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Abstract—This paper details the development of a resource 

efficient implementation of the Artificial Epigenetic Network 

(AEN) concept, based on reduced precision integer 

mathematics, and the translation of this implementation into 

hardware via a Field Programmable Gate Array (FPGA) to 

provide improvements in resource utilisation and execution 

speed while not sacrificing the unique benefits provided by the 

epigenetic mechanism. Validation of the implementation’s 
performance on the inverted pendulum task is obtained and 

compared to that of previous AENs, as well as experiments to 

determine how far the precision of the network may be reduced 

while still maintaining an acceptable degree of performance.  

Keywords—Artificial Epigenetic Networks, Field 

Programable Gate Array, Reduced Precision Computation, 
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I. INTRODUCTION

As with many bio-inspired computing concepts, Artificial 
Epigenetic Networks (AENs), devised by Dr. Alex Turner, 
seeks to leverage the strengths of biological mechanisms such 
as adaptability and resilience to dynamic change [1] for 
engineering applications. However, the original AEN 
architecture is very computationally intensive to implement 
due to a number of factors such as its utilisation of floating-
point mathematics and modelling of biologically accurate 
elements that are unnecessary and computationally inefficient 
[2]. This paper described a more resource efficient version of 
the AEN concept, based on reduced precision integer 
mathematics and the streamlining of the original biological 
model, while keeping the fundamental bio-inspired 
advantages of the original AEN. Furthermore, this paper also 
details a hardware implementation of this kind of AEN on a 
Field Programable Gate Array (FPGA), intended to bring 
additional resource utilisation improvements and further 
expand possible use cases.    

II. ARTIFICAL EPIGENETIC NETWORKS

The AEN expands upon the concepts of Artificial Gene 
Regulatory Networks (AGRNs): a computational paradigm 
inspired by the mechanisms that control the expression or 
suppression of genes within a biological genome [3]. The first 
iteration, referred to as Artificial Epigenetic Regulatory 
Networks (AERNs), simply added a series of Boolean 
switches to the genes in a normal AGRN. When active, these 
switches suppressed the activity of their associated genes, 
altering the behaviour of the network, as illustrated in Fig 1. 

Fig. 1. An AERN with epigenetic switch inactive, top, and active, bottom. 

Note how the activation of the epigenetic mechanism, and hence 

suppression of the genes, dramatically changes the characteristics of 

the network. 

Full AENs replace the Boolean switches with 
computational elements similar to the genes themselves, 
effectively allowing the network to alter its own structure in 
response to varying stimuli by suppressing the activity of 
different parts of itself. The original work carried out by 
Turner demonstrated that this topological self-modification 
allowed AENs to outperform their AGRN counterparts in 
various control tasks, specifically: navigating a Chirikov’s 
standard map; controlling single and multiple coupled 
inverted pendulums; and the control of transfer orbits in 
gravitational systems [4]. 

A. Shortcommings of the Original Networks

As indicated in the introduction to this paper, the original
AEN architecture is computationally intensive, which limits 
its potential applications and makes the process of creating a 
dedicated hardware implementation more difficult. This 
computational overhead comes from two factors: first, the use 
of high precision floating point mathematics as the basis for 
network; and second the modelling of various elements that, 
while biologically accurate, bring either no benefit to the 
network’s computational abilities, or are an active detriment 
to its efficacy. To address these issues, a new version of the 
AEN was designed that streamlined the network model and 
reduced computational overhead by switching to an integer 
mathematics based approach. This switch also allowed for the 
easy employment of reduced precision in the network’s 
calculations, bringing further improvements. 
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III. ARCHITECTURAL ALTERATIONS

Starting with the changes to the architecture of the 
network, there are three elements to the original AEN model 
that are biological accurate but computationally unnecessary.  

A. Removal of Gene to Protein Transcription

In biological systems, the genome stores information
which is then used to create proteins that perform useful work. 
The original AENs replicated with mechanism, having a gene 
network that was then translated at each time step into a so-
called protein network to actually perform computations, with 
the translation process being controlled by the epigenetic 
elements, referred to as Epigenetic Molecules or just 
Molecules. The pseudo-code below illustrates this process. 

for number of epigenetic molecules 

Execute epigenetic molecule 

for number of genes 

if gene is suppressed by molecule 

mark gene 

clear the current protein network 

for number of genes 

if gene is not marked 

Copy to the protein network 

for number of genes in protein network 

Execute gene 

Copy state back to gene network 

     This not only introduces additional steps that must be 

performed each time the network operates, but it increases the 

storage needs by requiring two versions to the network in 

memory. The new version of the architecture presented here 

replaces this with a simple Boolean flag within each gene. 

