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Abstract 

Motor imagery electroencephalogram (MI-EEG) is one of the most important brain-computer 

interface (BCI) signal. It is vital to analyze the MI-EEG for the manipulation of external BCI 

actuator. However, traditional methods usually undertake EEG feature extraction and 

classification separately, which may lose efficient feature information. It behaves beyond our 

satisfaction for multi-class MI activity evoked by space-close and cannot eliminate the 

influence of individual differences. To solve these problems, we propose a convolutional 

neural network (CNN) with an end-to-end serial-parallel (SP) structure followed by tranfer 

learning. In detail, we use the serial module to extract the rough features in time-frequency-

space domain, and the parallel module for fine feature learning in different scales. 

Meanwhile, a freeze-and-retrain fune tuning transfer learning strategy is proposed to improve 

the cross-subject accuracy. When our model is compared with the other three typical 

networks, results show that the proposed model performs best with the average testing 

accuracy of 72.13% and the average loss of 0.47, among which one subject only takes 0.7 

seconds to reach 89.17% as the highest one. Through transfer learning, we reduce the training 

parameters by 53%. The average cross-subject classification accuracy increases by 

approximate 15%, and the individual highest accuracy reaches 76.98%. In conclusion, the 

integrity and separability of SPCNN determine that we require no additional EEG signal 

feature analysis, which is conducive to the realization of an efficient online BCI. It can also 

get rid of the dependence on training time and subject data to rapidly advance BCI in the 

future.  

 

Keywords: motor imagery electroencephalogram (MI-EEG) signal, deep learning, convolutional neural network, serial-

parallel (SP) structure, multi-dimensional feature extraction 

Introduction 

Brain-computer interface (BCI) is a system that establishes 

a bridge between human and external devices, where the 

signal is mainly derived from electroencephalogram (EEG) 

[1]. BCI can acquire and analyze signals and then interacts 

with the end equipment by mutual information flow [2]. 

Combined with biocompatible materials, sensor technology, 

embedded computing technology and neuroscience, BCI can 

be used to realize human-computer involved task scenarios, 

such as vehicle intelligent drive system, smart home, patient 

service and rehabilitation, etc[3]. In 2017, Zander et al. set up 

a BCI system for driver's fatigue and mental state detection 

using an N200-P300 event related potential (ERP). The 

parietal EEG alpha rhythm with two features are employed to 

evaluate the working condition of the system in the laboratory 

and real world environment, thus providing voice prompt, and 

activating the auxiliary driving mode of the vehicle when 

necessary [4]. The work can be further applied to automatic 

driving, and the driving safety can be guaranteed through the 

dual control of man and vehicle. Fan et al. used convolutional 
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neural network (CNN) to classify different types of motor 

imagery EEG (MI-EEG) signals, and used ZigBee network to 

realize the communication between the main control center 

and the controlled household appliances, and realized the real-

time intelligent control of home equipment [5]. Steady-state 

visual evoked potential (SSVEP), one of popular EEG data 

paradigms, is also usually analyzed to control home devices 

[6]. A BCI system based on deep learning only used "idea" to 

realize robot flexible walking and wheelchair control in 2019 

[7]. Combined with artificial intelligence, SSVEP can also be 

used to control the robotic arm [8]. It not only improves users’ 
quality of life, but also help stroke patients restore damaged 

limbs and is helpful to the remodeling of brain neural circuit.  

A typical BCI paradigm consists of brain signal acquisition, 

data processing and interaction with the external machine. 

Signal acquisition and processing mainly includes EEG signal 

and some other signal format like fNIRS or fMRI, which are 

utilized in combination style[9-10]. The EEG signal sources 

of BCI varies, such as SSVEP, P300, MI, and potential hybrid 

combination of them. When receiving a fixed frequency visual 

stimulus, the visual cortex of the brain will produce a 

continuous response related to the frequency of the stimulus, 

this response is called SSVEP [11]. P300 is a component of 

ERP [12], which is a late positive wave with a latency of about 

300ms induced by stimulus. When people imagine their body 

movements but no actual motor output, there will still be 

activation of certain brain areas called MI. In the process of 

MI, the cerebral cortex will generate two kinds of rhythm 

signals with obvious changes. The rhythmical energy of the 

contralateral motor sensory region of cerebral cortex is 

significantly decreased, while that of the ipsilateral motor 

sensory region is increased. This phenomenon is called event-

related desynchronization (ERD)/ event-related 

synchronization (ERS) [13]. MI-EEG signal does not rely on 

additional equipment and it requires only the subject's 

imagination, which is widely used for its remarkable 

phenomenon and spontaneity.  

The traditional feature extraction methods can be 

conducted in the time domain, frequency and spatial domain. 

The time domain analysis is mainly to find the statistical 

properties of the signal waveform, while the frequency 

domain analysis focuses on spectral characteristics of the 

signal. The method combining the two aspects is called time-

frequency analysis method, for example, local feature scale 

decomposition (LCD) [14], discrete wavelet transformation 

(DWT) [15] and Winger-Ville distribution [16]. and flexible 

analytic wavelet transforms (FAWT) [17]. The spatial 

analysis mainly extracts the spatial distribution components of 

signals, and the common spatial pattern (CSP) is one of widely 

recognized methods. However, the CSP method utilizes a 

wide frequency band to extract features, which contains most 

useful information as well as redundant information. 

Therefore, many improved algorithms based on CSP are 

proposed. Taking a single EEG signal channel as an example, 

it is divided into multiple sub-channels according to the 

frequency band. The common spatio-spectral pattern (CSSP) 

uses the CSP algorithm to optimize the basic filter by inserting 

different time delay in different sub-channels [18]. The 

common sparse spectral spatial pattern (CSSSP) makes all 

sub-channels share the same spectrum mode on the basis of 

CSSP method [19]. The sub-band common spatial pattern 

(SBCSP) extracts CSP features from MI-EEG signals at 

multiple channels, and uses linear discriminant analysis (LDA) 

to reduce the dimensions of each sub-channel, and finally 

fuses them [20]. The filter band common spatial pattern 

(FBCSP) studies the mutual information between sub-

channels on the basis of SBCSP, and extracts the most 

representative features of sub-channels [21]. The 

classification results of EEG signals can be obtained by 

constructing a classifier based on the extracted features. 

