network, this is a total of
96-bits of memory, once again able to fit within the resources
provided by a single CLB. The 64-bit network requires 768-
bits of memory, equal to the RAM of 3 CLBs.

A. Data Width Calculation

While some components of the network’s algorithm can
remain unchanged, as they function without difficulty when
remapped from floating-point to integer, an issue arises with
the activation function within the genes/epigenetic molecules. 𝑦 = 11 + 𝑒−𝑠𝑥−𝑜 (1)

Equation 1 shows this activation function, a basic sigmoid,
where y is the output of the gene; x is the weighted sum of
inputs; and s and o are adjustment parameters referred to as
the slope and offset respectively. With the floating-point
networks, all the parameters, with the exception of the slope,
are in the range -1.0 to +1.0 (the slope range is ±20.0) [4]. this
means that for any given gene:

• A weighted input can never exceed ±1.0.

• The sum of weighted inputs can never exceed ±n,
where n = maximum number of inputs a gene could
have.

• The sigmoid exponent can never be exceed ±40.0n.

 Therefore, if a network was implemented with 64-bit
floating-point values, which have a range of ±1.7*10308, a
gene would require more than 4.25*10306 inputs for an

overflow to occur. However, if the parameters of this floating-
point network were directly mapped to a 64-bit integer
network, then overflow could potentially occur when an input
is multiplied by its weight. In order to prevent this, the integer
range will be used to fix the ranges of all parameters, while
increased bit widths will be calculated for the weighted inputs,
the weighted sum and the sigmoid exponent. 𝑃𝑟𝑎𝑛𝑔𝑒 = ±(2𝑛−1) − 1 (2) 𝑊𝐼𝑟𝑎𝑛𝑔𝑒 = ±𝑃𝑟𝑎𝑛𝑔𝑒2 (3) 𝑆𝑢𝑚𝑟𝑎𝑛𝑔𝑒 = ±𝑁(𝑊𝐼𝑟𝑎𝑛𝑔𝑒) (4) 𝑆𝑖𝑔𝑃𝑜𝑤𝑟𝑎𝑛𝑔𝑒 = ± (20(𝑃𝑟𝑎𝑛𝑔𝑒)) (𝑆𝑢𝑚𝑟𝑎𝑛𝑔𝑒 ± 𝑃𝑟𝑎𝑛𝑔𝑒)(5)

Equations 2 through 5 detail the range calculation process.
Starting with equation 2 which restates that the range for most
network parameters (Prange) is defined by the range of values
that can be represented by the bit width of the network (n),
when using the two’s complement representation (. Equation
3 states the range for a weighted input (WIrange) is the basic
parameter range squared, and equation 4 that the weighted
sum range (Sumrange) is that multiplied by the number of
possible inputs (N). This is because the largest absolute value
of the weighted sum of inputs would arise if the largest
possible input and largest possible weight were present at all
possible gene inputs, and as weights and inputs have the same
range, this maximum weighted input range is the square of
their range. Lastly, equation 5 details the range of the sigmoid
power, which is the range of the weighted sum combined with
the ranges for the slope and offset values of the sigmoid.
Taking the example of a 4-bit network with 4 possible inputs
for each gene: the parameters take the range ±7; the weighted
inputs, ±49 (72); the weighted sum of inputs, ±196 (4*72);
and the sigmoid exponent, ±28420 (140*((4*72) ±7)).

This results in the following specifications for the data
widths of an integer network: 𝑃𝑎𝑟𝑎𝑚𝑤𝑖𝑑𝑡ℎ = 𝑛 (6) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑛𝑝𝑢𝑡𝑤𝑖𝑑𝑡ℎ = 2𝑛 (7) 𝑆𝑢𝑚𝑤𝑖𝑑𝑡ℎ = 3𝑛 (8) 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑃𝑜𝑤𝑒𝑟𝑤𝑖𝑑𝑡ℎ = 6𝑛 (9)

Equation 6 restates that the network parameters are of the
base data width n bits; 7 that the weighted inputs will need 2n
bits, as a multiplication operation occurs which doubles to
width requirement. Equation 8 states that the sum of inputs
needs 3n bits, to allow for the range increase caused by the
cumulative addition; and finally 9 states that the sigmoid
power needs 6n bits, or 2(3n), as another multiplication
occurs.

