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Abstract: This paper provides a detailed study of 4-dimensional Chern-Simons the-
ory on R2 × CP1 for an arbitrary meromorphic 1-form ω on CP1. Using techniques
from homotopy theory, the behaviour under finite gauge transformations of a suitably
regularised version of the action proposed by Costello and Yamazaki is investigated.
Its gauge invariance is related to boundary conditions on the surface defects located at
the poles of ω that are determined by isotropic Lie subalgebras of a certain defect Lie
algebra. The groupoid of fields satisfying such a boundary condition is proved to be
equivalent to a groupoid that implements the boundary condition through a homotopy
pullback, leading to the appearance of edge modes. The latter perspective is used to
clarify how integrable field theories arise from 4-dimensional Chern-Simons theory.
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1. Introduction

Integrable field theories in 2 dimensions are characterised by the existence of an on-
shell flat connection that depends meromorphically on an auxiliary Riemann surface,
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typically the Riemann sphere CP1. Such a Lax connection is often found by some clever
guesswork, hence its origin is usually rather mysterious.

More recently, new approaches have been developed that provide very interesting
algebraic and/or geometric explanations for the origin of Lax connections. From an
algebraic perspective, 2-dimensional classical integrable field theories can be described
in the Hamiltonian formalism as particular representations of Gaudin models associated
with affine Kac-Moody algebras [Vic1]. From a geometric perspective, it was realised by
Costello and Yamazaki [CY] that classical integrable field theories on a 2-dimensional
manifold � arise as specific solutions to a 4-dimensional generalisation of Chern-Simons
theory, see also [Cos1,Cos2,Wit,CWY1,CWY2] for earlier works on this subject and
[Vic2] for a relation to affine Gaudin models. The Lagrangian of the latter theory is
given by ω ∧ CS(A), where ω is a (fixed) meromorphic 1-form on CP1 and CS(A)

is the Chern-Simons 3-form for a g-valued 1-form A living on the product manifold
X = � × C , where C is the Riemann sphere with the zeroes of ω removed to allow
A to have singularities there. In this approach, different integrable field theories on �

are obtained from different choices of meromorphic 1-forms ω together with suitable
boundary conditions on the surface defects � × {x} ⊂ � × CP1 located at the poles x

of ω. In particular, the equations of motion for the g-valued 1-form A in the bulk, i.e.
away from the poles of ω, admit meromorphic solutions with poles at the zeroes of ω,
which correspond to the Lax connection of the integrable field theory.

The goal of the present paper is twofold. First, we provide a detailed and rigorous
study of the 4-dimensional Chern-Simons action of [CY], its invariance under finite

gauge transformations, and the structure of boundary conditions on the surface defects.
For this we consider an arbitrary meromorphic 1-form ω on CP1, with an arbitrary finite
set of poles z ⊂ CP1 with each pole x ∈ z having an arbitrary order nx ∈ Z≥1, which
generalises considerably the cases of simple and double poles studied previously, see e.g.
[CY,DLMV2]. (We would like to emphasise that, in the presence of higher order poles,
the 4-dimensional Chern-Simons Lagrangian has to be regularised as in (3.3) in order to
be locally integrable near each surface defect.) After a series of technical preparations
in Sects. 2 and 3, our main result is Theorem 4.2, where we prove that the regularised
4-dimensional Chern-Simons action defines a gauge invariant function on the groupoid
Fbc(X) of bulk fields A and their gauge transformations g : A → g A, both subject to
certain boundary conditions on the surface defects, cf. (4.2). The boundary conditions
we consider are determined by a choice of Lie subalgebra k ⊂ ĝz of the Lie algebra
ĝz of the product of jet groups G ẑ =

∏
x∈z J nx −1G, where nx ≥ 1 is the order of the

pole x ∈ z of ω, that is isotropic with respect to a non-degenerate symmetric invariant
bilinear form 〈〈·, ·〉〉ω defined in terms of ω. We note in passing that the appearance of jet
groups has also been observed before in examples of conformal field theories, see [BR]
and [Que].

The second goal of this paper is to clarify the passage from 4-dimensional Chern-
Simons theory to 2-dimensional integrable field theories that was proposed in [CY];
see also [DLMV2] for some previous clarifications. The crucial new ingredient in our
approach is Theorem 4.3, which proves that the groupoid Fbc(X) of bulk fields with
boundary conditions in (4.2) is equivalent to the groupoid F(X) in (4.5) whose objects
are compatible pairs (A, h) consisting of a bulk field A and an edge mode h : � → G ẑ

on � with values in the product of jet groups G ẑ =
∏

x∈z J nx −1G. The groupoid F(X)

arises naturally by implementing the boundary conditions on the surface defects by a
homotopy pullback (4.4) in the model category of groupoids, cf. [MMST]. Using this
equivalence of groupoids, we can transfer the regularised 4-dimensional Chern-Simons
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action (3.3) to a gauge invariant action Sext
ω on the groupoid F(X), whose explicit form

(4.7) justifies the interpretation of the edge mode h : � → G ẑ as the field content of a
field theory on �.

The passage to a 2-dimensional integrable field theory consists of finding a specific
solution A = L to the bulk equation of motion determined by (4.7) that qualifies as a Lax
connection. Specifically, we introduce a subgroupoid FLax(X) of F(X) whose objects
are compatible pairs (L, h), where the bulk field L is meromorphic with poles at the
zeroes of ω on account of the bulk equation of motion and is admissible in the sense that
the defect equation of motion can be lifted to a flatness condition for L on the whole of
X , cf. (5.7). We also introduce in (5.8) a groupoid F2d(�) for the integrable field theory
itself, whose objects consist only of an edge mode h : � → G ẑ . We prove in Corollary
5.8 that the forgetful functor FLax(X) → F2d(�) is an equivalence of groupoids if and
only if, for each h : � → G ẑ , there exists a unique connection L(h) such that the pair
(L(h), h) belongs to FLax(X). In this case one is able to transfer the action on F(X) all
the way down to F2d(�) to obtain the action for an integrable field theory on � whose
Lax connection is L(h). Unique solutions L to the compatibility condition on the pair
(L, h) have been shown to exist in the case of single and double poles in [CY,DLMV2].
We do not address the issue of solvability of this condition in the general setting of the
present work.

Let us briefly outline the content of this paper. In Sect. 2 we study 4-dimensional
Chern-Simons theory and its gauge transformations for simple poles in ω. This is gen-
eralised in Sect. 3 to the case of general poles. In Sect. 4 we link gauge invariance of the
action to suitable boundary conditions and realise that an equivalent description involv-
ing also edge modes can be obtained. This equivalent perspective is used in Sect. 5 to
explain how integrable field theories emerge from 4d Chern-Simons theory as particular
partial solutions.

Notations and conventions:

Let G be a simply connected matrix Lie group over C and let g denote its Lie algebra.
We fix a non-degenerate invariant symmetric bilinear form 〈·, ·〉 : g × g → C.

Let ω be a meromorphic 1-form on CP1. We denote by ζ ⊂ CP1 its finite subset
of zeroes and by z ⊂ CP1 its finite subset of poles. We shall assume that ω has at
least one zero, namely |ζ | ≥ 1. This implies that ω has at least three poles (counting
multiplicities) and so, in particular, |z| ≥ 1.