Feature classification methods include the spectral regression 

discriminant analysis (SDRA) [22], which is a combination of 

spectral analysis and linear regression, support vector machine 

(SVM) [23] and fisher discriminant analysis [23]. However, 

MI-EEG signals are low signal-to-noise ratio (SNR), time-

varying and large individual differences. And feature 

extraction and classification of the methods mentioned above 

are discontinuous, and many of them are manual and based on 

prior knowledge of predecessors. Therefore, the extracted 

features are often not comprehensive enough to affect the 

classification accuracy. 

In order to overcome the disadvantages of traditional 

methods, many classification methods based on the deep 

learning have been proposed recently [24]. Recurrent neural 

networks (RNN), CNN, or their combinations are common 

approaches. Some researchers use the raw multi-channel MI-

EEG signals or convert them into spectral images with 

retained topological structure, feed them the into the complex 

network, extract the time and space information of the signals 

to realize the classification goal. Thus, many optimized 

networks are developed, such as shallow convolutional neural 

network (ShallowNet), deep convolutional neural 

network(DeepNet), residual convolutional neural network 

(ResNet), and deep separable convolutional called as EEGNet 

[25,26,27]. They are typical methods for the work comparison 

in machine learning based BCI data processing. The reason 

why these models can apply to the MI EEG data analysis is 

that the models can learn the underlying infromation within 

EEG and shows their own superiority. To be explicit, 

ShallowNet can utilize small dataset for training, like our MI 

EEG data of few cases and it can decrease the over-fitting risks. 

Deep convolutional neural network called DeepNet is based 

on general CNN structure and kernel. It is a typical machine 

learning model for data analysis because CNN is quite feasible 

and powerful and also DeepNet mathmatically extends and 

upgrades the capability to large and complex EEG signal. It 
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can be one of the suitable methods for MI EEG data analysis 

[28]. The EEGNet behave as a single CNN architecture to 

accurately classify EEG signals from different BCI paradigms, 

while simultaneously being as compact as possible. It is robust 

enough to learn a wide variety of interpretable features over a 

range of BCI tasks and paradigms. However, those deep 

learning models still face two critical challenges: one is that 

the network involves too many complicated layers and huge 

amount of parameter to be trained, which leads to long training 

time [29]. On the other hand, some networks are too shallow, 

the extracted features are not comprehensive enough, and the 

classification accuracy is relatively low. At the same time, 

both the traditional method and the deep learning method have 

the problem that the training model of the same subject cannot 

be applied to other subjects, which results in a large number 

of experimental data requirements and training time. 

Therefore, a more reasonable and universal network 

architecture is needed to ensure comprehensive feature 

extraction and avoid network parameter redundancy. For 

example, the structure of the network can be diversified, not 

limited to the general series form of layer upon layer 

connection, or add some special layers to enrich the features. 

To solve the above problems, this paper proposes a new 

network structure to optimize the classification efficiency of 

MI-EEG signals. The network is mainly composed of multiple 

convolutional layers in series, and has a parallel structure 

composed of multiple branches to enrich feature extraction. 

The main work contents are as follows: (a) a serial-parallel 

structure convolutional neural network (SPCNN) is proposed 

for multi-domain and multi-level feature extraction; (b) 

Compared with the existing mainstream deep learning 

network in terms of MI-EEG signal classification, the 

proposed network is proved to be advanced; (c) A freeze-and-

train transfer learning strategy is proposed to improve the 

accuracy of cross-subject evaluating and improve the 

universality of the network; (d) Using a visualization method, 

the effectiveness of the network is verified in time and 

frequency domains, respectively. The structure of the article is 

as follows: The introduction is given in Section I. Section II 

introduces materials and methods used in the experiment. 

Section III covers the experimental results. In Section IV, the 

advancements of our network and the limitation and prospect 

of this paper are discussed. The last Section concludes the 

paper. 

Materials and methods 

2.1 Dataset 

Data are from BCI competition 2008 2a MI-EEG dataset, 

obtained from nine subjects. The experimental data of each 

subject can be divided into two groups, namely the training set 

and the testing set. Each part contains 288 trials, within 72 

trials for each type of MI-EEG signals [30]. The experimental 

data of subjects are collected in accordance with the 

experimental paradigm shown in Fig. 1. When t = 0 s, the 

monitor displays a fixation cross, and the subjects prepare for 

MI. In addition, a short acoustic warning tone is presented; 

When t = 2 s, an arrow pointing of MI (both feet, left hand, 

right hand, tongue) appears as a prompt and stayed on the 

screen for 1.25 s, then the subjects begin to carry out 

corresponding MI, and one kind of MI action tiral lasts for 3 s 

from appearance of the cue to the end, in other words, the data 

used for our analysis are all balanced; When t=6 s, the word 

"break" appears to show the end. The experimental collection 

device has 25 channels, of which there are 22 EEG electrodes 

and 3 electrooculogram (EOG) electrode, and the distribution 

of the main electrodes is shown in Fig. 2. It meets the 

international 10-20 standard with a sampling rate of 250 Hz. 

Then data are filtered through a 50 Hz notch filter to eliminate 

power frequency interference, followed by a band-pass filter 

of 0.5-100 Hz to retain the main components of human brain 

wave frequency. In this paper, the 4-second data is selected 

from the beginning of “Cue” prompt to the end of the MI for 

experiment. The one trial experimental data includes 1000 

sampling points, so the input form of the network is 22 * 1000, 

i.e. 1,584,000 samples in each class for each subject. 

Fixation cross
Cue

Motor imagery Break

Beep

t (s)
0  1 2 3 4 5 6 7 8

+

 
Fig. 1.  Experimental paradigm for data collection. 
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Fig. 2.  Schematic diagram of EEG electrode position. 