B. Sigmoid Function

The other alteration required for a switch to integer
mathematics is to the sigmoid activation function itself, as any
exponent of e outside the range ±1.0 will not work, and
translating the integer to an acceptable value beforehand
would still require the e exponent element to be computed,
which brings with it significant hardware requirements
(Xilinx’s recommendation is to employ the Floating-Point
Operator that was mentioned previously [6], which would
very much defeat the purpose of the switch to integer). It is
possible however, to construct an integer version of the
sigmoid by using a Look Up Table (LUT). There is a design

consideration with LUTs, which is the number of entries they
hold. While a trivial function, like a two input AND gate, can
be fully described with only 4 entries; something like the
sigmoid function has the potential to be much too large to use
this simplistic approach. For example, the 4-bit network used
as an example in previously would need at 56841 entries in its
lookup table in order to fully map each possible input to its
outputs. Recalling the FPGA CLB specifications at the start of
this section shows that while this wouldn’t fit into the 256 bits
of distributed RAM available, let alone accommodate the
other parameters required.

Fig. 3. Plot of the sigmoid activation function for a floating point network,

with an input range of ±40. The upper and lower lines show where the

sigmoid output levels off at 1.0 and 0.0 respectively.

Fortunately, the sigmoid function itself provides a simple
method of reducing the LUT requirements significantly.
Figure 3 is a plot of the sigmoid activation function for a
floating point network, where the possible inputs to the
sigmoid fall into the range ±40. Looking at this figure it is
clear to see that a significant number of possible inputs result
in outputs of ether 0.0 or 1.0, with the region of interest
actually only being between -10.0 and +10.0. This means that
when creating the integer LUTs, possible entries that
correspond to outputs of 0 or +2n-1 can be removed from the
table can handled with trivial if statements. Returning again to
the 4-bit network example, this method reduces the 56841
entry lookup table to only 4202 entries.

Fig. 4. Plot of the sigmoid activation function for a 4-bit network with

maximum and minimum output values removed.

Figure 4 illustrates the “sigmoid” described by such a 4202
entry LUT, which shows another possible route to further
reducing its size. Each possible output of the LUT corresponds
to multiple input values, so instead of having one entry per
input value, the LUT can be reduced to one per possible output
value, with external logic to determine which entry an input
corresponds to (input < A then output = entry A). Switching
to this implementation allows the 4-bit network previously
described to have a lookup table of only 6 elements. This
equates to a LUT with a total of 24 bits, meaning it fits into
the 256 bits of distributed RAM that the CLBs detailed in
section 4.3.

V. HARDWARE IMPLEMENTATION

With an integer and lookup table based version of an
Artificial Epigenetic Network (AEN) already created in
software, the translation to hardware requires only that the
existing architecture be rebuilt. This was done on a Xilinx
Field Programmable Gate Array (FPGA) in Very high-speed
integrated circuit Hardware Description Language (VHDL).
There are two important properties that the completed
hardware network must possess: paramarisability, meaning
that properties such as the network’s data width, or the number
of network elements can be changed easily; and
parallelisation, meaning that, unlike the sequential execution
of the software networks, the hardware network will execute
the epigenetic molecules, genes and outputs of the network all
at once, greatly improving time performance.

With these requirements in mind, the hardware network
consists of a number of discrete units that can be assembled as
required to produce a complete network; along with a
controller to handle parameter loading and connections to
external systems. In this work, the controller consisted of an
ARM Cortex A9 processor [8] with a custom generated AXI-
Lite peripheral [9], which allowed the hardware networks

various configuration and control signals, as well as its inputs
and outputs, to be easily connected to a PC for
experimentation purposes.

A. Input Elements

Fig. 5. Block diagram of an n-bit input element, with input value and

parameter storage, as well as control logic.

The input elements, shown in figure 5, are the simplest part
of the network. They consist of two storage elements, one for
the actual input value; and the other for their Ident, effectively
their location within the network and required for the
network’s interconnection system. Both these storage
elements are simple n-bit synchronous registers (the CLK is
not shown for simplicity), with a small amount of additional
logic to ensure correct loading of data. Lastly is the enable
logic component, which takes the external enable signal and
carries it through to one of the two storage elements depending
on the mode of the network and the value of the parameter
selection bus. The network mode is a simple signal, with a
value of 0 specifying that the network is to execute normal
behaviour (taking in inputs and computing outputs); while a
value of 1 corresponds to the network being in configuration
mode, during which parameters, like the input elements
identification, are loaded.

B. Gene Elements

The gene elements can be broken up into four components
for ease of understanding: parameter storage, weighted sum
calculation, LUT address calculation, and output generation.

