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Societal Impact Statement

Rapidly growing global populations mandate greater crop productivity despite

increasingly scarce natural resources, including freshwater. The adoption of sustain-

able agricultural practices seek to address such issues, but an unintended conse-

quence is the exposure of agricultural soils and associated biota to emerging

contaminants including azole pharmaceutical antifungals. We show that environmen-

tally relevant exposure to three commonly prescribed azole antifungals can reduce

mycorrhizal 33P transfer from the soil into the host plant. This suggests that exposure

to azoles may have a significant impact on mycorrhizal-mediated transfer of nutrients

in soil-plant systems. Understanding the unintended consequences of sustainable

agricultural practices is needed to ensure the security and safety of future food

production systems.

Summary

• Sustainable farming practices are increasingly necessary to meet the demands of a

growing population under constraints imposed by climate change. These practices,

in particular the reuse of wastewater and amending soil with wastewater derived

biosolids, provide a pathway for man-made chemicals to enter the agricultural

environment.

• Among the chemicals commonly detected in wastewater and biosolids are

pharmaceutical azole antifungals. Fungi, in particular mycorrhiza-forming fungal

symbionts of plant roots, are key drivers of nutrient cycling in the soil–plant

system. As such, greater understanding of the impacts of azole antifungal expo-

sure in agricultural systems is urgently needed.

• We exposed wheat (Triticum aestivum L. cv. ‘Skyfall’) and arbuscular mycorrhizal

fungi to environmentally relevant concentrations of three azole antifungals (clotri-

mazole, miconazole nitrate and fluconazole). We traced the mycorrhizal-acquired
33P from the soil into the host plant in contaminated versus non-contaminated

soils and found 33P transfer from mycorrhizal fungi to host plants was reduced in

soils containing antifungals. This represents a potentially major disruption to soil

nutrient flows as a result of soil contamination.
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• Our work raises the major issue of exposure of soil biota to pharmaceuticals such

as azole antifungals, introduced via sustainable agricultural practices, as a poten-

tially globally important disruptive influence on soil nutrient cycles. The impacts of

these compounds on non-target organisms, beneficial mycorrhizal fungi in particu-

lar, could have major implications on security and sustainability of future food

systems.
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1 | BACKGROUND

By 2050, food production needs to meet the demands of a global

population exceeding nine billion people. This represents a necessary

increase in agricultural outputs of up to 70% (FAO, 2009), including

an additional one billion tonnes of cereal (FAO, 2012). These agricul-

tural demands need to be met under climate stressed conditions, for

example, doubling of the incidence of drought over the last four

decades (FAO, 2012) whilst accounting for increasing energy costs

and a dwindling supply of finite raw resources such as rock phospho-

rus (Thirkell et al., 2020) and freshwater for irrigation (Elliott

et al., 2014). These challenges are forcing modern agriculture to adopt

more sustainable practices to meet growing food demands whilst

mitigating the impacts of climate change.

Reusing wastewaters, such as domestic and municipal wastewa-

ter or surface runoff, provides an alternative source of irrigation for

agricultural land and has been adopted in many arid countries for

decades (Valipour & Singh, 2016). This practice not only supple-

ments freshwater supplies but also has the added benefit of being

rich in plant essential nutrients, potentially providing a route away

from the costly and environmentally damaging chemical-based

fertilisers routinely used in modern intensive agriculture (Thirkell

et al., 2017). Application of biosolids of municipal or animal agricul-

ture origin is also increasingly widespread in sustainable agriculture

systems (Smith, 2009). By eliminating waste and supporting the

continual reuse of resources, recycling of wastewater and use of

organic fertilisers in agriculture follows circular economy principles

(Toop et al., 2017) potentially supporting many national plans for

adopting sustainable agricultural practices. Circular economy princi-

ples have also gained prominence through the links to the UN's Sus-

tainable Development Goals (SDGs) in the Post-2015 Development

Agenda (Schroeder et al., 2019). By creating agricultural systems

that require minimal inputs and in which waste does not exist, this

contributes to achieving SDG 2 End hunger (via sustainable food

production), SDG 12 Responsible consumption and production, SDG

13 Climate action and SDG 15 Sustainable use of terrestrial ecosys-

tems. The circular economy and SDG agenda are closely linked and

mutually reinforcing.