When the epigenetic molecules update the activity of the 

genes, these flags are altered accordingly (TRUE, active, by 

default; FALSE, inactive, if set by a molecule). When the 

genes are executed, only those whose flags are set TRUE 

have their expressions updated. In addition, only active genes 

will have their outputs used as part of the weighted sum of 

other active genes. The pseudo-code below illustrates this 

new process. 

set all genes flags to TRUE 

for number of epigenetic molecules 

Execute epigenetic molecule 

for number of genes 

if gene is suppressed by molecule 

set gene flag FALSE 

for number of genes 

if gene flag is TRUE 

Execute gene 

B. Switching to Input Applied Weights

Rather than the traditional approach of having each

processing element (gene, neuron etc) have a different set of 

weights that are applied to their inputs, the original AENs 

employed a system where all connections drawn from a 

particular gene would have the same weight, regardless of 

which genes they were serving as inputs for, by applying the 

weights at the output of each gene. While this does reduce the 

complexity of the network, as well as the evolutionary 

processes, it is an uncommon approach that limits the 

potential functionality of the network; for example, two 

different genes, all other things being equal, cannot react to 

the actions of a third in different ways. With this in mind, a 

new multiple weight system was implemented, although it 

does come with a problem of its own: as the number of 

connections each gene possesses changes, both during the 

evolutionary process and execution, the number of weights 

also changes. Therefore each gene holds a number of weights 

equal to the maximum number of possible connections it 

could have (conveniently equal to the number genes plus the 

number of inputs). These weights are treated as being directly 

mapped to a particular possible connection, so when gene A 

uses gene B as an input, it uses weight B. 

C. Introduction of Dedicated Input/Output Elements

Finally, instead of possessing dedicated input/output

elements as part of the network architecture, the original 

AENs instead mapped inputs/outputs to genes within the 

network at run time. Each gene possesses an input and output 

number, which functioned as location values within two 

separate 1-dimentional regions. Each of these regions was 

then divided up into partitions, one for each input, or output, 

with any space left over being ignored. In a correctly 

functioning network, each Input/Output region would 

therefore have at least one gene within it, although this is not 

always the case as Fig 2 illistrates. 

Fig. 2. The input and output spaces of an example network. This network 

has 7 genes, 3 inputs and 1 output. Note the difference in gene position 

between the two regions, as well as the fact the input 3 has no gene 

mapped to it at this time. Figure taken from [5]. 

    With outputs, the output value of the first translated gene 

within the partition is used and fed out of the network. The 

method for inputs is a little more complex, as the external 

input value replaces the expression of the first translated gene 

within the partition. In effect, this injects the input value into 

the normal network space at the location of the replaced gene. 

This system has been replaced with a set of dedicated 

Input/Output elements, with inputs connecting to genes 

throughout the network as if they were other genes; and 

outputs taking the value of the first active gene they are 

connected to. This new system ensures there is no reduction 

in the network’s capacity due to the re-tasking of genes as 

inputs. Additionally, it also allows for more of the network’s 
functionality to be encapsulated with discreet units (the 

Input/Output elements), rather than relying on an overall 

algorithm, a feature that becomes more relevant during the 

translation to hardware. 



IV. TRANSLATION TO INTERGER MATHEMATICS 

Turning now to the switch from floating-point based 
networks to integer-based ones. The benefits of this are 
twofold: firstly, integer values, and their corresponding 
mathematical operations, are significantly easier to implement 
in digital hardware. Field Programmable Gate Array (FPGA) 
manufacturers do produce various IP cores intended to 
streamline the use of floating-point maths, such as the Xilinx 
LogiCORE Floating-Point Operator [6] however, using these 
increases the hardware footprint of the network, which goes 
against the ethos of reducing resource utilisation. 

This leads to the second reason for switching to an integer 
network: ease of reducing the network’s data width. In the 
same way that integer mathematics consume less resources 
than its floating-point counterpart, the smaller the bit width of 
the values used, the less resources that are required to utilise 
them; not just in terms of computational elements, like adders 
and multipliers, but also with more basic components such as 
registers, and even the connections between components. 