Fig. 6. Block diagram of the parameter storage section of an n-bit gene

element with m possible inputs

The parameter storage section, shown in figure 6, is quite
similar to the input units, but with a few key differences. First,
the presence of more than one parameter storage element
necessitates the use of a selection unit, which routes the
parameter input through to the one of the storage elements,

depending on the value of the parameter select input. This
signal, which also now has an effect on the enable logic due
to the multiple storage array enables, acts as an address,
specifying which of the parameters is to be loaded. A similar
function is performed by the weight select signal for the
weight storage array. Given that each gene requires multiple
weights, one for each possible connection it can form with
both other genes and the input units, the parameter select alone
is insufficient to address each storage element. Instead, the
parameter select routes the parameter input and enable signals
through to an array of storage elements, which have their own
additional layer of logic mirroring those above. This layer uses
the weight select signal to pass the parameter input and enable
signals through to one of the storage elements. The weight
select bus uses a simple numerical value, much like an
addressable memory. While the number of weights, and thus
the size of the weight storage array is parameterisable, the
weight select bus is a fixed 8 bits, due to its requirement to
connect to external components. This still allows for each
gene to have a total of 256 possible inputs, which is more than
sufficient.

Fig. 7. Block diagram of the weighted sum calculation section of an n-bit

gene element.

The weighted sum calculation section, shown in figure 7,
primarily consists of a multiply-accumulate unit (MAC), and
a pair of selectors which step though the array of input and
weight values. Not shown is the controller for this section,
which consists of a small finite state machine (FSM), simply
runs the MAC for a number of cycles equal to the number of
input/weight pairs, then sends an enable signal to the next
stage of the gene’s logic.

Fig. 8. Block diagram of the LUT address calculation section of an n-bit

gene element.

The LUT address calculation section, shown in figure 8,
consists of the logic to calculate the power value from the
weighted sum, slope and offset values (the slope is multiplied
by 20 at this point to reduce storage space), as shown in
equation 1. The power value is then used to produce the
address for the LUT, by applying the process detailed in
section 3B. The resulting address is then passed to the final
section.

Fig. 9. Block diagram of the LUT and output storage for an n-bit gene

element.

The LUT is a section of memory that stores the integer
version of the sigmoid, like that shown in figure 4, though a
different version is needed depending on the bit-width of the
network. The output of the LUT is stored in the register, when
enabled by the FSM. The final element is a multiplexer, which
is controlled by the unit expression signal. When a gene is
suppressed by an epigenetic molecule, this replaces its output
with a value of 0, preventing it from having an impact on the
network. Note that the enable signal for a suppressed gene is
also suppressed, which prevents it from executing its
calculation logic.

C. Epigenetic Molecules

As epigenetic molecules follow the same process for
generating their output values from their inputs as genes, their
hardware version is identical to that detailed in the previous
section. There is one small difference, that being that
epigenetic molecules do not have the output multiplexer or
enable suppression logic.

D. Gene/Molecule Wrappers

It should be noted that the description in the previous two
sections made no reference to the mechanism for connecting
genes/molecules together. That is because this function is
separated from the genes/molecules themselves and placed
within a pair of wrappers.

Fig. 10. Block diagram of the parameter storage section of an n-bit gene

wrapper.

Fig. 11. Block diagram of the parameter storage section of an n-bit

epigenetic molecule wrapper.

The parameter storage section of the gene and molecule
wrappers, shown in figures 10 and 11 respectively, are
comparable to their counterparts within the genes and
molecules themselves, shown in figure 6. Other than storing
different values, the only other difference of note is that the
parameter selector includes the ability to pass a parameter
value onwards, into the storage component of gene or
molecule contained in the wrapper.

Fig. 12. Block diagram of the input selection section of an n-bit gene or

epigenetic molecule wrapper.

The second part of the gene and molecules wrappers is the
input selector, shown in figure 12. This is the same for both
kinds of wrapper and uses a system of location and ranges to
determine if a particular network element should be an input
to the wrapped component. The Ident value, also appearing in
input elements, is the location within the network; while the
Proximity is the “distance” that an element should look for
other elements to connect to. Note that a molecule’s’ wrapper
has two different proximities, one for inputs and the other for
outputs. The output proximity will be addressed later. These
two values are used along with the Idents of the other network
elements to create a mask, which specifies whether or not a
given element is “close enough” to the wrapped element to be
an input. This mask is then applied to the bus of possible
inputs from all network elements. Any from units outside the
wrapper’s range are zeroed, while those in range passed
through to the gene or molecule within the wrapper to serve
as its inputs.