Let � := R2 and C := CP1 \ ζ . We consider the 4-dimensional manifold

X := � × C.

We fix a global holomorphic coordinate z : C → C on C , which exists because it is
assumed that |ζ | ≥ 1. We can represent the 1-form ω in this coordinate as

ω =
∑

x∈z

nx −1∑

p=0

kx
p dz

(z − x)p+1
, (1.1)

where kx
p ∈ C, for each p = 0, . . . , nx − 1, and nx ∈ Z≥1 is the order of the pole x ∈ z.

By a slight abuse of notation, we shall denote by ω also the pullback along the projection
pC : X → C of the restriction of ω to C .
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Using the Cartesian product structure of X and the complex structure on C , we obtain
a triple grading on the vector space of differential forms

�•(X) =

2⊕

r=0

1⊕

s,s̄=0

�r,s,s̄(X) (1.2)

and the corresponding decomposition of the de Rham differential as dX = d� + ∂ + ∂̄ .
To simplify notation, we often denote dX simply by d.

2. Simple Poles in ω

To begin with, we shall assume in this section that all the poles of ω are simple, i.e.
we take nx = 1 for all x ∈ z. The case with higher order poles in ω will require a
regularisation of the action, which we shall return to in Sect. 3.

2.1. Action. Consider the 4-dimensional Chern-Simons action [CY]

Sω(A) =
i

4π

∫

X

ω ∧ CS(A), (2.1)

where A ∈ �1(X, g) is a smooth g-valued 1-form on X and CS(A) := 〈A, d A +
1
3
[A, A]〉 ∈ �3(X) is the Chern-Simons 3-form.

Since ω is the pullback along pC : X → C of a meromorphic 1-form on C with
poles in z, it is singular on the disjoint union of surface defects

D := � × z =
⊔

x∈z

�x , (2.2)

where �x := � × {x} for every pole x ∈ z. Later we shall make use of the embeddings
of the individual surface defects �x , for each x ∈ z, and of the disjoint union D, which
we denote respectively by

ιx : �x →֒ X, ι : D →֒ X. (2.3)

The following lemma shows that the 4-form ω ∧ CS(A) ∈ �4(X \ D) is locally
integrable near D.

Lemma 2.1. For any η ∈ �3(X), the 4-form ω ∧ η ∈ �4(X \ D) is locally integrable

near the surface defect �x associated with any simple pole x ∈ z of ω.

Proof. We can write η = ηz̄ ∧ dz̄ + ηz ∧ dz, where ηz̄ ∈ �2,0,0(X) and ηz ∈ �2(X).

Then ω ∧ η = ω ∧ dz̄ ∧ ηz̄ . Since x is a simple pole of ω, we can write ω =
kx

0
z−x

dz + ω̃,
where the meromorphic 1-form ω̃ on C is regular at x . In terms of polar coordinates
z = x + reiθ we then have ω ∧ dz̄ = −2ikx

0 e−iθ dr ∧ dθ + ω̃ ∧ dz̄, which is locally
integrable near x and hence so is ω ∧ η near �x ⊂ X . ⊓⊔
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2.2. Gauge transformations. Consider the left action of the group C∞(X, G)on�1(X, g)

defined by

C∞(X, G) × �1(X, g) −→ �1(X, g),

(g, A) �−→ g A := −dgg−1 + g Ag−1. (2.4)

Under a gauge transformation g : A → g A, the action (2.1) transforms as

Sω(g A) = Sω(A) +
i

4π

∫

X

ω ∧ d〈g−1dg, A〉 +
i

4π

∫

X

ω ∧ g∗χG, (2.5)

where χG := 1
6
〈θG , [θG , θG ]〉 ∈ �3(G) is the Cartan 3-form on G and θG ∈ �1(G, g)

denotes the left Maurer-Cartan form on G, so that g∗χG = 1
6
〈g−1dg, [g−1dg, g−1dg]〉.

Define the defect group G z and its Lie algebra gz as

G z :=
∏

x∈z

G, gz :=
∏

x∈z

g.

We endow gz with the non-degenerate invariant symmetric bilinear form

〈〈·, ·〉〉ω : gz × gz −→ C, 〈〈X, Y 〉〉ω :=
∑

x∈z

kx
0 〈Xx , Yx 〉, (2.6)

for every X = (Xx )x∈z, Y = (Yx )x∈z ∈ gz , where kx
0 ∈ C is the residue of ω at x ∈ z.

For g-valued 1-forms on D and smooth G-valued maps on D, we have the isomorphisms

�1(D, g) ∼=
∏

x∈z

�1(�x , g) ∼= �1(�, gz), (2.7a)

C∞(D, G) ∼=
∏

x∈z

C∞(�x , G) ∼= C∞(�, G z). (2.7b)

The pullbacks by the second embedding in (2.3) of g-valued 1-forms on X and of smooth
G-valued maps on X can therefore be thought of as maps

ι∗ : �1(X, g) −→ �1(�, gz), ι∗ : C∞(X, G) −→ C∞(�, G z).

Lemma 2.2. For any η ∈ �2(X), we have
∫

X

ω ∧ dη = 2π i
∑

x∈z

kx
0

∫

�x

ι∗xη.

Proof. Recalling our notations and conventions at the end of Section 1, we have
∫

X

ω ∧ dη =

∫

X

ω ∧ (d� + ∂̄)η =

∫

X

ω ∧ ∂̄η −

∫

X

d�(ω ∧ η),

where we used the decomposition of the de Rham differential dη = d�η + ∂η + ∂̄η and
the fact that ω is the pullback along pC : X → C of a meromorphic 1-form on C , hence
ω ∧ ∂η = 0 and d�(ω ∧ η) = −ω ∧ d�η. The second term in the equation displayed
above vanishes by Stokes’ theorem on �. The result now follows by the Cauchy-Pompeiu
integral formula. ⊓⊔
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Proposition 2.3. For any g ∈ C∞(X, G) and A ∈ �1(X, g), we have

∫

X

ω ∧ d〈g−1dg, A〉 = 2π i

∫

�

〈〈(ι∗g)−1d�(ι∗g), ι∗ A〉〉ω.

Proof. Applying Lemma 2.2, we obtain

∫

X

ω ∧ d〈g−1dg, A〉 = 2π i
∑

x∈z

∫

�x

kx
0

〈
(ι∗x g)−1d�x (ι

∗
x g), ι∗x A

〉
.

The result follows by definition (2.6) of the bilinear form on gz . ⊓⊔

By Proposition 2.3, the second term on the right hand side of (2.5) now manifestly de-
pends only on the defect fields ι∗g ∈ C∞(�, G z) ∼= C∞(D, G) and ι∗ A ∈ �1(�, gz) ∼=
�1(D, g). We will show in Proposition 2.8 below that the same is true for the third term
on the right hand side of (2.5). To prove this, we first need to introduce further notations
and techniques.

For a manifold M and a closed subset S ⊂ M with embedding ι : S →֒ M ,
let C0

S(M, G) (resp. C∞
S (M, G)) denote the set of continuous (resp. smooth) maps

g : M → G such that ι∗g = e, where by abuse of notation e denotes the constant map
S → G to the identity element e ∈ G.