Consider two networks, one with 64-bit values, the other 
8 bits, implemented on a Xilinx series 7 FPGA. From Xilinx’s 
documentation, each Configurable Logic Block (CLB) in a 
series 7 has: 8 6-input Look Up Tables; 16 1-bit Flip-Flops; 2 
Carry Chains; 256 bits of Distributed RAM, for data storage; 
and 128 bits of Shift Registers [7]. If the networks required 
something as simple as two signals to undergo a bitwise AND 
operation, the 8-bit network would fit the required hardware 
with a single CLB. The 64-bit network on the other hand 
would not only need multiple CLBs, but also the additional 
complexity of the routing elements that connect the CLBs 
together. The same problem exists with memory: if the two 
networks each have, say, 4 inputs and 4 genes; then each gene 
requires 12 parameter values (identification, proximity, slope, 
offset and 8 weights). In this 8-bit network, this is a total of 
96-bits of memory, once again able to fit within the resources 
provided by a single CLB. The 64-bit network requires 768-
bits of memory, equal to the RAM of 3 CLBs. 

A. Data Width Calculation 

While some components of the network’s algorithm can 
remain unchanged, as they function without difficulty when 
remapped from floating-point to integer, an issue arises with 
the activation function within the genes/epigenetic molecules. 𝑦 =  11 +  𝑒−𝑠𝑥−𝑜                                (1) 

Equation 1 shows this activation function, a basic sigmoid, 
where y is the output of the gene; x is the weighted sum of 
inputs; and s and o are adjustment parameters referred to as 
the slope and offset respectively. With the floating-point 
networks, all the parameters, with the exception of the slope, 
are in the range -1.0 to +1.0 (the slope range is ±20.0) [4]. this 
means that for any given gene:  

• A weighted input can never exceed ±1.0. 

• The sum of weighted inputs can never exceed ±n, 
where n = maximum number of inputs a gene could 
have. 

• The sigmoid exponent can never be exceed ±40.0n. 

 Therefore, if a network was implemented with 64-bit 
floating-point values, which have a range of ±1.7*10308, a 
gene would require more than 4.25*10306 inputs for an 

overflow to occur. However, if the parameters of this floating-
point network were directly mapped to a 64-bit integer 
network, then overflow could potentially occur when an input 
is multiplied by its weight. In order to prevent this, the integer 
range will be used to fix the ranges of all parameters, while 
increased bit widths will be calculated for the weighted inputs, 
the weighted sum and the sigmoid exponent. 𝑃𝑟𝑎𝑛𝑔𝑒 =  ±(2𝑛−1) − 1                          (2) 𝑊𝐼𝑟𝑎𝑛𝑔𝑒 =  ±𝑃𝑟𝑎𝑛𝑔𝑒2                              (3) 𝑆𝑢𝑚𝑟𝑎𝑛𝑔𝑒 =  ±𝑁(𝑊𝐼𝑟𝑎𝑛𝑔𝑒)                     (4) 𝑆𝑖𝑔𝑃𝑜𝑤𝑟𝑎𝑛𝑔𝑒 =  ± (20(𝑃𝑟𝑎𝑛𝑔𝑒)) (𝑆𝑢𝑚𝑟𝑎𝑛𝑔𝑒  ±  𝑃𝑟𝑎𝑛𝑔𝑒)(5) 

Equations 2 through 5 detail the range calculation process. 
Starting with equation 2 which restates that the range for most 
network parameters (Prange) is defined by the range of values 
that can be represented by the bit width of the network (n), 
when using the two’s complement representation (. Equation 
3 states the range for a weighted input (WIrange) is the basic 
parameter range squared, and equation 4 that the weighted 
sum range (Sumrange) is that multiplied by the number of 
possible inputs (N). This is because the largest absolute value 
of the weighted sum of inputs would arise if the largest 
possible input and largest possible weight were present at all 
possible gene inputs, and as weights and inputs have the same 
range, this maximum weighted input range is the square of 
their range. Lastly, equation 5 details the range of the sigmoid 
power, which is the range of the weighted sum combined with 
the ranges for the slope and offset values of the sigmoid. 
Taking the example of a 4-bit network with 4 possible inputs 
for each gene: the parameters take the range ±7; the weighted 
inputs, ±49 (72 ); the weighted sum of inputs, ±196 (4*72 ); 
and the sigmoid exponent, ±28420 (140*((4*72 ) ±7)). 