E. Gene Expression Controller

Each molecule has an associated gene expression
controller, which functions similarly to the input selection
section shown in figure 12, though with a few key differences.
Instead of input proximity, it uses the wrapper’s output
proximity; while the Ident is replaced with the output of the
epigenetic molecule; and instead of possible inputs, the Idents
taken in by the mask generator are those of the network’s gene
elements. The resulting mask now specifies whether a given
gene is in range of a given molecule, and hence should have
its activity supressed.

F. Output Elements

Fig. 13. Block diagram of the storage section of an n-bit output element.

Fig. 14. Block diagram of the output value selection section of an n-bit

output element.

The final network components are the output elements,
which consist of a storage section, shown in figure 13, and an
output value selection section, shown in figure 14. The storage
section is comparable to those of other elements, while the
output value selector functions akin to the input value selector
shown in figure 12. The only differences are that, like the
expression controller in the previous section, only gene
elements are considered; and instead of multiple values being
chosen by the mask, only one is. This mask chosen value is
then passed to the output storage register. The last element to
note is the delay, which holds back the register’s enable signal
to ensure that the output selection process is complete.

VI. PRECISION REDUCTION

With a network now available to perform experiments
with, it is possible to look at the effects of reducing the bit
width of the networks. More specifically, the goal is to
identify how low the bit width can be made without it
negatively impacting the performance of the network.

A. Experiment Design

As it is already a task that has been proven to be solvable
by the existing AENs, this experiment will use the inverted
pendulum, specifically the implementation designed by
Hamann et al [10], illustrated in Fig. 15. The Hamann inverted
pendulum, intended as a benchmark for robotic control
research, models the behaviour of an inverted pendulum on a
cart that is able to move in 1 dimension. The model is
implemented using the Runge-Kutta method of the 3rd order
[11], while feedback on the status of the pendulum and cart
are provided by simulated sensors that only monitor part of the
model, instead of providing absolute measurements of factors
like pendulum angle and velocity. In addition, the outputs of
these sensors (as well as the control signals for the model’s
actuators) are low resolution, mapping all values to the range
[0, 127].

Fig. 15. A cart and pendulum from the Hamann model, illustrating the

“positions” of the various simulated sensors, taken from [10].

The fitness function for the Hamann model returns a value
is proportional to the number of simulation time steps that the
pendulum spent in the upright position, as is described in
equation 10. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ |θ(𝑡)− 𝜋|𝑡𝑚𝑎𝑥𝜋𝑡𝑚𝑎𝑥𝑡=0 (10)

t is the current time step, tmax is the maximum run time of
the simulation, and θ(𝑡) is the angle off vertical at the given
time step. A fitness higher than 0.75 is considered to denote a
run in which the pendulum is being maintained in the upright
position satisfactorily.

Design and optimization of the epigenetic network was
done with hardware in-loop utilising a simple genetic
algorithm (GA). The GA employed rank-based selection with
elitism of the top 12.5% (1/8th) of the population, uniform
crossover and random replacement mutation. The other
experimental parameters are given in table 1.

TABLE I. PARAMETERS FOR BIT WIDTH EXPERIMENTS

Parameter Value

Population Size 64

Number of Generations 2048

Number of Repeats 50

Crossover Rate 0.5

Mutation Rate 0.05

Number of Genes 20

Number of Epigenetic Molecules 3

 This process will be repeated for all data widths between
4 and 32 bits. Ideally, this range would go up to 52 bits, so as
to be equivalent to the mantissa width of a 64 bit floating-point
value, but this limitation is imposed by the 32 bit width of the
AXI-Lite bus [9]. Any data width lower than 4 is considered
too small to be worth testing, as due to the network’s
interconnection mechanism previous discussed, it would
result in all the elements of the network being connected
together in one large mass.

B. Results

Fig. 16. Fitnesses of the best integer epigenetic networks from each repeat,

with data widths in the 4- to 18-bit range. The blue line at 0.75 denotes the

fitness at which the networks are able to maintain the pendulum in the upright

equilibrium position.

Fig. 17. Fitnesses of the best integer epigenetic networks from each repeat,

with data widths in the 19- to 32-bit range.