2.2 Pre-processing and CNN architecture design 

In order to simplify the preprocessing steps, we use wavelet 

de-noising tactic with soft threshold to remove the inevitable 

physiological and environmental noise. Wavelet threshold 

(WT) de-noising method is characterized by low-entropy, 

multi-resolution and de-correlation, which is a good non-

stationary signal de-noising method [31, 32]. The main steps 

of WT de-noising method are: (a) the input original signals are 

processed by wavelet decomposition; (b) The wavelet 

coefficients of each layer are extracted and the threshold 

values are calculated to conduct threshold treatment on the 

wavelet coefficients; (c) The signals are reconstructed by 

processed data.  
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Then, the preprocessed signals are input of the end-to-end 

CNN model with serial-parallel structure. Our SPCNN firstly 

converts the multi-channel time series into 3D from 2D shape, 

and extracts the features in time domain, space domain and 

frequency domain through the serial structure. Then the 

parallel structure is used to extract the futher detail features in 

the three domains and get them fused systematically. Finally, 

the classification results can be obtained after integrating the 

features through the double connection layer. The main 

structure of the model is shown in Fig. 3. As it is shown, this 

new model main consists of serial parallel components. Both 

parts are key innovation points in our model design. This 

framework is inherited by the traditional covolution idea in the 

image processing area. It means the features are extracted 

from general skeleton level to advanced details in further. 

Therefore, we come up with serial parallel stragetry for in-

depth feature mining. The two hierarchy parts expand our 

EEG feature learning capabitly in dierction of width and depth. 

Beside, this new proposed model are based on the mature 

effective CNNs, which has been widely applied to a lot of 

areas. Moreover, the SPCNN undertakes the feature extraction 

in multi-domain, i.e time domain in the temporal and space 

domain by multichannel data combination via space filters. 

Besides, the parallel part are based on the work of  serial part 

and has mutli co-existing module to work , which accelerates 

the model training and optimization from the output of the 

serial part at the same time. Pseudocode I. gives the details of 

coding instructions. 

C1

C2

CN

C
h

an
ne

l

Time
Temporal convolution Spatial convolution

Input Serial feature extraction module

Deep convolution

Parallel feature extraction moduleClassification module

Result Classifier

...

Frequency activation

Func1: Square(x) = x2

Func2: log(x)

...

Preprocessed EEG signal

 
Fig. 3.  Main structure of SPCNN. 

Pseudocode I.   The whole work procedure. 

1. Let 𝑋(𝑖, 𝑗) be the raw data; 

// i=No. of the channel, j=length of data in each channel 

          

2. Call discrete wavelet transform(DWT) package;   

// DWT for de-noising 

3. Call convolution neural network package; 

4. Wavelet_cofficient(k) ← DWT(𝑋(𝑖, 𝑗)); 

5. Wavelet_component(k) ← DWT(𝑋(𝑖, 𝑗)); 

6. Initialize the soft threshold 𝜀 and the threshold function 

output 𝜔(𝑘); 

 

7. For k=1:m          

//m is number of layers by the DWT decomposition 

8.      If (Wavelet_cofficient(k)< 𝜀. 

9.            𝜔(𝑘)=0;                   

10.     else 

11.            𝜔(𝑘)= Wavelet_cofficient(k)- 𝜀; 

12.     End                       

13. End 

 

14. Wavelet_cofficient_optimized (k) = 𝜔(𝑘); 

15. 𝑋_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑖, 𝑗)=reconstruct _wavelet (Wavelet 

_cofficient_optimized, Wavelet_component(k)); 

16. Initialize the parameters of SPCNN serial module in the 

Table I; 

17. Set activation function f1(x)=x2, f2(x)=log(x); 

18. Feature_serial (x, y, z) = SPCNN_serial(𝑋_𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 ); 

19. Initialize the parameters of SPCNN parallel module in 

the Table I; 

20. Feature_parrallel_1 (x, y, z) = SPCNN_ parallel_P1 

(Feature_serial (x, y, z)); 

21. Feature_parrallel_2 (x, y, z) = SPCNN_ parallel_P2 

(Feature_serial (x, y, z)); 

22. Feature_parrallel_3 (x, y, z) = SPCNN_ parallel_P3 

(Feature_serial (x, y, z)); 

23. Feature (x, y, z) =concatenate (Feature_parallel_1 (x, y, 

z), Feature_parrallel_2(x, y, z), Feature_parallel_3 (x, y, 

z)); 

24. Initialize the parameters of SPCNN classification 

module in the Table I; 

25. MI_labels= Classification (Feature (x, y, z)); 

 

2.2.1 Serial feature extraction module 

Serial feature extraction module employs several temporal 

filters and spatial filters to extract temporal and spatial 

features of signals, and a series of nonlinear processing is used 

to extract characteristics of frequency. The specific 

implementation process is as follows. The two-dimensional 

signal of the input network is transformed into a three-

dimensional form suitable for the subsequent network layer, 

followed by two-dimensional convolution kernels with core 

sizes of [t, 1] and [1, c] selected for time-domain convolution 

and spatial convolution respectively. The setting value of t is 

explained below, and c is the number of EEG electrode 

channels. This process extracts the temporal and spatial 

characteristics of the signal, which are both followed by batch 

normalization. Thus, the signal channel dimension is 

compressed to 1, and the third dimension feature originally 1 

is extended to p, where p is related to the number of spatial 

filters. Next, there are two nonlinear activation functions, the 

first one is the square nonlinear function as shown in formula 

(1) and the second one is the logarithmic nonlinear function as 

shown in formula (2), both of which are used to extract the 

features related to the frequency band power in the signal, so 
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as to enhance the non-linear expression ability of the network. 

In the end, the average pooling layer is selected to change the 

time dimension of the signal, and the dropout layer is used to 

avoid over fitting phenomenon. All the above network layers 

are connected by serial structure, so they together constitute 

serial feature extraction layer. The serial feature extraction 

layer is shown in Fig. 4 (a). 

 
2

1( )f x x   (1) 

 2( ) log( )f x x   (2) 

where x denotes the input signal of the activation layer. In the 

two nonlinear layers of the network, square and log functions 

were used as the activation functions of the layer respectively. 

These two nonlinear layers can reduce the features, simplify 

the network and adapt to the characteristics of EEG signals 

without reducing the network feature extraction capacity. In 

table I in [32], the authors explained the activation functions 

of each layer, in which the nonlinear layer is square(x) and 

log(x). 