This results in the following specifications for the data 
widths of an integer network: 𝑃𝑎𝑟𝑎𝑚𝑤𝑖𝑑𝑡ℎ = 𝑛                               (6) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑛𝑝𝑢𝑡𝑤𝑖𝑑𝑡ℎ = 2𝑛                    (7) 𝑆𝑢𝑚𝑤𝑖𝑑𝑡ℎ = 3𝑛                               (8) 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑃𝑜𝑤𝑒𝑟𝑤𝑖𝑑𝑡ℎ = 6𝑛                    (9) 

Equation 6 restates that the network parameters are of the 
base data width n bits; 7 that the weighted inputs will need 2n 
bits, as a multiplication operation occurs which doubles to 
width requirement. Equation 8 states that the sum of inputs 
needs 3n bits, to allow for the range increase caused by the 
cumulative addition; and finally 9 states that the sigmoid 
power needs 6n bits, or 2(3n), as another multiplication 
occurs. 

B. Sigmoid Function 

The other alteration required for a switch to integer 
mathematics is to the sigmoid activation function itself, as any 
exponent of e outside the range ±1.0 will not work, and 
translating the integer to an acceptable value beforehand 
would still require the e exponent element to be computed, 
which brings with it significant hardware requirements 
(Xilinx’s recommendation is to employ the Floating-Point 
Operator that was mentioned previously [6], which would 
very much defeat the purpose of the switch to integer). It is 
possible however, to construct an integer version of the 
sigmoid by using a Look Up Table (LUT). There is a design 



consideration with LUTs, which is the number of entries they 
hold. While a trivial function, like a two input AND gate, can 
be fully described with only 4 entries; something like the 
sigmoid function has the potential to be much too large to use 
this simplistic approach. For example, the 4-bit network used 
as an example in previously would need at 56841 entries in its 
lookup table in order to fully map each possible input to its 
outputs. Recalling the FPGA CLB specifications at the start of 
this section shows that while this wouldn’t fit into the 256 bits 
of distributed RAM available, let alone accommodate the 
other parameters required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Plot of the sigmoid activation function for a floating point network, 

with an input range of ±40. The upper and lower lines show where the 

sigmoid output levels off at 1.0 and 0.0 respectively. 

Fortunately, the sigmoid function itself provides a simple 
method of reducing the LUT requirements significantly. 
Figure 3 is a plot of the sigmoid activation function for a 
floating point network, where the possible inputs to the 
sigmoid fall into the range ±40. Looking at this figure it is 
clear to see that a significant number of possible inputs result 
in outputs of ether 0.0 or 1.0, with the region of interest 
actually only being between -10.0 and +10.0. This means that 
when creating the integer LUTs, possible entries that 
correspond to outputs of 0 or +2n-1 can be removed from the 
table can handled with trivial if statements. Returning again to 
the 4-bit network example, this method reduces the 56841 
entry lookup table to only 4202 entries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Plot of the sigmoid activation function for a 4-bit network with 

maximum and minimum output values removed. 

Figure 4 illustrates the “sigmoid” described by such a 4202 
entry LUT, which shows another possible route to further 
reducing its size. Each possible output of the LUT corresponds 
to multiple input values, so instead of having one entry per 
input value, the LUT can be reduced to one per possible output 
value, with external logic to determine which entry an input 
corresponds to (input < A then output = entry A). Switching 
to this implementation allows the 4-bit network previously 
described to have a lookup table of only 6 elements. This 
equates to a LUT with a total of 24 bits, meaning it fits into 
the 256 bits of distributed RAM that the CLBs detailed in 
section 4.3. 

V. HARDWARE IMPLEMENTATION 

With an integer and lookup table based version of an 
Artificial Epigenetic Network (AEN) already created in 
software, the translation to hardware requires only that the 
existing architecture be rebuilt. This was done on a Xilinx 
Field Programmable Gate Array (FPGA) in Very high-speed 
integrated circuit Hardware Description Language (VHDL). 
There are two important properties that the completed 
hardware network must possess: paramarisability, meaning 
that properties such as the network’s data width, or the number 
of network elements can be changed easily; and 
parallelisation, meaning that, unlike the sequential execution 
of the software networks, the hardware network will execute 
the epigenetic molecules, genes and outputs of the network all 
at once, greatly improving time performance. 

With these requirements in mind, the hardware network 
consists of a number of discrete units that can be assembled as 
required to produce a complete network; along with a 
controller to handle parameter loading and connections to 
external systems. In this work, the controller consisted of an 
ARM Cortex A9 processor [8] with a custom generated AXI-
Lite peripheral [9], which allowed the hardware networks 



various configuration and control signals, as well as its inputs 
and outputs, to be easily connected to a PC for 
experimentation purposes. 