The results of the data width evolutions are shown in
figures 16 and 17. 4-bit networks are able to exceed the 0.75
fitness threshold, but most fall short, with a median fitness of
0.71. Networks with data widths between 5 and 20-bits all
exhibit similar results to each another, with most networks
achieving a fitness greater than 0.75. However, unexpected
behaviour occurs with the networks with data widths beyond
this point. Given that the floating-point networks have a data
width of 64 bits, it should be expected that the fitness values
would slowly increase as the data widths got closer to this
value, but instead a decline begins at 21-bits. By 23-bits the
median value is below 0.75, and by 27-bits even outliers are
unable to exceed this fitness.

Figure 18 clears up this mystery however, showing the
changing maximum fitness of an 8-bit and 32-bit network over
4000 generations. This suggests that the increase in data width
comes with an increase in the search space of possible network
configurations, and thus that given sufficient generations the
higher bit width networks will reach fitness values eqivalent
to those that the smaller width networks. More importantly
however, the result of these experiments give a clear picture:
reducing the width of the integer networks even to as low as
5-bits can still produce viable controllers.

Fig. 18. Time evolution plot, showing fitness over 4000 generations: the blue

line is an 8-bit network; the orange a 32-bit network; and the yellow line is

the 0.75 fitness threshold.

VII. COMPARISON WITH ORIGINAL NETWORKS

The final step is to compare the networks described in this

paper with their original counterparts. Looking at the

performance of the inverted pendulum task, a number of

networks were evolved using the same parameters as

Turner’s original experiments [4], while using integer

hardware architecture described in this paper. Table 2 shows

the parameters of this experiment.

TABLE II. PARAMETERS FOR BIT WIDTH EXPERIMENTS

Parameter Value

Population Size 500

Number of Generations 200

Number of Repeats 50

Crossover Rate 0.5

Mutation Rate 0.05

Bit Width 8

Number of Genes 12

Number of Epigenetic Molecules 3

Table 3 contains the results of these evolutions, compared

against their 64-bit floating-point networks counterparts.

TABLE III. FITNESS COMPARISIONS

Property
8-bit

Networks

64-bit

Networks

Minimum Fitness 0.83 0.95

25th Percentile Fitness 0.89 0.96

Median Fitness 0.91 0.97

75th Percentile Fitness 0.95 0.98

Interquartile Range 0.06 0.02

Maximum Fitness 0.98 0.98

While the integer networks fall slightly behind their

floating-point counterparts in most of these metrics, they are
able to match them in maximum fitness, 0.98 in both cases.
Given this fact it is reasonable to assert that, although
statistically speaking there is a slight performance reduction;
an 8-bit, integer hardware epigenetic network is able to
achieve a similar performance as a 64-bit, floating point
software version.

VIII. RESOURCE UTALISATION

Having demonstrated that a reduced precision integer
hardware network is able to obtain comparable functional
performance to its floating-point predecessor, it is now
necessary to validate the argument for making the transition.
Table 4 shows the resource utilisation of the various elements
of both a 32-bit network and an 8-bit network. Utilisation is
given as a percentage of the available resources on the FPGA
used in the experiments thus far, a Xilinx ZynQ-7000 [8].