The products of wastewater treatment, wastewater effluent and

biosolids that are frequently used in farming, are known reservoirs of

potentially hundreds of chemical contaminants originating from prod-

ucts used in everyday life. Chief among these chemicals are pharma-

ceuticals. Significant portions of human and veterinary medicines

consumed are excreted unchanged in urine and faeces where they

enter the sewage system (Bound & Voulvoulis, 2005). Wastewater

treatment plants comprise a variety of different treatment technolo-

gies ranging from trickling filter beds to activated carbon adsorption

and chemical disinfection which are designed to remove conventional

contaminants including nutrients, metals and microbial pathogens

(Verlicchi et al., 2012). Emerging contaminants, such as pharmaceuti-

cals, are inefficiently removed in the treatment process (Burns

et al., 2018; Jelic et al., 2011; Verlicchi et al., 2012), meaning that,

depending on their physicochemical properties, a portion remains in

finished wastewater effluents or is partitioned into the sewage sludge

F IGURE 1 Emission sources and pathways
linked to pharmaceutical exposure in the
environment
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that ultimately becomes biosolids. As such, human medicines have

been quantified in effluents and biosolids which are then released into

the environment as a means of disposal (Patel et al., 2019) (Figure 1).

This has led to the widespread detection of pharmaceuticals in envi-

ronmental matrices such as rivers, sediments and soils (aus der Beek

et al., 2016).

Although use of wastewater as a source of irrigation is increasing

globally, farmers in semi-arid regions have been using wastewater in

agriculture as a solution to the problem of water scarcity for many

years. One of the most widely documented cases of this is Mexico's

Mezquital Valley which comprises over 90,000 hectares and has a

long history of wastewater use in agriculture (for over 100 years).

Through repeated irrigation events, concentrations of these chemicals

can build up over time, with persistent pharmaceuticals such as carba-

mazepine detected in soils up to low μg/kg concentrations (typically

<10 μg/kg) (Dalkmann et al., 2012; Siemens et al., 2008). It should also

be noted that in countries dealing with limited wastewater treatment

infrastructure and sewage connectivity, wastewater can often be

released directly into the environment with little or no treatment and

this can result in elevated levels of exposure (Ashfaq et al., 2017).

Despite the widespread and increasing application of wastewater and

biosolids to agricultural soils across the world, little is known about

the upstream effects on soil biota and plants resulting from the inad-

vertent release of pharmaceuticals. Of particular concern are the

impacts of bioactive pharmaceuticals on soil microbial and fungal

process and the potential for plant—and therefore crop—assimilation

of these compounds and their subsequent entry into the human

food chain.

2 | ANTIFUNGALS

Agricultural yields are highly sensitive to reduction by pests and dis-

ease pressures and have been ever since large-scale, intensive farming

systems began. Today, fungal pathogens are responsible for around

20% of crop losses, with a further 10% of yields subject to post-

harvest losses (Fisher et al., 2018). It has long been common practice

to use a wide range of synthetic antifungal agents to prevent such

losses. The pesticides used are mainly triazoles, one of the most

commonly used classes of fungicides for the treatment of fungal

phytopathogens.

Antifungal azoles also play an important role in the manage-

ment of human fungal diseases and are routinely administered as

therapeutic agents in human health care formulations, including

topical treatments or oral medicines (Snelders et al., 2012). Azole

fungicides are also frequently present in personal care products

such as hair shampoos, soaps, toothpastes and shower gels (Chen

& Ying, 2015). Based on an analysis of prescription data in the

United Kingdom, nearly 1.5 tonnes of azole antifungals, including

commonly used imidazoles (e.g., climbazole, clotrimazole,

ketoconazole and miconazole) and triazoles (e.g., fluconazole,

itraconazole and metconazole) were prescribed for use in 2018

alone (Figure 3).