Let I := [0, 1] ⊂ R denote the closed unit interval and define the maps jt :

M →֒ M × I, p �→ (p, t), for every t ∈ I . A relative continuous (resp. smooth)
homotopy between two maps g, g′ ∈ C0

S(M, G) (resp. g, g′ ∈ C∞
S (M, G)) is a map

H ∈ C0
S×I (M × I, G) (resp. H ∈ C∞

S×I (M × I, G)) such that

j∗0 H = g, j∗1 H = g′.

We write g ∼S g′ (resp. g ∼∞
S g′) and say that g and g′ are homotopic relative to S.

This defines equivalence relations ∼S on C0
S(M, G) and ∼∞

S on C∞
S (M, G).

Lemma 2.4. The canonical map

C∞
D (X, G)

/
∼∞

D −→ C0
D(X, G)

/
∼D

is a bijection.

Proof. Let g, g′ ∈ C∞
D (X, G) be such that g ∼D g′. By [Lee, Theorem 6.29], it follows

that g ∼∞
D g′. Hence, the given map is injective.

Now let g ∈ C0
D(X, G). Then ι∗g = e is smooth, so by [Lee, Theorem 6.26] it

follows that g ∼D g′ for some g′ ∈ C∞
D (X, G). Hence, the given map is surjective. ⊓⊔

Recall the projection pC : X → C . For any a ∈ �, we also consider the smooth
embedding ia : C →֒ X, z �→ (a, z). We have that pC (D) = z and ia(z) ⊂ D.

Lemma 2.5. For any a ∈ �, the maps

C0
D(X, G)

/
∼D C0

z (C, G)
/
∼z

i∗a

p∗
C

exhibit a bijection.
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Remark 2.6. The maps p∗
C and ι∗a are well-defined. Indeed, suppose more generally that

M , M ′ are topological spaces with closed subsets S ⊂ M , S′ ⊂ M ′ and corresponding
embedding maps ι : S →֒ M and ι′ : S′ →֒ M ′. Let f : M → M ′ be a continuous
map such that f (S) ⊂ S′. Then the pullback by f induces a map f ∗ : C0

S′(M ′, G) →

C0
S(M, G). Indeed, if g ∈ C0

S′(M ′, G) then f ∗g ∈ C0
S(M, G) since

ι∗ f ∗g = ( f ◦ ι)∗g = (ι′ ◦ f |S)
∗g = f |∗S ι′∗g = e,

where f |S : S → S′ is the restriction of f to S ⊂ M and in the final step we used the fact
that ι′∗g = e. Moreover, given any relative homotopy H ∈ C0

S′×I
(M ′ × I, G), we have

( f × id)∗ H ∈ C0
S×I (M × I, G) since (ι× id)∗( f × id)∗H = e by the same computation

as above. We therefore obtain a well-defined map between the relative homotopy classes
f ∗ : C0

S′(M ′, G)
/
∼

S′ → C0
S(M, G)

/
∼S , as required.

Proof of Lemma 2.5. Let a ∈ �. We have to show that i∗a and p∗
C are inverses of each

other. Since pC ◦ ia = idC , we have i∗a p∗
C = (pC ◦ ia)∗ = id.

Consider now ia ◦ pC : X → X . We have a continuous homotopy

H : X × I −→ X, (p, z, t) �−→
(
(1 − t)p + ta, z

)

between idX and ia ◦ pC . Note that H(D × I ) ⊂ D, in other words H ◦ (ι × id) =

ι ◦ H |D×I . For any g ∈ C0
D(X, G), the continuous map g ◦ H : X × I → G belongs

to C0
D×I (X × I, G) since

(ι × id)∗(g ◦ H) = g ◦ H ◦ (ι × id) = g ◦ ι ◦ H |D×I = (ι∗g) ◦ H |D×I = e.

In the final equality we used the fact that ι∗g = e since g ∈ C0
D(X, G). Moreover,

j∗0 (g ◦ H) = g and j∗1 (g ◦ H) = g ◦ ia ◦ pC = p∗
C i∗a g so that g ◦ H is a relative

continuous homotopy between g and p∗
C i∗a g, i.e. p∗

C i∗a g ∼D g. Hence p∗
C i∗a = id, as

required. ⊓⊔

Lemma 2.7. C0
z (C, G)

/
∼z is a singleton.

Proof. A relative continuous homotopy H ∈ C0
z×I (C × I, G) between two maps g, g′ ∈

C0
z (C, G) is a continuous path in the mapping space Mapz(C, G) from g to g′. Thus

C0
z (C, G)

/
∼z

∼= π0

(
Mapz(C, G)

)
.

Now fix any point x ∈ z. The inclusion i : z →֒ C induces a continuous map

i∗ : Map{x}(C, G) −→ Map{x}(z, G)

between based mapping spaces, whose fibre over the constant map e ∈ Map{x}(z, G) is
Mapz(C, G). Hence, we get a fibre sequence

Mapz(C, G) →֒ Map{x}(C, G)
i∗

−→ Map{x}(z, G).

Since i : z →֒ C is a cofibration, it follows that i∗ is a fibration and hence we obtain a
long exact sequence of homotopy groups

. . . −→ π1

(
Map{x}(z, G)

)
−→ π0

(
Mapz(C, G)

)
−→ π0

(
Map{x}(C, G)

)
−→ . . .
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Observe that π1(Map{x}(z, G)) ∼= π1(G)|z|−1 ∼= {∗} is trivial since G is assumed to

be simply connected. To compute π0(Map{x}(C, G)), we recall that C = CP1 \ ζ is

topologically a 2-sphere S2 with |ζ | ≥ 1 punctures. Hence, there exists a deformation

retract from C to a bouquet of circles
∨|ζ |−1

S1, where ∨ denotes the wedge sum (i.e.
categorical coproduct) of pointed topological spaces. It then follows that

π0

(
Map{x}(C, G)

)
∼= π0

(
Map{x}(S1, G)

)|ζ |−1 ∼= π1(G)|ζ |−1 ∼= {∗}

is trivial since G is assumed to be simply connected. From the long exact sequence we
conclude that π0(Mapz(C, G)) is a singleton, which completes the proof. ⊓⊔

Proposition 2.8. The integral
∫

X
ω ∧ g∗χG depends on g ∈ C∞(X, G) only through

ι∗g ∈ C∞(�, G z).

Remark 2.9. The present situation is to be contrasted with the usual WZ-term in the
WZW model action. Indeed, to even write the latter down one has to extend a field
g ∈ C∞(S2, G) to a field g̃ ∈ C∞(B3, G) on the 3-dimensional ball B3 with ∂ B3 = S2.
This is possible as π2(G) = 0 but the extension g̃ is not unique. The set of homotopy
classes of smooth maps g̃ ∈ C∞(B3, G) with g̃|S2 = g is measured by π3(G), which
for a simple Lie group G is given by π3(G) ∼= Z. For the extensions g̃ in different
homotopy classes, the integrals

∫
B3 g̃∗χG differ by integer multiples of a constant.

Proof of Proposition 2.8. For any g, h ∈ C∞(X, G), we have the Polyakov-Wiegmann
identity

(gh−1)∗χG = g∗χG − h∗χG + d〈g−1dg, h−1dh〉.