TABLE IV. RESOURCE UTALISATION BY ELEMENT TYPE

 32-bit network 8-bit network

Element Resource No. Percent No. Percent

 LUTs 607 1.14% 272 0.51%

 Registers 40 0.04% 18 0.02%

 DSP

Slices

0 0.00% 0 0.00%

Input F7 Mux. 0 0.00% 0 0.00%

 F8 Mux. 0 0.00% 0 0.00%

 BRAM 0 0.00% 0 0.00%

 LUTs 2643 4.97% 1105 2.08%
 Registers 379 0.36% 278 0.26%

 DSP

Slices

16 7.27% 2 0.91%

Gene F7 Mux. 368 1.38% 62 0.23%

 F8 Mux. 116 0.87% 18 0.14%

 BRAM 32 22.86% 0.5 0.36%

 LUTs 2485 4.67% 965 1.81%

 Registers 386 0.36% 284 0.27%

 DSP

Slices

16 7.27% 2 0.91%

Mole. F7 Mux. 368 1.38% 20 0.08%

 F8 Mux. 116 0.87% 0 0.00%

 BRAM 32 22.86% 0.5 0.36%

 LUTs 377 0.71% 145 0.27%

 Registers 48 0.05% 24 0.02%

 DSP

Slices

0 0.00% 0 0.00%

Output F7 Mux. 0 0.00% 0 0.00%

 F8 Mux. 0 0.00% 0 0.00%

 BRAM 0 0.00% 0 0.00%

 The two largest differences are in the DSP and BRAM
utilization; although this is not surprising, as the DSP
resources are partly responsible for mathematical operations,
along with the LUTs; while the BRAM resources hold the
sigmoid lookup tables. In both these cases, increasing the data
width brings increased demands. Outside these two instances,
the other resources are also used to a greater extent by the 32-
bit network, with the LUT and Multiplexer utilisation almost
doubling. This clearly illustrates the advantage of reducing the
bit width of the network when it comes to reducing silicon
resources. And while there isn’t a hardware floating point
network to compare with as well, the fact that one would need
an even greater data width, as well as specialised
mathematical elements, shows the benefits of making the
switch.

IX. EXECUTION TIMES

Another axis of comparison, and one where a floating-
point network can be looked at, is execution time. The
hardware network is designed to allow for parallel execution,
whereas the both the integer and floating-point software
versions are forced to execute each network element in turn.

TABLE V. AVERAGE EXECUTION TIMES

Network

Type

8-bit

integer

hardware

network

8-bit

integer

software

network

64-bit

integer

software

network

64-bit

floating

point

software

network

Execution

Time

3 µS 26 µS 29 µS 542 µS

Table 5 shows these averaged execution time
measurements, which encapsulates molecule execution; gene
activation state updates; gene execution; and output execution.
Input execution is not included as their execution timings are

primarily dependent on factors external to the network. The
hardware network is an order of magnitude faster than its
software counterparts, which is almost certainly down to the
parallelisation. The two integer software networks have
comparable execution times, indicating that the bit width has
little impact on execution times. However, the floating-point
network is dramatically slower than even the 64-bit integer
network, something that demonstrates the additional
computational complexity brought on by floating point maths.

X. CONCLUSION AND FUTURE WORK

Drawing this work to a close, and taking all the results
presented though out into consideration, it is reasonable to
assert that: by transitioning to a dedicated, integer-based
hardware architecture, it is possible to significantly reduce the
resource requirements of an epigenetic network without
making significant performance sacrifices.

To move forward in this area, it will be necessary to
investigate possible applications where the properties of the
AEN architecture can bring benefits, but there is a need to
keep computation resource usage to a minimum. The author’s
own opinion is that such a use case can within the field of
robotics, as the multi-facetted nature of robotic control
problems would likely benefit from AEN’s ability to divide
the aspects of a task across the different sections of a suitably
designed network.

ACKNOWLEDGMENT

Work in this paper was previously submitted for the award
of PhD in Electronic Engineering at the University of York by
Andrew Walter. Funding for this work was received from the
EPSRC & RAEng.

REFERENCES

[1] A. P. Turner, M. A. Trefzer, M. A. Lones and A. M. Tyrrell, "Evolving

Efficient Solutions to Complex Problems Using the Artificial

Epigenetic Network," Information Processing in Cells and Tissues,

vol. 9303, pp. 153-165, 2015.

[2] A. Walter, Hardware Implementation of Epigenetic Networks, York:

University of York, 2019.

[3] S. Cussat-Blanc, K. Harrington and W. Banzhaf, "Artificial Gene

Regulatory Networks - A Review," Artificial Life, vol. 24, no. 4, pp.

296 - 328, 2018.

[4] A. P. Turner, The Artifical Epigenetic Network, York: University of

York, 2013.

[5] A. P. Turner, M. A. Lones, L. A. Fuente, S. Stepney, L. S. D. Caves

and A. Tyrrell, "The Artifical Epigenetic Network," in IEEE

International Conference on Evolvable Systems, Singapore, 2013.

[6] Xilinx, "LogiCORE IP: Floating-Point Operator," Xilinx, San Jose,

California, 2014.

[7] Xilinx, "7 Series FPGAs Configurable Logic Block User Guide,"

Xilinx, San Jose, California, 2016.

[8] Xilinx, "Zynq-7000 SoC Data Sheet," Xilinx, San Diego, California,

2018.

[9] Xilinx, "Vivado Design Suite - AXI Reference Guide," Xilinx, San

Diego, California , 2017.

[10] H. Hamann, T. Schmickl and K. Crailsheim, "Coupled Inverted

Pendulums: A Benchmark for Evolving Decentral Controllers in

Modular Robotics," in Genetic and Evolutionary Computation

Conference, Dublin, 2011.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,

Numerical Recipes in C++, Cambridge: Cambridge University Press,

2002.