A. Input Elements 

 

Fig. 5. Block diagram of an n-bit input element, with input value and 

parameter storage, as well as control logic. 

The input elements, shown in figure 5, are the simplest part 
of the network. They consist of two storage elements, one for 
the actual input value; and the other for their Ident, effectively 
their location within the network and required for the 
network’s interconnection system. Both these storage 
elements are simple n-bit synchronous registers (the CLK is 
not shown for simplicity), with a small amount of additional 
logic to ensure correct loading of data. Lastly is the enable 
logic component, which takes the external enable signal and 
carries it through to one of the two storage elements depending 
on the mode of the network and the value of the parameter 
selection bus. The network mode is a simple signal, with a 
value of 0 specifying that the network is to execute normal 
behaviour (taking in inputs and computing outputs); while a 
value of 1 corresponds to the network being in configuration 
mode, during which parameters, like the input elements 
identification, are loaded.  

B. Gene Elements 

The gene elements can be broken up into four components 
for ease of understanding: parameter storage, weighted sum 
calculation, LUT address calculation, and output generation. 

 

Fig. 6. Block diagram of the parameter storage section of an n-bit gene 

element with m possible inputs 

The parameter storage section, shown in figure 6, is quite 
similar to the input units, but with a few key differences. First, 
the presence of more than one parameter storage element 
necessitates the use of a selection unit, which routes the 
parameter input through to the one of the storage elements, 

depending on the value of the parameter select input. This 
signal, which also now has an effect on the enable logic due 
to the multiple storage array enables, acts as an address, 
specifying which of the parameters is to be loaded. A similar 
function is performed by the weight select signal for the 
weight storage array. Given that each gene requires multiple 
weights, one for each possible connection it can form with 
both other genes and the input units, the parameter select alone 
is insufficient to address each storage element. Instead, the 
parameter select routes the parameter input and enable signals 
through to an array of storage elements, which have their own 
additional layer of logic mirroring those above. This layer uses 
the weight select signal to pass the parameter input and enable 
signals through to one of the storage elements. The weight 
select bus uses a simple numerical value, much like an 
addressable memory. While the number of weights, and thus 
the size of the weight storage array is parameterisable, the 
weight select bus is a fixed 8 bits, due to its requirement to 
connect to external components. This still allows for each 
gene to have a total of 256 possible inputs, which is more than 
sufficient. 

 

Fig. 7. Block diagram of the weighted sum calculation section of an n-bit 

gene element. 

The weighted sum calculation section, shown in figure 7, 
primarily consists of a multiply-accumulate unit (MAC), and 
a pair of selectors which step though the array of input and 
weight values. Not shown is the controller for this section, 
which consists of a small finite state machine (FSM), simply 
runs the MAC for a number of cycles equal to the number of 
input/weight pairs, then sends an enable signal to the next 
stage of the gene’s logic. 

Fig. 8. Block diagram of the LUT address calculation section of an n-bit 

gene element. 

The LUT address calculation section, shown in figure 8, 
consists of the logic to calculate the power value from the 
weighted sum, slope and offset values (the slope is multiplied 
by 20 at this point to reduce storage space), as shown in 
equation 1. The power value is then used to produce the 
address for the LUT, by applying the process detailed in 
section 3B. The resulting address is then passed to the final 
section. 

 



Fig. 9. Block diagram of the LUT and output storage for an n-bit gene 

element. 

The LUT is a section of memory that stores the integer 
version of the sigmoid, like that shown in figure 4, though a 
different version is needed depending on the bit-width of the 
network. The output of the LUT is stored in the register, when 
enabled by the FSM. The final element is a multiplexer, which 
is controlled by the unit expression signal. When a gene is 
suppressed by an epigenetic molecule, this replaces its output 
with a value of 0, preventing it from having an impact on the 
network. Note that the enable signal for a suppressed gene is 
also suppressed, which prevents it from executing its 
calculation logic. 

C. Epigenetic Molecules 

As epigenetic molecules follow the same process for 
generating their output values from their inputs as genes, their 
hardware version is identical to that detailed in the previous 
section. There is one small difference, that being that 
epigenetic molecules do not have the output multiplexer or 
enable suppression logic. 

D. Gene/Molecule Wrappers 

It should be noted that the description in the previous two 
sections made no reference to the mechanism for connecting 
genes/molecules together. That is because this function is 
separated from the genes/molecules themselves and placed 
within a pair of wrappers. 

 

Fig. 10. Block diagram of the parameter storage section of an n-bit gene 

wrapper. 