Using Lemma 2.2 and the definition of the bilinear form (2.6) on gz , we find
∫

X

ω ∧ d〈g−1dg, h−1dh〉 = 2π i
∑

x∈z

∫

�x

kx
0

〈
(ι∗x g)−1d�x (ι

∗
x g), (ι∗x h)−1d�x (ι

∗
x h)

〉

= 2π i

∫

�

〈〈(ι∗g)−1d�(ι∗g), (ι∗h)−1d�(ι∗h)〉〉ω.

In particular, if ι∗g = ι∗h then this vanishes by the skew-symmetry of the bilinear
pairing 〈〈·, ·〉〉ω : �1(�, gz) × �1(�, gz) → �2(�) on 1-forms. It follows that

∫

X

ω ∧ (gh−1)∗χG =

∫

X

ω ∧ g∗χG −

∫

X

ω ∧ h∗χG (2.8)

for any g, h ∈ C∞(X, G) such that ι∗g = ι∗h.
The latter condition can be equivalently stated as ι∗(gh−1) = e, or in other words

gh−1 ∈ C∞
D (X, G). By Lemmas 2.4, 2.5 and 2.7 we deduce that C∞

D (X, G)
/

∼∞
D is

a singleton. Hence, there exists a relative smooth homotopy H ∈ C∞
D×I (X × I, G)

between gh−1 and e ∈ C∞
D (X, G), i.e. j∗0 H = gh−1 and j∗1 H = e. Then

d

(∫

I

H∗χG

)
=

∫

I

d H∗χG =

∫

I

(
dX×I − dI

)
H∗χG (2.9)

= −

∫

I

dI H∗χG = j∗0 H∗χG − j∗1 H∗χG = (gh−1)∗χG ,

where in the second step dX×I = d + dI is the differential on �•(X × I ). In the third
equality we used the fact that H∗χG ∈ �3(X × I ) is closed, i.e. dX×I H∗χG = 0, and
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in the second last step we used Stokes’ theorem. In the final step we used the fact that
e∗χG = 0.

Taking the wedge product of (2.9) with ω and integrating over X we obtain, using
again Lemma 2.2,

∫

X

ω ∧ (gh−1)∗χG =

∫

X

ω ∧ d

(∫

I

H∗χG

)

= 2π i
∑

x∈z

kx
0

∫

�x ×I

(ιx × id)∗ H∗χG = 0. (2.10)

In the last equality we used the fact that (ιx × id)∗ H = e ∈ C∞(�x × I, G), for every
x ∈ z, and again that e∗χG = 0. Finally, by combining (2.10) with (2.8), it follows
that

∫
X

ω ∧ g∗χG =
∫

X
ω ∧ h∗χG for any g, h ∈ C∞(X, G) such that ι∗g = ι∗h. This

completes the proof. ⊓⊔

Recall the bilinear form 〈〈·, ·〉〉ω on the Lie algebra gz introduced in (2.6). We let

χG z := 1
6
〈〈θG z , [θG z , θG z ]〉〉ω ∈ �3(G z) denote the corresponding Cartan 3-form on G z ,

where θG z ∈ �1(G z, gz) is the left Maurer-Cartan form on G z . Since �1(G z, gz) ∼=∏
x∈z �1(G z, g), we can express θG z as a tuple (θ x

G)x∈z of g-valued 1-forms on G z . Here,

for each x ∈ z, θ x
G = π∗

x θG ∈ �1(G z, g) is the pullback of the left Maurer-Cartan form
θG on G along the canonical projection πx : G z → G onto the x-factor of G z . It then also
follows that χG z =

∑
x∈z kx

0 χ x
G , where χ x

G := 1
6
〈θ x

G, [θ x
G , θ x

G ]〉 = π∗
x χG ∈ �3(G z).

Proposition 2.10. For any g ∈ C∞(X, G), we have

∫

X

ω ∧ g∗χG = −2π i

∫

�×I

ĝ∗χG z ,

where ĝ ∈ C∞(� × I, G z) is any lazy homotopy between ι∗g ∈ C∞(�, G z) and the

constant map e ∈ C∞(�, G z).

Proof. First we note that since � = R2 is contractible and G z is connected, as G is,
there exists a lazy homotopy ĝ ∈ C∞(� × I, G z) between ι∗g and e, namely such that
ĝ(−, t) = ι∗g for t near 0 and ĝ(−, t) = e for t near 1.

Let us denote by � the unit disc and by ̺ : � → I the radial coordinate. Let �x ⊂ C

be disjoint discs around each x ∈ z. We then have the following isomorphism

C∞

(⊔

x∈z

� × �x , G

)
∼=

∏

x∈z

C∞(� × �x , G) ∼= C∞(� × �, G z).

Consider (id� ×̺)∗ĝ ∈ C∞(�×�, G z), regard it as a smooth map
⊔

x∈z �×�x → G

under the above isomorphism and extend the latter to the whole of X by the identity
e ∈ G. By construction, this defines a smooth map g̃ ∈ C∞(X, G) such that ι∗g̃ =

ι∗g ∈ C∞(�, G z). (Note that g̃ is smooth because ĝ is lazy.) By Proposition 2.8, we
deduce ∫

X

ω ∧ g∗χG =

∫

X

ω ∧ g̃∗χG .

It remains to compute the integral on the right hand side. This can be done directly as in
[DLMV2, §3.3]. In view of generalising this computation to the higher order pole case
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later in Sect. 3, it is useful to repeat it in the present language. We find

∫

X

ω ∧ g̃∗χG =
∑

x∈z

∫

�×�x

ω ∧ g̃∗χG =
∑

x∈z

∫

�×�x

ω ∧ d

(
−

∫

γz

g̃∗χG

)

= −2π i
∑

x∈z

kx
0

∫

�x

∫

γx

g̃∗χG = −2π i
∑

x∈z

kx
0

∫

�×I

ĝ∗χ x
G = −2π i

∫

�×I

ĝ∗χG z .

The first equality follows from noting that g̃∗χG vanishes outside of
⊔

x∈z �×�x ⊂ X .
In the second step, we used the fact that g̃∗χG is closed, hence exact on the contractible
subspaces � × �x ⊂ X . In particular, the value of an explicit primitive −

∫
γz

g̃∗χG at

the point (p, z) ∈ � ×�x is given by the integral along a radial path γz : I → �x from
(p, z) to a point (p, z0) lying on the boundary of � × �x . In the third equality we used
Lemma 2.2. In the second last step we used the identification of �x × γx (I ) with � × I

and that of g̃ : �x × γx (I ) → G with πx ◦ ĝ : � × I → G. The last equality follows
from the identity χG z =

∑
x∈z kx

0 χ x
G . ⊓⊔

3. Higher Order Poles in ω

We would like to extend the constructions of Sect. 2 to the case when the meromorphic
1-form ω has higher order poles. The immediate problem we face is that ω ∧ CS(A)

is not locally integrable around such a higher order pole x . We will therefore begin
by introducing a regularisation of the action (2.1). A closely related approach to the
regularisation of integrals on Riemann surfaces appeared in [LZ] shortly after the first
version of this paper became available.

3.1. Regularised action. Let n := max {nx }x∈z denote the maximal order among all
the poles of ω. Consider the Weil algebra T n := C[ε]/(εn) of order n. (If nx = 1 for
all x ∈ z then n = 1 and hence T n ∼= C.)