 

2.2.2 Parallel feature extraction module 

The input of the parallel feature extraction layer is the 

output of the serial feature extraction layer, which is the MI-

EEG signal after the preliminary three-dimensional feature 

extraction. In the serial feature extraction layer, the third-

dimensional feature has been changed through some filters 

with specific convolution kernels. In the parallel feature 

extraction layer, we use two separate 20 filters to change the 

third-dimensional features of the signal for two stream path, 

and make different convolution kernels for these two kinds of 

filters, which are set as [1, 16] and  [1, 8]. In order to extract 

features in deep-level characteristics of space-time domain, a 

larger size convolution kernel and a smaller size convolution 

kernel are set up respectively. Then, the signals extracted by 

different scale deep-level features are fused by concatenate 

layer with that the fused signals are processed by batch 

normalization to make the distribution of the data suitable to 

its true distribution. Followed by the maximum pooling layer 

with convolutional kernel of [1, 3] for dimension change, 

dropout layer with rate of 0.5 is used to avoid overfitting 

phenomenon again. The core part of the above network layer 

is connected by parallel structure, so it is called parallel feature 

extraction layer, as shown in Fig. 4 (b). 

 

2.2.3 Classification module 

We use a flatten layer to compress the processed multi-

dimensional signal into one dimension. After that we use two 

different numbers of dense layers to converge the data faster 

for extracting the association between these features, and map 

them to the output space to get the output form we need. 

According to the probability value, a softmax layer is used to 

judge the final decision. The process is shown as Fig. 4 (c). 

 

 

Input

TimeConv

SpaceConv

BatchNorm

BatchNorm

Activation1

Pooling

Activation2

Dropout TimeConv1 TimeConv2

Concatenation

BatchNorm

Pooling

Dropout

Flatten

Dense1

Dense2

Softmax
(a)

(b)

(c)

Reshape

 
Fig. 4.  Hierarchical framework of SPCNN. (a) Serial feature 

extraction module: input deformation, extraction of time 

domain, spatial domain and frequency domain characteristics; 

(b) Parallel feature extraction module: depth characteristics 

extraction at different scales; (c) Classification module: 

category determination of signal. 

2.3 CNN model construction 

This session can be divided into two stages: the first stage 

denotes the initialization of the network and model 

construction based on within-subject work procedure. The 

other one is to pre-train model in the same way as above and 

improve it with transfer learning technique. The final model is 

used for cross-subject evaluation. 

 

2.3.1 Network initialization 

The structure and corresponding parameter settings of the 

whole network are shown in Table Ⅰ. The network basically 

consist of three parts: serial, parallel and classifier. As 

described in 2.2 section, each part have different CNN based 

structure and the number of filers and some activation type are 

also given below. 

Table Ⅰ. Framework parameter design of SPCNN. 

Block Layer Filter 
No. of 
Param
eters 

Output Option 

Serial  

Input   (C, T)  

Reshape   (1, C, T)  

TimeConv 40 (1, 13) 560 (40, 22, 1000) Linear activation 

Mode=same  
BatchNorm  160 (40, 22, 1000)  

SpaceConv 40 (22, 1) 70400 (40, 1, 1000) Linear activation 

Mode=valid  
BatchNorm  320 (40, 1, 1000)  

Activation   (40, 1, 1000) Square activation 

Pooling (1, 75)  (40, 1, 62) Average pooling, 
Stride=(1, 15) 

Activation   (40, 1, 62) Square activation 

Dropout   (40, 1, 62) P=0.5 

Parallel  
TimeConv1 20 (1, 16) 25600 (20, 1, 62) Linear activation 

Mode=same  

TimeConv2 20 (1, 8) 12800 (20, 1, 62) Linear activation 

Mode=same  
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Concatenation   (80, 1, 62)  

BatchNorm  480 (80, 1, 62)  

Pooling (1, 3)  (80, 1, 20) Max pooling 

Dropout   (80, 1, 20) P=0.5 

Classifier 

Flatten   2400  

Dense1  24010 10 Max norm=0.25 

Dense2  44 4 Max norm=0.25 

Softmax   4  

where C = 22 is the number of electrode channels, T = 1000 is 

the number of sampling points. 

  

2.3.2 Freeze and train approach 

EEG signal is weak and there are huge differences among 

different individuals. Many studies show that the testing 

performance of classification algorithms is generally limited 

to the same subject. In other words, that is, part of a subject’s 
data is used to train the model, and the rest is used to test 

performance. It takes a lot of time to collect experimental data 

and train the model. However, models built by a small number 

of subjects can be applied to other subjects, which can greatly 

improve the efficiency.  

In this paper, we use the method of transfer learning to 

achieve the above purpose. The motivation of transfer learning 

is that people can use what they have learned before to solve 

new problems faster or better [33]. Transfer learning here can 

be further divided into fine-tuning strategy and freeze and 

train strategy. Through the latter method, we first build a 

model, and then integrate some new data to retrain the 

structure of the trained model. Freeze and train strategy can 

increase the universality of the trained model between 

different subjects, reduce the number of training parameters, 

shorten experimental time and improve the learning 

performance of the network. The time involves specifically 

data acquisition time, model training time and much expensive 

data-labelling efforts.   

The dataset consists of nine subjects, so there are nine 

models that have been constructed within subjects, and each 

of them need to be tested across subjects by leave-one-out 

cross validation strategy. Freeze and train strategy is adopted 

to evaluate cross-subject performance of each subject. Taking 

one subject as an example, his initial training model is based 

on training data from the other top four subjects in within-

subject experiment. Then we add this subject’s training data 
to the former data to retrain the model, and we can get this 

model updated. Finally, his testing set is used to evaluate his 

cross-subject classification accuracy. The entire process is 

shown as Algorithm Ⅰ. 

Algorithm Ⅰ. Freeze and train for cross-subject testing of 

subject A. 

Input: SB: D1={(X(i), L(i)), i = 1, 2, …, n/4} 

SC: D2={(X(i), L(i)), i = 1, 2, …, n/4} 

SD: D3={(X(i), L(i)), i = 1, 2, …, n/4} 

SE: D4={(X(i), L(i)), i = 1, 2, …, n/4} 

Procedure:  
1: Together as an overall input Doriginal={(X(i), L(i)), i = 1, 

2, …, n} of SPCNN. 
2: Train an initial model M0. 
3: Freeze part of the network layer. 
4: Combine part of the original input and part of the 

subject A’s training set to be a new input Dnew={(X(i), L(i)), 
i = 1, 2, …, n}. 

5: retrain the model M0 and form a new model M. 
Output: A new well-trained model M of SPCNN 

There are 19 layers in SPCNN, including serial feature 

extraction module from the 2nd to the 9th layer, parallel 

feature extraction module from the 10th to the 15th layer, and 

classification layer from the 16th to the last layer. At first, we 

freeze the first 9 layers, that is, retain the parameters of the last 

10 layers for retraining. The part of retraining is that after 

integrating the training data of the subject to be evaluated, the 

time-frequency-space features are preliminarily extracted by 

using the parameters of serial feature modules trained by other 

subjects, and the parameters of parallel feature module and 

classification module are updated to extract deep level features. 