Fig. 11. Block diagram of the parameter storage section of an n-bit 

epigenetic molecule wrapper. 

The parameter storage section of the gene and molecule 
wrappers, shown in figures 10 and 11 respectively, are 
comparable to their counterparts within the genes and 
molecules themselves, shown in figure 6. Other than storing 
different values, the only other difference of note is that the 
parameter selector includes the ability to pass a parameter 
value onwards, into the storage component of gene or 
molecule contained in the wrapper. 

 

Fig. 12. Block diagram of the input selection section of an n-bit gene or 

epigenetic molecule wrapper. 

The second part of the gene and molecules wrappers is the 
input selector, shown in figure 12. This is the same for both 
kinds of wrapper and uses a system of location and ranges to 
determine if a particular network element should be an input 
to the wrapped component. The Ident value, also appearing in 
input elements, is the location within the network; while the 
Proximity is the “distance” that an element should look for 
other elements to connect to. Note that a molecule’s’ wrapper 
has two different proximities, one for inputs and the other for 
outputs. The output proximity will be addressed later. These 
two values are used along with the Idents of the other network 
elements to create a mask, which specifies whether or not a 
given element is “close enough” to the wrapped element to be 
an input. This mask is then applied to the bus of possible 
inputs from all network elements. Any from units outside the 
wrapper’s range are zeroed, while those in range passed 
through to the gene or molecule within the wrapper to serve 
as its inputs. 

E. Gene Expression Controller 

Each molecule has an associated gene expression 
controller, which functions similarly to the input selection 
section shown in figure 12, though with a few key differences. 
Instead of input proximity, it uses the wrapper’s output 
proximity; while the Ident is replaced with the output of the 
epigenetic molecule; and instead of possible inputs, the Idents 
taken in by the mask generator are those of the network’s gene 
elements. The resulting mask now specifies whether a given 
gene is in range of a given molecule, and hence should have 
its activity supressed.     

F. Output Elements 

 

Fig. 13. Block diagram of the storage section of an n-bit output element. 



 

Fig. 14. Block diagram of the output value selection section of an n-bit 

output element. 

The final network components are the output elements, 
which consist of a storage section, shown in figure 13, and an 
output value selection section, shown in figure 14. The storage 
section is comparable to those of other elements, while the 
output value selector functions akin to the input value selector 
shown in figure 12. The only differences are that, like the 
expression controller in the previous section, only gene 
elements are considered; and instead of multiple values being 
chosen by the mask, only one is. This mask chosen value is 
then passed to the output storage register. The last element to 
note is the delay, which holds back the register’s enable signal 
to ensure that the output selection process is complete. 

VI. PRECISION REDUCTION 

With a network now available to perform experiments 
with, it is possible to look at the effects of reducing the bit 
width of the networks. More specifically, the goal is to 
identify how low the bit width can be made without it 
negatively impacting the performance of the network. 

A. Experiment Design 

As it is already a task that has been proven to be solvable 
by the existing AENs, this experiment will use the inverted 
pendulum, specifically the implementation designed by 
Hamann et al [10], illustrated in Fig. 15. The Hamann inverted 
pendulum, intended as a benchmark for robotic control 
research, models the behaviour of an inverted pendulum on a 
cart that is able to move in 1 dimension. The model is 
implemented using the Runge-Kutta method of the 3rd order 
[11], while feedback on the status of the pendulum and cart 
are provided by simulated sensors that only monitor part of the 
model, instead of providing absolute measurements of factors 
like pendulum angle and velocity. In addition, the outputs of 
these sensors (as well as the control signals for the model’s 
actuators) are low resolution, mapping all values to the range 
[0, 127]. 

   

Fig. 15. A cart and pendulum from the Hamann model, illustrating the 

“positions” of the various simulated sensors, taken from [10]. 

The fitness function for the Hamann model returns a value 
is proportional to the number of simulation time steps that the 
pendulum spent in the upright position, as is described in 
equation 10.  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  ∑ |θ(𝑡)− 𝜋|𝑡𝑚𝑎𝑥𝜋𝑡𝑚𝑎𝑥𝑡=0 (10) 

t is the current time step, tmax is the maximum run time of 
the simulation, and θ(𝑡) is the angle off vertical at the given 
time step. A fitness higher than 0.75 is considered to denote a 
run in which the pendulum is being maintained in the upright 
position satisfactorily.  