For each T n-valued r -form ζ =
∑n−1

p=0 ζp ⊗ ε p ∈ �r (X) ⊗C T n , we define the

regularised wedge product with ω (cf. (1.1)) as

(ω ∧ ζ )reg :=
∑

x∈z

nx −1∑

p=0

kx
p dz

z − x
∧ ζp ∈ �r+1(X \ D), (3.1)

where D =
⊔

x∈z �x ⊂ X is defined in (2.2) as the disjoint union of the surface defects
�x = � × {x}. As a consequence of Lemma 2.1, we obtain

Corollary 3.1. For any ζ ∈ �3(X)⊗C T n , the 4-form (ω∧ζ )reg ∈ �4(X \ D) is locally

integrable near D.

We have the morphism of vector spaces (or C∞-rings in the case r = 0)

j∗X : �r (X) −→ �r (X) ⊗C T
n, η �−→

n−1∑

p=0

1

p!
∂

p
z η ⊗ ε p, (3.2)

given by the holomorphic part of the (n − 1)-jet prolongation of smooth r -forms on X ,
for any r = 0, . . . , 4. The regularised wedge product (3.1) can be related as follows to
the ordinary wedge product.
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Lemma 3.2. For any η ∈ �3(X), we have a decomposition

ω ∧ η = (ω ∧ j∗Xη)reg + dψ,

where ψ ∈ �3(X \ D) is singular on �x for x ∈ z if nx > 1 and ψ = 0 if n = 1.

Proof. We can rewrite (1.1) as

ω =
∑

x∈z

nx −1∑

p=0

(−1)p

p!
∂

p
z

(
kx

p

z − x

)
dz.

Taking the wedge product with η, it then follows from the Leibniz rule that

ω ∧ η =
∑

x∈z

nx −1∑

p=0

p∑

r=0

(−1)p−r

r !(p − r)!
dz ∧ ∂

p−r
z

(
kx

p

z − x
∂r

z η

)
.

The terms with r = p yield (ω ∧ j∗Xη)reg. All of the remaining terms in the sum over r

can be written as the de Rham differential of

ψ =
∑

x∈z

nx −1∑

p=0

p−1∑

r=0

(−1)p−r

r !(p − r)!
∂

p−1−r
z

(
kx

p

z − x
∂r

z η2,0,1

)
,

where η2,0,1 ∈ �2,0,1(X) denotes the (2, 0, 1)-component of η ∈ �3(X) with respect
to the grading in (1.2). This ψ is singular on �x if nx > 1 and vanishes if nx = 1 for all
x ∈ z. ⊓⊔

In the case when ω has higher order poles, Lemma 3.2 and Corollary 3.1 motivate
the following definition of the regularised action

Sω(A) :=
i

4π

∫

X

(
ω ∧ j∗X CS(A)

)
reg

. (3.3)

This reduces to the action (2.1) of [CY] in the case when ω only has simple poles.

3.2. Gauge transformations. Under a gauge transformation g : A → g A as in (2.4), the
regularised action (3.3) transforms as (cf. (2.5))

Sω(g A) = Sω(A) +
i

4π

∫

X

(
ω ∧ j∗X d〈g−1dg, A〉

)
reg

+
i

4π

∫

X

(
ω ∧ j∗X (g∗χG)

)
reg

,

(3.4)

where the Cartan 3-form χG ∈ �3(G) on G was defined in Sect. 2.2.
Consider the Weil algebra T

nx
x := C[εx ]/(ε

nx
x ) of order nx , the order of the pole

x ∈ z of ω. (Note that for a simple pole nx = 1 and thus T
nx

x
∼= C.) We denote

by ℓT
nx

x the locus of the Weil algebra, which is a formal manifold in the context of
synthetic differential geometry [Koc]. Loosely speaking, one should think of ℓT

nx
x as

an infinitesimal thickening of the point x ∈ z. In the present setting, the surface defects
�x of Sect. 2.1 are replaced by formal manifolds

�nx
x := � × ℓT nx

x ,
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for each x ∈ z. The disjoint union of the surface defects �x in (2.2) is then replaced by
the disjoint union of their infinitesimal thickenings �

nx
x , namely

D̂ :=
⊔

x∈z

�nx
x .

For each x ∈ z, we have a morphism of C∞-rings

j∗x : C∞(X) −→ C∞(�x ) ⊗C T
nx

x , f �−→

nx −1∑

p=0

1

p!
ι∗x (∂

p
z f ) ⊗ ε

p
x , (3.5a)

given by pulling back along ιx : �x → X the holomorphic part of the (nx − 1)-jet
prolongation of the smooth function f . It defines a morphism of formal manifolds

jx : �nx
x −→ X. (3.5b)

The canonical induced morphism

j∗ : C∞(X) →
∏

x∈z

C∞(�x ) ⊗C T
nx

x (3.6a)

to the product of C∞-rings defines a morphism of formal manifolds

j : D̂ −→ X. (3.6b)

The pair of morphisms (3.5b) and (3.6b) play an analogous role to the embeddings (2.3)
in the higher pole case.

We generalise the definition of the defect group G z and its Lie algebra gz from
Sect. 2.2 to the case of higher order poles as follows. Recall that, for each k ≥ 1, the
mapping space C∞(ℓT k, M) from ℓT k to a manifold M is a manifold, namely the total
space of the bundle of (k − 1)-jets of curves in M . We define the defect group G ẑ and
its Lie algebra ĝz as

G ẑ :=
∏

x∈z

C∞(ℓT nx
x , G), ĝz :=

∏

x∈z

g ⊗C T
nx

x . (3.7)

Since G ⊆ GLN (C) is assumed to be a matrix Lie group, the defect group G ẑ admits
a presentation as a subgroup of the product

∏
x∈z GLN (T

nx
x ) of general linear groups

with entries in the Weil algebras T
nx

x .

We endow g ⊗C T
nx

x with the non-degenerate invariant symmetric bilinear form

〈·, ·〉 :
(
g ⊗C T

nx
x

)
×

(
g ⊗C T

nx
x

)
−→ C, 〈X ⊗ ε

p
x , Y ⊗ ε

q
x 〉 := kx

p+q 〈X, Y 〉. (3.8)

Non-degeneracy follows from the fact that kx
nx −1 �= 0, by definition of nx . This then

extends to a non-degenerate invariant symmetric bilinear form on ĝz , which we denote
by

〈〈·, ·〉〉ω : ĝz × ĝz −→ C. (3.9)

In the case when ω has only simple poles this definition reduces to (2.6).
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We have the isomorphisms

�1(D̂, g) :=
∏

x∈z

�1(�, g ⊗C T
nx

x ) ∼= �1(�, ĝz), (3.10a)

C∞(D̂, G) :=
∏

x∈z

C∞
(
�, C∞(ℓT nx

x , G)
)

∼= C∞(�, G ẑ). (3.10b)

By virtue of the isomorphism (3.10a), the pullback of smooth g-valued 1-forms on X

by the morphism (3.6b) induces a map, cf. (3.5a),

j∗ : �r (X, g) −→ �r (�, ĝz), η �−→

( nx −1∑

p=0

1

p!
ι∗x (∂

p
z η) ⊗ ε

p
x

)

x∈z

, (3.11)

for each r = 0, . . . , 4. Likewise, the pullback of smooth G-valued maps on X by (3.6b)
induces a map

j∗ : C∞(X, G) −→ C∞(�, G ẑ), g �−→

( nx −1∑

p=0

1

p!
ι∗x (∂

p
z g) ⊗ ε

p
x

)

x∈z

, (3.12)

where the presentation G ẑ ⊆
∏

x∈z GLN (T
nx

x ) as a matrix Lie group is understood.
Using the Leibniz rule, one easily proves that j∗ is a group homomorphism, i.e.

j∗(g′ g) = ( j∗g′) ( j∗g), (3.13)

for all g, g′ ∈ C∞(X, G).