Through their use as prescription drugs or in human health care

products, azole antifungals are either washed off into wastewater

following topical application or excreted after ingestion. This results in

a proportion of the unchanged parent compound entering the sewage

system (Chen et al., 2014). The precise amount of antifungal elimi-

nated into waste streams following ingestion depends on the pharma-

cokinetics of the specific drug, including factors controlling human

metabolism such as age and gender (Brüggemann et al., 2009).

Fluconazole and posconazole are primarily renally excreted with

approximately 80% of the drug eliminated unchanged (Brüggemann

et al., 2009). Comparatively, itraconazole is extensively metabolised

by the liver, with the major metabolite, droxy-itraconazole excreted in

urine (Templeton et al., 2008). Nevertheless, a fraction of azole anti-

fungal, with retained biological potency is released into sewage sys-

tem and undergoes wastewater treatment. It should be noted that not

only are the parent compounds bioactive but also their degradation

products can be toxic and the technologies employed during waste-

water treatment are not designed to remove these chemicals, mean-

ing they frequently pass through the treatment process in a bioactive

state (Liu et al., 2017).

Azole antifungals used in human medicinal products are particu-

larly resistant to biodegradation and can readily adsorb to sludge (Cai

et al., 2021). Assessment of the removal of azole substances following

mechanical, biological and chemical treatment in China found the

pharmaceutical fluconazole, clotrimazole, econazole, ketoconazole

and miconazole were constantly detected in the final wastewater

effluent at concentrations <100 ng/L. The latter four were also rou-

tinely detected in the sludge, whereas fluconazole largely remained in

the aqueous phase. Ketoconazole is more readily bio-transformed,

whereas clotrimazole, econazole and miconazole are more likely to be

adsorbed onto and persist in sewage sludge in concentrations ranging

between 5 and 268 ng/g (dry weight) (Peng et al., 2012). Once in the

environment, azole fungicides become ubiquitous contaminants, being

distributed across different environmental compartments (e.g., soils,

rivers and sediments; reviewed by Chen & Ying, 2015; Chen

et al., 2014; Huang et al., 2013). In bio-solid amended soils, concentra-

tions of azole antifungals are reported to range between 0.53 and

64.5 ng/g in China (Chen et al., 2013a, 2013b), 30 and 90 ng/g in the

United States (Walters et al., 2010) and 150 and 340 ng/g in Canada

(Gottschall et al., 2012). The presence and concentrations of these

fungicides in soil following use of wastewater as a source of irrigation

remain unclear, potentially due to azole compounds often not being

included as target compounds in screening (Chen & Ying, 2015).

Nevertheless, as these chemicals are persistent and widely reported in

wastewater effluents, there is a very high likelihood that azole fungi-

cides are also introduced into agricultural systems via the use of

wastewater irrigation.

3 | DRUG-PLANT INTERACTIONS

The conserved biological potency of bioactive chemicals presents a

significant risk to non-target organisms. It has been widely reported
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that the pharmaceutical compounds introduced into soils are assimi-

lated by and accumulate in plants with the physio-chemical properties

of the chemical and surrounding soil properties playing critical roles in

controlling the degree of pharmaceutical phytoaccumulation (Carter

et al., 2014; Li et al., 2018). For azole compounds specifically, it has

been shown that ketoconazole is taken up and accumulates in grasses

(Lolium perenne, Poa pratensis and Poa trivialis) and watercress (Nastur-

tium officinale) (Chitescu et al., 2013). However, beyond these specific

examples, data on azole antifungal accumulation in soil–plant sys-

tems and the mechanisms by which uptake occurs are lacking.

Under hydroponic conditions, translocation of selected azoles from

the nutrient solution to the aerial part of lambs lettuce (Valerianella

locusta L.) was found to be highly dependent on the hydrophobicity

of the azole (García-Valcárcel et al., 2016). It remains unclear as to

the role that soil will play in influencing the availability of azoles for

plant uptake. Furthermore, the indirect impacts on plant health,

growth and accumulation of pharmaceuticals via effects on soil

microbial and fungal community structure and function are

unknown. Pharmaceuticals are designed to interact with specific

molecular targets in humans, and it has been identified that these

targets can often have orthologs in other species, including plants

(Verbruggen et al., 2018). Following uptake and accumulation of bio-

active chemicals, there is potential for mode of action related

effects in plants.