Design and optimization of the epigenetic network was 
done with hardware in-loop utilising a simple genetic 
algorithm (GA). The GA employed rank-based selection with 
elitism of the top 12.5% (1/8th) of the population, uniform 
crossover and random replacement mutation. The other 
experimental parameters are given in table 1. 

TABLE I.  PARAMETERS FOR BIT WIDTH EXPERIMENTS 

Parameter Value 

Population Size 64 

Number of Generations 2048 

Number of Repeats 50 

Crossover Rate 0.5 

Mutation Rate 0.05 

Number of Genes 20 

Number of Epigenetic Molecules 3 

 This process will be repeated for all data widths between 
4 and 32 bits. Ideally, this range would go up to 52 bits, so as 
to be equivalent to the mantissa width of a 64 bit floating-point 
value, but this limitation is imposed by the 32 bit width of the 
AXI-Lite bus [9]. Any data width lower than 4 is considered 
too small to be worth testing, as due to the network’s 
interconnection mechanism previous discussed, it would 
result in all the elements of the network being connected 
together in one large mass. 

B. Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Fitnesses of the best integer epigenetic networks from each repeat, 

with data widths in the 4- to 18-bit range. The blue line at 0.75 denotes the 

fitness at which the networks are able to maintain the pendulum in the upright 

equilibrium position. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Fitnesses of the best integer epigenetic networks from each repeat, 

with data widths in the 19- to 32-bit range. 

The results of the data width evolutions are shown in 
figures 16 and 17. 4-bit networks are able to exceed the 0.75 
fitness threshold, but most fall short, with a median fitness of 
0.71. Networks with data widths between 5 and 20-bits all 
exhibit similar results to each another, with most networks 
achieving a fitness greater than 0.75. However, unexpected 
behaviour occurs with the networks with data widths beyond 
this point. Given that the floating-point networks have a data 
width of 64 bits, it should be expected that the fitness values 
would slowly increase as the data widths got closer to this 
value, but instead a decline begins at 21-bits. By 23-bits the 
median value is below 0.75, and by 27-bits even outliers are 
unable to exceed this fitness. 

Figure 18 clears up this mystery however, showing the 
changing maximum fitness of an 8-bit and 32-bit network over 
4000 generations. This suggests that the increase in data width 
comes with an increase in the search space of possible network 
configurations, and thus that given sufficient generations the 
higher bit width networks will reach fitness values eqivalent 
to those that the smaller width networks. More importantly 
however, the result of these experiments give a clear picture: 
reducing the width of the integer networks even to as low as 
5-bits can still produce viable controllers.  

     

 

 

 

 

 

 

 

 

 

Fig. 18. Time evolution plot, showing fitness over 4000 generations: the blue 

line is an 8-bit network; the orange a 32-bit network; and the yellow line is 

the 0.75 fitness threshold. 

 

VII. COMPARISON WITH ORIGINAL NETWORKS 

The final step is to compare the networks described in this 

paper with their original counterparts. Looking at the 

performance of the inverted pendulum task, a number of 

networks were evolved using the same parameters as 

Turner’s original experiments [4], while using integer 

hardware architecture described in this paper. Table 2 shows 

the parameters of this experiment. 

TABLE II.  PARAMETERS FOR BIT WIDTH EXPERIMENTS 

Parameter Value 

Population Size 500 

Number of Generations 200 

Number of Repeats 50 

Crossover Rate 0.5 

Mutation Rate 0.05 

Bit Width 8 

Number of Genes 12 

Number of Epigenetic Molecules 3 

 

Table 3 contains the results of these evolutions, compared 

against their 64-bit floating-point networks counterparts. 

TABLE III.  FITNESS COMPARISIONS 

Property 
8-bit 

Networks 

64-bit 

Networks 

Minimum Fitness 0.83 0.95 

25th Percentile Fitness 0.89 0.96 

Median Fitness 0.91 0.97 

75th Percentile Fitness 0.95 0.98 

Interquartile Range 0.06 0.02 

Maximum Fitness 0.98 0.98 

 
While the integer networks fall slightly behind their 

floating-point counterparts in most of these metrics, they are 
able to match them in maximum fitness, 0.98 in both cases. 
Given this fact it is reasonable to assert that, although 
statistically speaking there is a slight performance reduction; 
an 8-bit, integer hardware epigenetic network is able to 
achieve a similar performance as a 64-bit, floating point 
software version. 