Results 

3.1 Wavelet threshold de-noising performance 

WT method is used to remove the noise in each channel. 

“sym4” is selected as the wavelet basis function, and the 
decomposition level is set to 3. They were haar, db4, sym4, 

coif5, bior4.4, and bior6.8, and sym4 based WT 

decomposition usually obtains a higher entropy. And sym4 

oriented WT method often applies well to physiological and 

neural signal [34-35]. The threshold of one-dimensional 

wavelet transform is obtained by Birge-Massart algorithm, 

and the wavelet soft threshold de-noising method is used. 

Three electrodes ‘C3’, C4’, ‘Cz’ in the first trial of the training 
data of subject 1 are selected as representatives. The 

experimental results are shown in Table Ⅱ and Fig. 5. 

Table Ⅱ. De-noising results of WT method (typical 

electrodes). 

Channel Correlation coefficient  smoothness 

C3 0.9267 0.10 

C4 0.9196 0.09 

Cz 0.9329 0.12 

It can be seen from Table Ⅱ that the correlation of the 

signals after de-noising of the three channels is above 0.9, 

indicating that the signals by de-noising are significantly 

correlated without distortion. At the same time, the 

smoothness (s) value of the de-noised signal is about 0.1, 

indicating that the reconstructed signal has a high degree of 

smoothness. From Fig. 5, the original signal obviously 

contains a lot of noise in the form of burr. After de-noising, 

these burrs are basically eliminated and the de-noising is 

effective. The EEG signal is preprocessed effectively by 

wavelet de-noising. 
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Fig. 5.  De-noising results of WT method (typical electrodes). 

3.2 Model training outcome 

In this paper, we use the Adam optimizer [36], one of the 

commonly used optimizers, which has simple implementation, 

high calculation efficiency and less memory requirement. 

After the bias correction, each iterative learning rate of the 

optimizer is kept in a certain range, which makes the 

parameters more stable. The loss function selected is cross 

entropy loss function, as shown in formula (3). Cross entropy 

can measure the difference between two different probability 

distributions in the same random variable, which is expressed 

as the difference between the real probability distribution and 

the predicted probability distribution in machine learning. 

 ( ) log ( ), 1,2,...,i iLoss p x q x i n     (3) 

where pi(x) denotes the i-th target probability distribution, and 

qi(x) denotes the i-th predicted probability distribution. The 

smaller the value of cross entropy loss, the better the 

prediction effect of the model. 

We compare the proposed network SPCNN with DeepNet, 

ShallowNet, and EEGNet. We set the batch size to 64. In the 

first experiment, the number of iterations is 1000. It is 

observed that when the number of iterations is 400, the loss 

value decreased and tended to be stable. Therefore, the 

number of iterations in the follow-up experiment is set to 400. 

All networks are implemented by tensorflow and keras. 

Through the 10-fold cross method, the training data of the 

subjects are randomly divided into ten parts, of which nine are 

training parts, and the remaining parts are verification parts, 

which are carried out ten times until all the data serve as both 

training part to establish the model and verification part to 

verify. The training results are shown in Table Ⅲ. 

Table Ⅲ. The training classification performance for all 

subjects (accuracy/%). 

 

 Network 
Subject     DeepNet EEGNet ShallowNet SPCNN 

Subject 1 73.13 80.98 79.29 80.63 

Subject 2 55.98 54.96 65.14 71.52 

Subject 3 79.46 88.80 92.19 92.64 

Subject 4 74.42 69.02 65.94 75.40 

Subject 5 74.60 79.15 77.81 80.09 

Subject 6 54.73 72.59 71.52 74.64 

Subject 7 67.28 84.96 93.98 93.66 

Subject 8 83.21 86.16 86.61 93.04 

Subject 9 83.84 91.65 89.02 91.25 

Average 71.85±10.68 78.70±11.54 80.17±10.98 83.65±8.98 

Table Ⅲ shows the average training classification accuracy 

in ten random trials of each subject and the average accuracy 

of all subjects under different networks. The results show that 

the average accuracy of subject 2 is the lowest, while that of 

subject 3 or subject 7 is the best. In the network proposed in 

this paper, for subject 2, the average accuracy is 71.65%, 

which was 9.8% higher than the best of the other three 

methods. For subject 7, the average accuracy is 93.66%, which 

is higher than 39% of the same subject in DeepNet. The 

average accuracy of our method is 83.65%, which is 16.4%, 

6.3% and 4.3% higher than the other three methods 

respectively. DeepNet has a complex architecture, the 

extracted signal features might be nothing and disruptive to 

the classified results, and the other shallow networks could not 

extract enough features to assist classification. The minimum 

loss values of all models are shown in Table Ⅳ, and the 

number of parameters involved in each training of different 

models is shown in Table Ⅴ. 

 

Table Ⅳ. The minimum loss value of all models. 

    Network 
Subject     DeepNet EEGNet ShallowNet SPCNN 

Subject 1 0.81 0.49 0.48 0.49 

Subject 2 0.54 0.99 0.86 0.72 

Subject 3 0.89 0.41 0.21 0.29 

Subject 4 0.68 0.79 0.83 0.69 

Subject 5 0.57 0.61 0.62 0.59 

Subject 6 0.84 0.70 0.70 0.65 

Subject 7 0.83 0.49 0.23 0.24 

Subject 8 0.81 0.48 0.34 0.28 

Subject 9 0.71 0.35 0.29 0.27 

Average 
0.74 

± 0.11 

0.59 

± 0.19 

0.51 

± 0.24 

0.47 

± 0.19 

 

Table Ⅴ. Model parameter. 

Network DeepNet EEGNet ShallowNet SPCNN 

Parameter 193429 3268 46164 134374 

As can be seen from Table Ⅲ, Table Ⅳ and Table Ⅴ, 

although the numbers of parameters of our proposed method 

are slightly more than those of EEGNet and ShallowNet, they 

are less than those of DeepNet. The performances of our 

network surpass other three networks. Compared with the 

other three models, the accuracy of our method is improved 

by 16.4%, 6.3% and 4.3%, and the minimum loss value is 

reduced by 35.4%, 20.6% and 7.9%, respectively. 
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3.3 Model performance 

The testing set is used to evaluate the model established in 

the training part. Due to the individual differences of MI-EEG 

signals, the testing session is divided into within-subject test 

and cross-subject test according to the source of the training 

dataset. 