To date, it has been established that pharmaceuticals can interact

with key plant functions which may affect plant growth and develop-

ment. Impacts such as lethality largely manifest at high concentra-

tions, not typical of the concentrations expected to accumulate in the

environment (Knight et al., 2018; Timmerer et al., 2020). However,

recent evidence shows that pharmaceuticals at low environmental

concentrations can manifest in sub-lethal toxic responses in the

plant (Fu et al., 2019). Specific sub-lethal responses to pharmaceutical

exposure include changes in phytohormone homeostasis (Carter

et al., 2015), activation of detoxification pathways (Bartha

et al., 2010; Sun et al., 2018) and changes in stress response protein

markers (Gorovits et al., 2020). Research demonstrating sub-lethal

impacts such as those described here is still in its infancy with a

limited number of chemicals and end-points considered. Ultimately,

these findings suggest the potential for widespread effects on crop

yield and thus agricultural productivity.

Although the levels of exposure for azole compounds reported in

environmental compartments are significantly less than therapeutic

levels (often 100–500 mg per daily dose), the impacts of continuous

trace level exposure to non-target organisms is a major concern. A sig-

nificant knowledge gap remains around the conserved biological

potency of antifungals in the environment and, in particular, the

mechanisms by which these compounds are assimilated by plants

from the soil. Key to understanding these mechanisms will be deter-

mining the impact of antifungal contamination on the community

composition, structure and function of the microbes and fungi that

play vital roles in soil nutrient cycling and plant nutrition. Of particular

interest is the potential interaction between pharmaceutical antifun-

gals with the groups of soil fungi that form mycorrhizal associations

with plant roots. Arbuscular mycorrhizal (AM) fungi form intimate

associations with >80% land plants including most major crops (Smith

& Reed, 2008). They often play a major role in plant nutrition through

their engagement in bidirectional exchange of soil nutrients, such as

nitrogen and phosphorus, in return for plant-fixed carbon compounds

such as sugars and fatty acids (Luginbuehl et al., 2017; Figure 2). In

human medicine, antifungal chemicals are drugs that are designed to

selectively eliminate fungal pathogens from a host. Specifically,

azole antifungal drugs such as fluconazole, itraconazole and

F IGURE 2 Extraradical mycorrhizal fungal hyphae extend beyond the host plant root system and facilitate plant nutrient uptake from the soil
(red arrows) in exchange for plant-fixed carbon which moves into the soil via fungal mycelium (blue arrows) as demonstrated on the left. The
impact of inadvertent pharmaceutical contamination of soil on mycorrhizal-acquired nutrient assimilation in host plants (red arrow), and return of
plant-fixed carbon to mycorrhizal symbionts (blue arrow) represents an important knowledge gap in the use of organic soil amendments
(i.e., wastewater and biosolids) and application of mycorrhizal fungi to cropping systems

688 SALLACH ET AL.



ketoconazole inhibit cytochrome P450-dependent enzymes (particu-

larly C14-demethylase) involved in the biosynthesis of ergosterol,

which is required for fungal cell membrane structure and function

(Dixon & Walsh, 1996). Azole antifungals which have been inadver-

tently introduced into the soil environment could therefore interact

with mycorrhizal hyphae and impact on plant nutrient acquisition and

ultimately plant health (Figure 2).