The following result extends Lemma 2.2 to the case of higher order poles.

Lemma 3.3. For any ζ =
∑n−1

p=0 ζp ⊗ ε p ∈ �2(X) ⊗C T n , we have

∫

X

(ω ∧ dζ )reg = 2π i
∑

x∈z

nx −1∑

p=0

kx
p

∫

�x

ι∗xζp.

Proof. Since dζ =
∑n−1

p=0 dζp ⊗ ε p, using the definition (3.1) we find

∫

X

(ω ∧ dζ )reg =
∑

x∈z

nx −1∑

p=0

∫

X

kx
p dz

z − x
∧ dζp = 2π i

∑

x∈z

nx −1∑

p=0

kx
p

∫

�x

ι∗xζp,

where in the second equality we used Lemma 2.2. ⊓⊔

We may now rewrite the second term on the right hand side of (3.4) as follows.

Proposition 3.4. For any g ∈ C∞(X, G) and A ∈ �1(X, g), we have

∫

X

(
ω ∧ j∗X d〈g−1dg, A〉

)
reg

= 2π i

∫

�

〈〈( j∗g)−1d�( j∗g), j∗ A〉〉ω.
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Proof. It follows from Lemma 3.3 that

∫

X

(
ω ∧ j∗X d〈g−1dg, A〉

)
reg

= 2π i
∑

x∈z

nx −1∑

p=0

kx
p

∫

�x

ι∗x

(
1

p!
∂

p
z

〈
g−1dg, A

〉)
.

Applying the Leibniz rule to the right hand side, we find

2π i
∑

x∈z

nx −1∑

p=0

p∑

r=0

∫

�x

kx
p

〈 1

r !
ι∗x
(
∂r

z (g−1dg)
)
,

1

(p − r)!
ι∗x
(
∂

p−r
z A

)〉

= 2π i
∑

x∈z

nx −1∑

p=0

p∑

r=0

∫

�x

〈 1

r !
ι∗x
(
∂r

z (g−1dg)
)
⊗ εr

x ,
1

(p − r)!
ι∗x
(
∂

p−r
z A

)
⊗ ε

p−r
x

〉

= 2π i

∫

�

〈〈 j∗(g−1dg), j∗ A〉〉ω = 2π i

∫

�

〈〈( j∗g)−1d�( j∗g), j∗ A〉〉ω,

where in the first equality we used the definition of the bilinear form (3.8) on g ⊗C T
nx

x

and in the second equality the definition of the bilinear form (3.9). The last equality
follows from the identity j∗(g−1dg) = ( j∗g)−1d�( j∗g), which is proved similarly to
(3.13) by a simple Leibniz rule argument. ⊓⊔

We now turn to the third term on the right hand side of (3.4), which requires some
preparation. We denote by Ĝ := C∞(ℓT n, G) the mapping space from the locus of
the Weil algebra T n = C[ε]/(εn) to G, where we recall that n = max {nx }x∈z is the
maximal order of all poles. Note that Ĝ is the Lie group of (n − 1)-jets of curves in G

and that its Lie algebra is ĝ = g ⊗C T n . Analogously to (3.2), we introduce the map

j∗X : C∞(X, G) −→ C∞(X, Ĝ), g �−→

n−1∑

p=0

1

p!
∂

p
z g ⊗ ε p,

which describes the holomorphic part of the (n−1)-jet prolongation of smooth G-valued
maps on X . Using the Leibniz rule, one easily proves that j∗X is a group homomorphism,
i.e. j∗X (g′ g) = ( j∗X g′) ( j∗X g), for all g, g′ ∈ C∞(X, G). Using again the Leibniz rule,

one further shows that the T n-valued form j∗X (g∗χG) ∈ �3(X) ⊗C T n in (3.4) can be
expressed as

j∗X (g∗χG) = ( j∗X g)∗χ Ĝ, (3.14)

where χ Ĝ := 1
6
〈θĜ, [θĜ , θĜ ]〉 ∈ �3(Ĝ)⊗C T n is the T n-valued Cartan 3-form defined

by the T n-bilinear extension 〈·, ·〉 : ĝ × ĝ → T n of the bilinear form 〈·, ·〉 on g.

The generalisation of Proposition 2.8 to the higher pole case requires a suitable
modification of the Lemmas 2.4, 2.5 and 2.7 to maps with values in the jet group Ĝ =

C∞(ℓT n, G). Let us start by highlighting the commutative diagram

C∞(X, G) C∞(X, Ĝ)

C∞(�, G ẑ) C∞(�, Ĝ z)

j∗X

j∗
ι∗

trunc

(3.15)
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where the map trunc is given by post-composition with the map

Ĝ z =
∏

x∈z

C∞(ℓT n, G) −→
∏

x∈z

C∞(ℓT nx
x , G) = G ẑ (3.16)

that truncates the orders of jets. (Recall that by definition nx ≤ n, for all x ∈ z.) We
generalise the concepts of relative maps and relative homotopies from Sect. 2.2 by

C∞

D̂
(X, Ĝ) :=

{
g ∈ C∞(X, Ĝ) : trunc ι∗g = e

}
(3.17a)

and

C∞

D̂×I
(X × I, Ĝ) :=

{
H ∈ C∞(X × I, Ĝ) : trunc (ι × id)∗ H = e

}
, (3.17b)

where I = [0, 1] is the unit interval. We denote by C∞

D̂
(X, Ĝ)

/
∼∞

D̂
the corresponding

set of homotopy classes.

Lemma 3.5. C∞

D̂
(X, Ĝ)

/
∼∞

D̂
is a singleton.

Proof. We recall from [Viz] that there exists, for each k ≥ 1, a diffeomorphism C∞(ℓT k,

G) ∼= G × gk−1 between the (k − 1)-jet group and a Cartesian product of G with
k − 1 copies of the Lie algebra g. Under these diffeomorphisms, the maps Ĝ =

C∞(ℓT n, G) → C∞(ℓT
nx

x , G) truncating the jet orders are given by projection maps
G ×gn−1 → G ×gnx −1 onto the first nx factors. From the universal property of products
and the definition (3.17), one obtains that

C∞

D̂
(X, Ĝ)

/
∼∞

D̂
∼= C∞

D (X, G)
/
∼∞

D ×

n−1∏

i=1

C∞
Di

(X, g)
/
∼∞

Di
(3.18)

is a product of sets of relative homotopy classes of maps as in Sect. 2.2, where D =⊔
x∈z �x is the non-thickened defect and

Di :=
⊔

x∈z : nx −1≥i

�x

is the disjoint union of the non-thickened connected components of the defect D̂ that
support i-jet data, for i = 1, . . . , n − 1. By the same arguments as in the proofs of
Lemmas 2.4, 2.5 and 2.7, one shows that each factor on the right hand side of (3.18) is
a singleton. Hence, their product is a singleton too. ⊓⊔

The following result is the generalisation of Proposition 2.8 to the case of higher
order poles.