 

3.3.1 Within-subject classification 

The within-subject test is carried out, i.e. the training 

dataset and the testing dataset are from the same subject. The 

experimental results are shown in Table Ⅵ, Table Ⅶ and Fig. 

6. 

Table Ⅵ. 10-fold within-subject testing classification 

performance. 

Network 
Subject     

DeepNet EEGNet ShallowNet SPCNN 

Subject 1 66.28 74.72 73.37 78.85 

Subject 2 46.94 53.92 52.99 51.04 

Subject 3 74.17 83.51 87.95 89.17 

Subject 4 67.40 59.34 64.34 67.60 

Subject 5 63.13 71.42 63.37 63.54 

Subject 6 43.40 56.94 56.18 57.40 

Subject 7 59.65 72.78 77.08 82.08 

Subject 8 66.84 67.95 77.88 80.80 

Subject 9 63.96 74.51 72.85 78.72 

Average 
61.31 

± 9.99 

68.34 

± 9.73 

69.56 

± 11.23 

72.13 

± 12.79 

Fig. 6 and Table Ⅵ show the average testing accuracy of each 

subject using the ten-fold cross method under different 

networks and the average testing accuracy of corresponding 

network. The experimental results show that the average 

accuracy of subject 2 is the lowest, and that of subject 3 is the 

highest. In our method, the average accuracy of subject 3 can 

reach 89.17%, and the average accuracy of all subjects is 

72.13%, which is higher than the other three methods of 

17.6%, 5.5%, 3.7%. However, higher standard deviation in 

SPCNN means model may fit very well for the subjects while 

fair for others. This may be overcome by more subject data for 

model training, thus narrowing the gap. In our method, we 

choose the experiment with the highest evaluating accuracy of 

each subject in 10-fold cross method to draw the confusion 

matrix, as shown in Fig. 7.  

 

Table Ⅶ. Testing time. 

Network DeepNet EEGNet ShallowNet SPCNN 

Time/s 1.1 0.7 0.3 0.7 

Table Ⅶ records the average testing time that input the 

testing dataset of subjects into the training model. As can be 

seen from the table, our method only needs 0.7s to complete 

the experiment. The experimental results accord with the size 

of the model training parameters and prove the high efficiency 

of the proposed method. 

 

 
Fig. 6.  Within-subject testing classification performance. (a) 

10-fold cross classification performance; (b) Network 

classification performance. 

3.3.2 Cross-subject transfer learning 

The cross-subject evaluation is implemented by freeze and 

train strategy (as shown in Algorithm I), and the training 

dataset and the testing dataset come from different subjects. 

We use 10-fold cross method to build initial model. And 

then the model is further used to evaluate specific subject. The 

average training accuracy, the loss of the model and the 

average cross-subject testing accuracy are shown in Table ⅦI. 

Table Ⅷ. The performance on training model M0 and cross-

subject testing classification. 

Network DeepNet EEGNet ShallowNet SPCNN 

Average 
training 

accuracy/% 

53.41 69.67 77.24 78.21 

Average loss 1.12 0.81 0.57 0.53 

Average  cross-
subject testing 

accuracy/% 

34.65 42.81 44.24 40.19 

The results in Table ⅦI show the overall performance of 

model under different network methods across all subjects. 

The average training accuracy of our proposed method reaches 

77.24%, and the average loss as low as 0.53, which shows the 

best performance compared with other networks. It indicates 

that our network can extract more abundant and useful 

common features between multiple different subjects as much 

as possible. Although DeepNet has a deeper architecture, the 

results are less than ideal. It probably because the common 



Journal XX (XXXX) XXXXXX Author et al  

 9  

 

features of multiple subjects have not been found in the deep 

excavation of the characteristics of the subjects, and such a 

deep structure is not suitable for EEG signals that vary widely 

in individuals. The layer of EEGNet is too few, so we can only 

get the insufficient common features, resulting in a lower 

accuracy rate than that of SPCNN 8.54% and a higher loss 

value that of SPCNN about 50%. ShallowNet performs 

slightly worse than SPCNN. As for the average cross-subject 

testing accuracy, the performance of ShallowNet and EEGNet 

is slightly better than that of SPCNN, because these two 

networks have relatively fewer layers and only extract the 

typical characteristics of signals, which has little influence on 

different subjects. The performance of DeepNet is poor 

mainly because the loss during the model training is too high 

to extract common features and not enough basic features. In 

contrast, the performance of SPCNN is similar to that of the 

two shallow networks. The freeze and train strategy is 

combined to improve the universality of our network among 

different subjects. The training data of specific subject is fused 

with the original data, and input into the network for retraining, 

we can get the average testing classification performance of 

model M for all subjects in SPCNN shown as Table Ⅷ. 

 

Table Ⅸ. The cross-subject testing classification performance 

in final model.  

Freeze layer Training 
Parameters 

New data  Average accuracy/% 

0 133894 0 40.19 

10 62694 32 48.51 

10 62694 64 51.21 

10 62694 96 54.74 

10 62694 128 56.02 

In order to get the best scenario of the freeze and train 

strategy, the performance of model M is shown in Table Ⅸ in 

the case of different fused data volumes. The experimental 

results show that the average accuracy reaches 48.51% when 

the new data volume is 32, which is 8.32% higher than that 

without using the freeze and train strategy. Furthermore, the 

new data volume increases to 64 and 96 respectively, and the 

average accuracy raises to 51.21% and 54.74% accordingly. 

By this trend, when the data volume is 128, the accuracy 

slightly increases by about 2%. Compared with the previous 

results, the method of transfer learning not only makes it 

possible to use the model across subjects, but also improves 

the classification accuracy by 10%. We also find the 

parameters are reduced from the original 133894 to 62694 

through the freeze and train strategy. The number of 

parameters are reduced by more than 50%, which not only 

saves the training time of the model, but also reduces the 

difficulty of experimental data collection. Specific difficulties 

include (a) the state of nervous exhaustion of subjects and the 

accuracy of data collection caused by the long periods of 

concentration in the experiment and (b) the labeling workload. 