4 | IMPACTS OF AZOLE ANTIFUNGALS ON
SOIL–PLANT PROCESSES

To test the potential impacts of soil contamination by pharmaceutical

azole antifungals on the function of associations between wheat

(Triticum aestivum L. cv. ‘Skyfall’) and arbuscular mycorrhizal fungi, we

exposed wheat and mycorrhizal associates to environmentally rele-

vant levels of the azole antifungals clotrimazole, miconazole nitrate

and fluconazole. These compounds were selected on the basis of high

consumption and previous detection in biosolids (Figure 3; Peng

et al., 2012). Soil was spiked with a mixture of the three antifungals

(ratio of 1:1:1) which resulted in a nominal concentration of 100 ng/g

(see the supporting information for experimental details). Concentra-

tions were within the range of previously measured concentrations

for azole compounds in biosolid-amended soils (0.1–340 ng/g; Chen

& Ying, 2015). This is not dissimilar to recommended application rate

(250 ng/g) of the fungicide, propiconazole (Kling & Jakobsen, 1997).

Using 33P-orthophosphate, we traced the movement of mycorrhizal-

acquired 33P from the soil into the host plant in contaminated soils

versus non-contaminated soils. Full experimental detail is available in

the supporting information (Methods S1).

Despite there being uniformly typically low colonisation by

mycorrhizal fungi in wheat roots across treatments (Table S1), particu-

larly when compared to experiments using the same wheat cultivar

and mycorrhizal inoculum (Elliott et al., 2021), we found transfer of
33P from fungus-to-plant was reduced in plants grown in azole-

contaminated soils compared to those grown in non-contaminated

soils (Figure 4). Similar significant differences between treatments

were found in terms of total 33P (Figure S1). This is consistent with

Schweiger and Jakobsen (1998), who demonstrated reduced hyphal
32P uptake by pea (Pisum sativum L. cv. Finale) exposed to the pesti-

cide propiconazole at concentrations of 1 μg/g, or 10� higher than

the concentrations of our study. Although the mechanisms underpin-

ning this effect are currently unknown and require further exploration,

our results suggest the contamination of soils with azole antifungals

could have a disruptive effect on mycorrhizal function, potentially

indicative of negative impacts of pharmaceuticals on soil fungal and

microbial soil nutrient cycling processes. Future work should seek to

understand the impacts of azole antifungals on plant-to-fungal carbon

dynamics and on the AM fungal community structure, both within and

outwith host plant root systems.

In addition to facilitating the transfer of phosphorus to the plant,

as observed in this study (Figure 4), mycorrhizal associations are also

integral in terms of mobilising other key nutrients such as nitrogen,

F IGURE 3 Mass of azole antifungal compounds prescribed for
use in the United Kingdom in 2018. Data from the National Health
System (NHS) Prescription Cost Analysis (NHS, 2017)

F IGURE 4 Mycorrhizal fungal-acquired 33P detected in wheat
shoots in plants grown in soils contaminated with environmentally
relevant concentrations of azole antifungals (white boxes, n = 10) and
control treated plants grown in uncontaminated soil (grey bars,
n = 10) in terms of concentration of 33P per g plant material.
* indicates significant difference where P < 0.05 (Student's T test)
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potassium and iron to crops whilst offering benefits such as enhanced

soil structure by improving its aggregation and stability (Rillig &

Mummey, 2006). Additional work is therefore needed to explore a

wider suite of mycorrhizal associated benefits to understand the

broader ecological consequences resulting from the inadvertent

release of pharmaceuticals following sludge application and wastewa-

ter reuse. We evaluated the impacts of azole exposure in only a single

cultivar of wheat using a commercial AMF inoculant. The degree to

which plants benefit from the mycorrhizal associations and the degree

of dependency on the association is known to differ among plant and

fungal species (Field et al., 2012; Smith & Reed, 2008), and even geno-

type (Johnson et al., 2012), including in crops (Elliott et al., 2021;

Thirkell et al., 2019). As such, further work is now needed to elucidate

pharmaceutical-induced differences in mycorrhizal colonisation and

subsequent nutrient transfer across a variety of crop species, cultivars

and mycorrhizal fungi. This would allow us to understand if species

and genotypes with a greater mycorrhizal dependency in terms of

deriving plant nutritional benefit from the fungal associations are

more affected by pharmaceutical-driven changes in mycorrhizal

colonisation and function.