VIII. RESOURCE UTALISATION 

Having demonstrated that a reduced precision integer 
hardware network is able to obtain comparable functional 
performance to its floating-point predecessor, it is now 
necessary to validate the argument for making the transition. 
Table 4 shows the resource utilisation of the various elements 
of both a 32-bit network and an 8-bit network. Utilisation is 
given as a percentage of the available resources on the FPGA 
used in the experiments thus far, a Xilinx ZynQ-7000 [8]. 

 

 

 



TABLE IV.  RESOURCE UTALISATION BY ELEMENT TYPE 

   32-bit network 8-bit network 

Element Resource No. Percent No. Percent 

 LUTs 607 1.14% 272 0.51% 

 Registers 40 0.04% 18 0.02% 

 DSP 

Slices 

0 0.00% 0 0.00% 

Input  F7 Mux. 0 0.00% 0 0.00% 

 F8 Mux. 0 0.00% 0 0.00% 

 BRAM 0 0.00% 0 0.00% 

 LUTs 2643 4.97% 1105 2.08% 
 Registers 379 0.36% 278 0.26% 

 DSP 

Slices 

16 7.27% 2 0.91% 

Gene F7 Mux. 368 1.38% 62 0.23% 

 F8 Mux. 116 0.87% 18 0.14% 

 BRAM 32 22.86% 0.5 0.36% 

 LUTs 2485 4.67% 965 1.81% 

 Registers 386 0.36% 284 0.27% 

 DSP 

Slices 

16 7.27% 2 0.91% 

Mole. F7 Mux. 368 1.38% 20 0.08% 

 F8 Mux. 116 0.87% 0 0.00% 

 BRAM 32 22.86% 0.5 0.36% 

 LUTs 377 0.71% 145 0.27% 

 Registers 48 0.05% 24 0.02% 

 DSP 

Slices 

0 0.00% 0 0.00% 

Output  F7 Mux. 0 0.00% 0 0.00% 

 F8 Mux. 0 0.00% 0 0.00% 

 BRAM 0 0.00% 0 0.00% 

 The two largest differences are in the DSP and BRAM 
utilization; although this is not surprising, as the DSP 
resources are partly responsible for mathematical operations, 
along with the LUTs; while the BRAM resources hold the 
sigmoid lookup tables. In both these cases, increasing the data 
width brings increased demands. Outside these two instances, 
the other resources are also used to a greater extent by the 32-
bit network, with the LUT and Multiplexer utilisation almost 
doubling. This clearly illustrates the advantage of reducing the 
bit width of the network when it comes to reducing silicon 
resources. And while there isn’t a hardware floating point 
network to compare with as well, the fact that one would need 
an even greater data width, as well as specialised 
mathematical elements, shows the benefits of making the 
switch. 

IX. EXECUTION TIMES 

Another axis of comparison, and one where a floating-
point network can be looked at, is execution time. The 
hardware network is designed to allow for parallel execution, 
whereas the both the integer and floating-point software 
versions are forced to execute each network element in turn. 

TABLE V.  AVERAGE EXECUTION TIMES 

Network 

Type 

8-bit 

integer 

hardware 

network 

8-bit 

integer 

software 

network 

64-bit 

integer 

software 

network 

64-bit 

floating 

point 

software 

network 

Execution 

Time 

3 µS 26 µS 29 µS 542 µS 

Table 5 shows these averaged execution time 
measurements, which encapsulates molecule execution; gene 
activation state updates; gene execution; and output execution. 
Input execution is not included as their execution timings are 

primarily dependent on factors external to the network. The 
hardware network is an order of magnitude faster than its 
software counterparts, which is almost certainly down to the 
parallelisation. The two integer software networks have 
comparable execution times, indicating that the bit width has 
little impact on execution times. However, the floating-point 
network is dramatically slower than even the 64-bit integer 
network, something that demonstrates the additional 
computational complexity brought on by floating point maths. 

X. CONCLUSION AND FUTURE WORK 

Drawing this work to a close, and taking all the results 
presented though out into consideration, it is reasonable to 
assert that: by transitioning to a dedicated, integer-based 
hardware architecture, it is possible to significantly reduce the 
resource requirements of an epigenetic network without 
making significant performance sacrifices. 

To move forward in this area, it will be necessary to 
investigate possible applications where the properties of the 
AEN architecture can bring benefits, but there is a need to 
keep computation resource usage to a minimum. The author’s 
own opinion is that such a use case can within the field of 
robotics, as the multi-facetted nature of robotic control 
problems would likely benefit from AEN’s ability to divide 
the aspects of a task across the different sections of a suitably 
designed network. 
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