It also improves the accuracy of the cross-subject model 

evaluating, increases the universality of the model, and 

enables the network to be verified in all aspects. From the 

results, these prove that the SPCNN model can reach a 

satisfied accuracy level by a certain freeze tactic. This is used 

to overcome the intra-subject difference and save modelling 

time consumption even a model already built within subject, 

which would be used to test another subject. 

 

3.3.3 Different frequency domain and time domain 

scenarios 

Frequency domain difference. In the above experiment, in 

order to obtain sufficient data and rich MI-EEG signal 

characteristics, we select 0.5-100Hz data segment. Next, we 

filter out the part of frequency band and retain different 

frequency bands to explore the instructive frequency domain 

in classification results. The whole band is divided into the 

core band (α band), the secondary band (β band) and the rest 

band (γ band) according to their importance. To avoid the 
effect of large filter frequency on the experimental results, we 

set the filter bands to α(8-13Hz), β(14-30Hz), γ1(31-50Hz), γ2 
(51-70Hz) and γ3 (71-100Hz) respectively. Taking the fifth 

model established by the 10-fold cross method of Subject 3 as 

an example, confusion matrices are drawn under different 

conditions. The experimental results are shown in Fig. 7. 

It can be seen from Fig. 7 that the average classification 

accuracy of the four kinds of MI-EEG signals in the testing set 

is 90.97% when the whole band is retained. When α band is 
filtered out, the accuracy slightly decreased to 89.83%, with a 

significant 8.1% reduction in the accuracy of MI classification 

for the foot. When β band is filtered out, the average 
classification accuracy drops to 40.28%, making it impossible 

to classify the tongue correctly. Conversely, when three 

unrelated bands are filtered, the average classification 

accuracy varies little compared with the original accuracy. 

Further enlarges the band filter range, divides the signal into 

useful and unnecessary bands according to the band, and 

draws the confusion matrix as shown in Figure 8.  

Fig. 8 shows that when the unnecessary band is filtered out, 

the average classification accuracy reaches 91.32%, which is 

similar to the average classification accuracy before filtering. 

When the chief band is completely filtered out, the average 

classification accuracy is as low as 34.38%, which is lower 

than that of β band filtered alone. The experimental results are 

consistent with the law of MI-EEG signals, and the validity of 

the network is verified in frequency domain. 

Time domain difference. In the experiment, we set 4 s of 

the cue appearance and the whole MI process as the 

experimental data, and further divide it into the first 2 s and 

the last 2s. In order to avoid the influence of the amount of 

data on the experimental results, each part of the data is 

repeated once to ensure that the total sampling point is 1000. 
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The experimental results are shown in Table Ⅸ. 

 

 

 
(a)                                        (b) 

 
(c)                                        (d) 

 
(e)                                        (f) 

Fig. 7.  Confusion matrixes of the SPSCNN evaluated with 

different frequency bands filtered. (a) Unfiltered 

(Acc=90.97%); (b) α band filtered (Acc=89.93%); (c) β band 
filtered (Acc=40.28%); (d) γ1 band filtered (Acc=91.32%); (e) 
γ2 band filtered (Acc=90.28%); (f) γ3 band filtered 
(Acc=90.97%). 

 

 
(a)                                        (b) 

Fig. 8. Confusion matrixes of the SPCNN evaluated with 

different frequency bands filtered (wider range). (a) The chief 

band filtered (Acc=40.28%); (b) The unnecessary band 

filtered (Acc=91.32%). 

 

Table Ⅹ. Time domain validity test. 

Time domain 
interval 0 – 2 s 2 – 4 s 0 – 4 s 

Accuracy/% 87.50 71.88 96.88 

Loss 0.35 0.81 0.33 

 

Table Ⅸ shows the results of the first trial in 10-fold cross 

method conducted by subject 1. The experimental results 

show that the model accuracy of the complete data is 96.88%, 

and the model accuracy of 0-2s segment is 87.5%, and that of 

2-4s segment is 71.88%. It illustrates that the data segment 

within 0-2s contains more abundant classification information, 

which is consistent with the general law of MI-EEG signal. At 

the same time, the data within 2-4s also plays a certain 

auxiliary role in classification. It is proved that the network is 

effective in time domain. 

Discussions 

4.1 Advancement of SPCNN 

4.1.1 Advancement of our innovative structure 

In this paper, through the parallel feature extraction layer, 

we use different scales to extract deep-level space-temporal 

features, and get more abundant signal features, which has a 

positive effect on the further classification of subsequent 

networks. As an innovative structure of the network, the 

experiments are carried out before and after removing parallel 

parts to verify its advancement. The experimental results are 

shown in Table Ⅹ. 

 

Table Ⅺ. Parallel feature extraction layer testing. 

parallel feature 
extraction layer Yes No 

Accuracy/% 96.88 84.38 

Loss 0.33 0.63 

Table Ⅹ shows the results of the first trial in 10-fold cross 

method conducted by subject 1. The experimental results 

show that the accuracy of the model is reduced by 12.9% when 

the parallel structure is removed, and the loss of the model is 

almost twice as much as the original. It illustrates that the 

deep-level features of parallel feature extraction layer are very 

important for the final classification result, and also shows the 

advancement of the structure. 

 

4.1.2 Advancement of our overall structure 

In the early stage of network construction, the parameters 
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of parallel feature extraction layer have been adjusted, and the 

current parameter setting is the best. Therefore, this part 

mainly optimizes the parameters of serial feature extraction 

layer, including the number optimization of temporal filter and 

spatial filter. The parameter adjustment and its effect are 

shown in Table Ⅺ. 

Table Ⅻ. Parameter adjustment and effect. 

TimeConv 20 (1,13) 20 (1,13) 40 (1,13) 40 (1,13) 
SpaceConv 20 (22,1) 40 (22,1) 40 (22,1) 80 (22,1) 

Model 
accuracy/% 

82.09 81.80 82.74 83.56 

Model loss 0.48 0.48 0.48 0.47 

Parameter 31134 53694 71654 134374 

Testing 
accuracy/% 

71.78 72.08 72.30 72.13 

 

It can be concluded from Table Ⅺ that when the number of 

spatial filters is twice that of temporal filters, the highest 

accuracy of the model reaches 83.56%, and the highest 

evaluating accuracy of the model reaches 72.3% when the 

number of both kinds of filters is set as 40. This proves that 

when the number of both filters is set to 40, the model is 

generally applicable with fewer parameters. However, in 

general, the overall structure we propose is superior to other 

networks in terms of different number of filters, which proves 

the advancement of our method. 