Interestingly, the observed effects on 33P transfer from fungus-

to-plant occurred without any significant impacts (P = 0.12, Stu-

dent's T test) on the degree of mycorrhizal colonisation in response

to azole exposure (Table S1), although these were very low across

both treatments. There was no correlation apparent between root

colonisation by AMF and plant shoot 33P assimilation. Compara-

tively, impacts on mycorrhizal colonisation have been previously

observed in wetland plant species (Eclipta prostrata, Hibiscus laevis

and Sesbania herbacea) following exposure to the personal care

product, triclosan, an antimicrobial agent commonly found in tooth-

paste and other products. In an aqueous exposure, triclosan

caused significant reductions in hyphal and arbuscular colonisation

(P < 0.05) at concentrations >0.4 μg/L (Twanabasu et al., 2013). It

remains unknown whether this inhibition resulted in a subsequent

effect on fungus–plant nutrient transfer. Based on our findings

which suggest plant-drug interactions could affect mycorrhizal fungi

in terms of nutrient acquisition from the soil environment or devel-

opment of external hyphal mycelium, it would be interesting to

explore this further to understand if these observed impacts on

hyphal and arbuscular colonisation can affect plant health and

ultimately plant performance.

Our study was based on antifungal exposure representative of

the concentrations found in wastewater derived biosolids, almost

certainly resulting from pharmaceutical use. Although the field appli-

cation of biosolids represents an unintentional exposure pathway

for azole compounds, the intentional use of azole antifungals as

antimycotic treatments in agriculture represents much higher chemi-

cal exposure that can include multi-year applications at a rate of

100 g/ha (Hof, 2001) with soil half-lives greater than 2 years

(Bromilow et al., 1999). There has been no research reporting the

impacts of pharmaceutical azole compounds on beneficial fungi

including mycorrhizal symbionts. Studies on pesticide–mycorrhizal

interactions are also limited. The few investigating azole compounds

have reported conflicting effects on the impacts of hyphae activity

(Hage-Ahmed et al., 2019). If we intend to move towards a future

less dependent on inorganic fertilisers, this will require alternative

sources for organic nutrient additions (i.e., municipal biosolids). In

tandem, future strategies for crop breeding should consider plant

traits relevant to mycorrhizal fungal responsiveness and function to

maximise the potential benefits in terms of soil nutrient capture of

crop-mycorrhizal associations. Understanding the exposure and

effects of antifungals on non-target soil fungi is essential to realising

this more sustainable future.

5 | WIDER IMPLICATIONS AND FUTURE
RESEARCH DIRECTION

There are currently >1,500 active pharmaceuticals in use in the UK

alone (Guo et al., 2016), and we know very little about how these

chemicals might interact in soil–plant systems. More research is

urgently needed to explore the potential for drug–soil–plant interac-

tions using a wider range of crops, accounting for the variability in

plant genotype, environmental conditions, soil biota and soil proper-

ties known to influence bioactive pharmaceutical fate in soil–plant

systems.

In particular, data on the impacts of land-applied emerging con-

taminants on mycorrhizal colonisation and subsequent mycorrhizal-

derived benefits are limited. A recent study highlighted the fact that

legacy pesticide residues in fields impacted arbuscular mycorrhizal

fungi abundance years after switching to organic management (Riedo

et al., 2021). Our preliminary findings suggest that the inadvertent

release of pharmaceuticals in agricultural systems has the potential to

impact on mycorrhizal nutrient transfer to shoots with unknown impli-

cations for wider nutrient cycling processes. Given the significant role

that arbuscular mycorrhizal fungal communities play in terms of

influencing plant growth, plant community structure and ultimately

ecosystem services, together with their potential for application in

sustainable agricultural systems (Bender et al., 2016), it is essential

that we explore this further.

Given the widespread and necessary implementation of sustain-

able agricultural practices and support for adopting circular economy

principles, it is imperative that we are able adequately quantify the

risks associated with the introduction of bioactive chemicals in

the agricultural environment. Understanding the risks will enable

scientists to explore potential mitigation options to reduce the

impacts associated with these chemicals soil–plant systems, such as

the addition of chemical sorbents or pre-treatment of waste products

prior to land application.
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