Proposition 3.6. The integral
∫

X

(
ω∧g̃∗χ Ĝ

)
reg

depends on g̃ ∈ C∞(X, Ĝ)only through

trunc ι∗g̃ ∈ C∞(�, G ẑ). In particular,
∫

X

(
ω∧ j∗X (g∗χG)

)
reg

depends on g ∈ C∞(X, G)

only through j∗g ∈ C∞(�, G ẑ).



M. Benini, A. Schenkel, B. Vicedo

Proof. This is very similar to the proof of Proposition 2.8. We refer to the latter for
certain details, highlighting only the parts of the proof which are different in the present
higher order pole setting.

Let g̃, h̃ ∈ C∞(X, Ĝ) be such that trunc ι∗g̃ = trunc ι∗h̃. From the Polyakov-
Wiegmann identity and an argument as in the proof of Proposition 3.4, we obtain

∫

X

(
ω ∧ g̃∗χ Ĝ

)
reg

−

∫

X

(
ω ∧ h̃∗χ Ĝ

)
reg

=

∫

X

(
ω ∧ (g̃h̃−1)∗χ Ĝ

)
reg

.

It remains to prove that the right hand side of this equation vanishes, provided that
trunc ι∗g̃ = trunc ι∗h̃, which by (3.17a) is equivalent to g̃h̃−1 ∈ C∞

D̂
(X, Ĝ). It follows

from Lemma 3.5 that there exists a homotopy H ∈ C∞

D̂×I
(X × I, Ĝ) between g̃h̃−1 and

e ∈ C∞

D̂
(X, Ĝ). We deduce that

(g̃h̃−1)∗χ Ĝ = d

(∫

I

H∗χ Ĝ

)

by the same line of arguments as in (2.9). It then follows by using Lemma 3.3 that

∫

X

(
ω ∧ (g̃h̃−1)∗χ Ĝ

)
reg

= 2π i
∑

x∈z

nx −1∑

p=0

kx
p

∫

�x ×I

(ιx × id)∗(H∗χ Ĝ)p = 0,

where the last equality follows from trunc (ι × id)∗ H = e ∈ C∞(�, G ẑ) by definition
of H ∈ C∞

D̂×I
(X × I, Ĝ), cf. (3.17b).

The special case in the statement of this proposition is a consequence of (3.14) and
(3.15). ⊓⊔

We can now prove the generalisation of Proposition 2.10 to the present setting.

Proposition 3.7. For any g ∈ C∞(X, G), we have
∫

X

(
ω ∧ j∗X (g∗χG)

)
reg

= −2π i

∫

�×I

ĝ∗χG ẑ ,

where χG ẑ ∈ �3(G ẑ) is the Cartan 3-form on G ẑ and ĝ ∈ C∞(� × I, G ẑ) is any lazy

homotopy between j∗g ∈ C∞(�, G ẑ) and the constant map e ∈ C∞(�, G ẑ).

Proof. The argument is an adaptation of the proof of Proposition 2.10 to the case of
higher order poles. We thus refer to the latter for certain details and highlight only the
features pertaining to the present case.

Since G ẑ is connected and � = R2 is contractible, there exists a lazy homotopy
ĝ ∈ C∞(� × I, G ẑ) between j∗g and e. Using the fact that the jet order truncation
map Ĝ z → G ẑ in (3.16) is a trivial fibre bundle [Viz], we can lift ĝ to a lazy homotopy
g ∈ C∞(� × I, Ĝ z) between a lift of j∗g and the identity element e ∈ C∞(� × I, Ĝ z).
By construction, trunc g = ĝ.

As in the proof of Proposition 2.10, let ̺ : � → I denote the radial coordinate on
the unit disc � and let �x ⊂ C be disjoint discs around each pole x ∈ z. We define
g̃ ∈ C∞(X, Ĝ) as the extension from

⊔
x∈z � × �x to X by the identity of the image

of (id� × ̺)∗g ∈ C∞(� × �, Ĝ z) under the isomorphism

C∞

(⊔

x∈z

� × �x , Ĝ

)
∼= C∞(� × �, Ĝ z).
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By construction, we have that trunc ι∗g̃ = j∗g = trunc ι∗ j∗X g, hence Proposition 3.6
implies that

∫

X

(
ω ∧ j∗X (g∗χG)

)
reg

=

∫

X

(
ω ∧ ( j∗X g)∗χ Ĝ

)
reg

=

∫

X

(
ω ∧ g̃∗χ Ĝ

)
reg

.

The integral on the right hand side can be computed by following the same steps as in
the end of the proof of Proposition 2.10. Explicitly, we have

∫

X

(
ω ∧ g̃∗χ Ĝ

)
reg

=
∑

x∈z

∫

�×�x

(
ω ∧ g̃∗χ Ĝ

)
reg

=
∑

x∈z

∫

�×�x

(
ω ∧ d

(
−

∫

γz

g̃∗χ Ĝ

))
reg

= −2π i
∑

x∈z

nx −1∑

p=0

kx
p

∫

�x

∫

γx

(g̃∗χ Ĝ)p = −2π i

∫

�×I

ĝ∗χG ẑ .

In the third equality we used Lemma 3.3 and in the last step we used the definition of
the bilinear form 〈〈·, ·〉〉ω on ĝz from (3.8) and (3.9). ⊓⊔

4. Boundary Conditions on Surface Defects

The results in this section are stated and proved for poles of arbitrary orders nx ≥ 1. We
use our notational conventions from the higher order pole case in Sect. 3. The definitions
and results in Sect. 3 reduce to the ones in Sect. 2 in the case when all poles are simple,
i.e. nx = 1, for all x ∈ z, and consequently n = 1.

4.1. Bulk fields with boundary conditions. We introduce a groupoid of bulk fields with
boundary conditions at the (thickened) surface defect D̂. Imposing these boundary con-
ditions will have the effect of making the action (3.3) gauge invariant.

To define the relevant groupoid, let us first observe that the action (3.3) is invariant
under translations by g-valued (0, 1, 0)-forms, i.e.

Sω(A + λ) = Sω(A),

for all A ∈ �1(X, g) and λ ∈ �0,1,0(X, g), which is due to the fact that ω ∈ �0,1,0(X).
Hence, the action descends to the quotient

�
1
(X, g) :=

�1(X, g)

�0,1,0(X, g)
∼= �1,0,0(X, g) ⊕ �0,0,1(X, g), (4.1)

where the last isomorphism is due to the direct sum decomposition (1.2) of forms on
X . The gauge transformations in (2.4) also descend to the quotient, because for every
g ∈ C∞(X, G) and λ ∈ �0,1,0(X, g) we have

g(A + λ) = −dgg−1 + g Ag−1 + gλg−1 = g A + gλg−1

and gλg−1 ∈ �0,1,0(X, g). Abusing notation slightly, we will denote also by g A the

action of a gauge transformation g ∈ C∞(X, G) on a 1-form A ∈ �
1
(X, g) under the

isomorphism in (4.1), which explicitly reads

g A = −dgg−1 + g Ag−1,
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where d := d� + ∂̄ .