4.2 Theoretical Consistency of SPCNN 

To demonstrate the effectiveness of the network, we verify 

it in the frequency domain and time domain. The experimental 

results show that the law of the network in different frequency 

domain and time domain is consistent with the theory.  

Frequency domain difference. Studies have shown that 

the different states of the human brain mainly correspond to 

four types of brain waves: δ(0.5-3Hz), θ(4-8Hz), α(8-13Hz), 

and β(14-30Hz). For different types of MI-EEG signals, their 

β bands have the distinctive differences, so β band is used as 
the core for classification, α band is also important, and the 
other bands with the less influence are called the secondary 

band here. 

Time domain difference. Early research on EEG signals 

shows that the important classification information time 

period of MI-EEG signals is within the first 2s of imagination. 

With the progress of the experiment, the sensitivity of 

classification results to the latter part of the data also decreased. 

Therefore, we divide the whole data into 1-2 s segment and 2-

4 s segment. Experimental results show that the classification 

accuracy of the first 2 s is higher than that of the last 2 s, which 

is consistent with the theory. However, the classification 

accuracy of the whole data segment is the highest, which 

indicated that the insensitive data segment still has a certain 

auxiliary effect on the classification. More effective MI-EEG 

signal data is conducive to classification. 

4.3 Necessity of Transfer Learning applied across 

subject 

Our paper realizes the cross-subject application of the 

model through the freeze and train strategy in transfer learning, 

and improves the accuracy of cross-subject testing to some 

extent. It is necessary in the case of insufficient MI-EEG data 

and low experimental acquisition efficiency. By establishing 

a basic model of MI-EEG signal, different subjects are 

subsequently integrated into some of their own data for model 

retraining, which not only increased the universality of the 

model, but also reduced the data acquisition time and required 

data. 

4.4 Limitation and prospect 

At present, there are still many limitations in this field. Two 

of the most typical problems are: (a) the amount of data is 

insufficient, this could be solved by importing more data, like 

high gamma dataset for MI in [37]; (b) the network 

architecture is lack of generality and explain ability. Due to 

the specification limitation of experimental equipment and 

human subject fatigue in the process of MI, the amount of MI-

EEG signal needs to be expanded. In this paper, although the 

sampling points of the whole process from the beginning of 

the clue to the end of the imagination are selected as far as 

possible, but compared with other deep learning-related 

applications, such as image processing, the amount of data is 

still too small. Another common issue is the stationarity 

preservation of MI EEG data. We may take the gradient 

descent on an orthogonal manifold as a meaningful reference 

to enforce the stationarity of EEG [38-39], which could 

improve the accuracy. Also, there are some points we can 

improve even though we made the frequency band dependent 

model performance evaluation. The fixed hyperparameter 

based modern models could outperform that utilize variable 

hyperparameter networks for each subject. Also, the based on 

their similar performance results with simple model, our 

SPCNN may could be optimized in further to shrink 

efficiently. 

In the future work, we will study some data augmentation 

methods to enrich the data set. On the one hand, Gaussian 

noise with different distributions can be added, but 

considering the non-stationary characteristics of EEG signals, 

it is further considered to add noise to the amplitudes of EEG-

signals’ spectral image to achieve data enhancement [40,41]. 

On the other hand, the empirical mode decomposition method 

can be used to decompose the original signal into multiple 

components, and then the components can be recombined to 

form a new EEG signal sample [42]. And the method of 

generating adversarial network can also be used to generate 

new EEG signal samples without supervision and realize 

sample expansion more intelligently [43].  
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At the same time, the EEG signals of different individuals 

are quite different, and the characteristics of different brain 

power sources are also inconsistent. The network which takes 

a lot of time to train couldn’t adapt to various situations. In 
this paper, we adopt a freeze and train strategy in transfer 

learning. By pre-training a basic model, we freeze the serial 

module of SPCNN, and then retrain the model after merging 

some new data, which not only saves the training time, but 

also reduces the needed parameters, solving the above 

problems to some extent. There are several other methods of 

transfer learning which are expected to be applied to cross-

subject testing of EEG signals in the future. The model can 

automatically adapt to the data characteristics of different 

subjects by domain adaptation method [44]. Subspace 

learning can map the data in the source domain and target 

domain to another space for geometric or statistical operations, 

so as to discover the hidden structure and features of the data 

and realize the prediction of the target domain label [45]. 

However, we need to clarify that the transfer learning in our 

paper is pretty basic. The transfer policy should be adaptive to 

overcome the inter-subject difference. The policy could give 

clear learning target and constraints for model optimization. 

Currently, we just focus on the MI recognition accuracy, but 

the substantial conditions and goals are not well mentioned. 

Also, the model transfer tactic needs to be improved by 

introducing more advanced algorithm. The freeze and retrain 

skill is not parameter-wise tuneable. And subject difference 

should be mapped into the source and target domain 

adaptation representation, thus improving the learning 

capability efficiently. 

In addition, more analysis on some other dataset should 

conducted. It can improve our method generalizability in 

different scenarios based on more and more data, therefore 

facilitates our future work related with human brain to 

machine interface application. We are undertaking our own 

customized experimental work now. And this can improve our 

method capability. Moreover, with the rapid development of 

BCI, people are more sensitive to the real-time performance 

of BCI, and the requirements for the accuracy of EEG 

classification are higher. In the future, we will also consider to 

improve the accuracy of classification based on deep learning 

method and apply it to online BCI, so as to realize more 

intelligent and rich human-computer interaction system. 

Conclusion 

In this work we propose a convolutional neural network 

with serial-parallel structure for MI-EEG signals decoding. 

Our SPCNN adopts two different structures and extracts the 

time-frequency and spatial features of MI-EEG signals 

comprehensively with different scales. Combined with 

transfer learning, the pre-trained universal model can be 

quickly retrained and the final training model obtained can be 

applied across subjects. Compared with other mainstream 

networks, the network in this paper is proven to be effective. 

The experimental results show that our work consistent with 

the theory, reduce the complexity of signal processing, and 

increase the model generality. Our model and strategy show 

great potential for the future application of BCI area. 
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