We define the groupoid of bulk fields on X by

BGcon(X) :=

{
Obj : A ∈ �

1
(X, g),

Mor : g : A → g A, with g ∈ C∞(X, G),

and the groupoid of defect fields on D̂ by

BG ẑ
con(�) :=

{
Obj : a ∈ �1(�, ĝz),

Mor : k : a → ka, with k ∈ C∞(�, G ẑ),

where G ẑ is the defect group and ĝz its Lie algebra, cf. (3.7). We would like to emphasise
that there is no need to introduce different bundles in these groupoids, because every
principal G-bundle on X and every principal G ẑ-bundle on � is trivialisable. The latter
follows from � = R2 being homotopic to a point, while the former follows from the

existence of a deformation retract from X to a bouquet of circles
∨|ζ |−1

S1 and the short
calculation

π0

(
Map{a}(X, BG)

)
∼= π0

(
Map{a}(S1, BG)

)|ζ |−1 ∼= π0(G)|ζ |−1 ∼= {∗},

where a ∈ X is any choice of base point and BG denotes the classifying space of
principal G-bundles. The last isomorphism follows since G is connected.

Using (3.11) for r = 1 and (3.12), we introduce the functor

j∗ : BGcon(X) −→ BG ẑ
con(�)

that sends an object A to j∗ A (note that this is well-defined on the quotients in (4.1))

and a morphism g : A → g A to j∗g : j∗ A → j∗(g A) = j∗g( j∗ A).

In order to impose boundary conditions for the field A ∈ �
1
(X, g) on the surface

defect D̂, we introduce a subgroupoid of BG ẑ
con(�) as follows. Fix a Lie subalgebra

k ⊂ ĝz , which is isotropic with respect to the bilinear form 〈〈·, ·〉〉ω in (3.9), and let

K ⊂ G ẑ denote the corresponding connected Lie subgroup. We define

BKcon(�) :=

{
Obj : a ∈ �1(�, k) ⊂ �1(�, ĝz),

Mor : k : a → ka, with k ∈ C∞(�, K ) ⊂ C∞(�, G ẑ),

and observe that, by definition, there is an inclusion functor

BKcon(�) →֒ BG ẑ
con(�).

Given such a choice of an isotropic Lie subalgebra k ⊂ ĝz , we define the groupoid of
bulk fields with boundary conditions by

Fbc(X) :=

{
Obj : A ∈ �

1
(X, g), s.t. j∗ A ∈ �1(�, k),

Mor : g : A → g A, with g ∈ C∞(X, G) s.t. j∗g ∈ C∞(�, K ).
(4.2)

Given any morphism g : A → g A in Fbc(X), we have ( j∗g)−1d�( j∗g) ∈ �1(�, k)

and j∗ A ∈ �1(�, k). Hence, the second term on the right hand side of (3.4) vanishes
on account of Proposition 3.4 and the isotropy of k ⊂ ĝz . The proposition below shows
that the last term on the right hand side of (3.4) also vanishes.
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Proposition 4.1.
∫

X

(
ω ∧ j∗X (g∗χG)

)
reg

= 0, for every morphism g : A → g A in

Fbc(X).

Proof. By Proposition 3.7, we have

∫

X

(
ω ∧ j∗X (g∗χG)

)
reg

= −2π i

∫

�×I

ĝ∗χG ẑ ,

where ĝ ∈ C∞(� × I, G ẑ) is any lazy homotopy between j∗g ∈ C∞(�, K ) and
e ∈ C∞(�, K ). Since K is connected, we can choose a lazy homotopy ĝ with values
in the Lie subgroup K ⊂ G ẑ , i.e. ĝ ∈ C∞(� × I, K ). It then follows that ĝ−1d�×I ĝ ∈

�1(� × I, k) and therefore ĝ∗χG ẑ = 0 since k ⊂ ĝz is an isotropic Lie subalgebra. ⊓⊔

Summing up, we obtain

Theorem 4.2. The regularised 4-dimensional Chern-Simons action Sω given in (3.3)
defines a gauge invariant action on the groupoid Fbc(X).

To conclude, we would like to note that the groupoid Fbc(X) in (4.2) is a model for
the pullback

Fbc(X) BGcon(X)

BKcon(�) BG ẑ
con(�)

j∗ (4.3)

in the category of groupoids. This fact motivates our construction in the next subsection.

4.2. Bulk fields with edge modes. The category of groupoids is a category with weak
equivalences, where the latter are given by equivalences of groupoids, i.e. fully faithful
and essentially surjective functors. In general, pullbacks fail to preserve weak equiva-
lences. This means that if we were to replace the pullback diagram in (4.3) by a weakly
equivalent one, in general its pullback will not be weakly equivalent to Fbc(X). To solve
this issue one considers homotopy pullbacks, instead of ordinary categorical pullbacks,
which do preserve weak equivalences. We refer to [Hov,Rie] for an introduction to
the frameworks of model and homotopical category theory that underlies the study of
homotopy pullbacks.

Motivated by the above discussion, we define the field groupoid F(X) as the homotopy
pullback

F(X) BGcon(X)

BKcon(�) BG ẑ
con(�)

h
j∗ (4.4)

in the model category of groupoids. Computing this homotopy pullback by a standard
construction (see e.g. [MMST, Appendix A] for a review), we obtain

F(X) :=

⎧
⎨
⎩

Obj : (A, h) ∈ �
1
(X, g) × C∞(�, G ẑ), s.t. h−1

( j∗ A) ∈ �1(�, k),

Mor : (g, k) : (A, h) → (g A, ( j∗g)hk−1),

with g ∈ C∞(X, G) and k ∈ C∞(�, K ).

(4.5)
This is to be compared with the (strict) pullback Fbc(X) in (4.2).
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Theorem 4.3. The functor

� : Fbc(X) −→ F(X)

that sends an object A to (A, e) and a morphism g : A → g A to (g, j∗g) : (A, e) →

(g A, e) is an equivalence of groupoids.

Proof. � is obviously faithful. To show that it is also full, consider objects A, A′ ∈

Fbc(X) and let (g, k) : �(A) = (A, e) → �(A′) = (A′, e) be a morphism in F(X).
By definition, A′ = g A and ( j∗g)k−1 = e, i.e. j∗g = k ∈ C∞(�, K ). This shows that
g : A → A′ is a morphism in Fbc(X) and, indeed, �(g) = (g, k).

To conclude the proof, we have to show that � is essentially surjective. Let (A, h) ∈

F(X). Recall that the jet order truncation map Ĝ z → G ẑ in (3.16) is a trivial fibre bundle
[Viz] and consider a lift ĥ ∈ C∞(�, Ĝ z) of h ∈ C∞(�, K ) ⊂ C∞(�, G ẑ). By the
construction in the proof of Proposition 2.10 (just consider the Lie group Ĝ instead of
G, noting that Ĝ is connected since G is), we obtain an extension h̃ ∈ C∞(X, Ĝ) of ĥ,
i.e. such that ι∗h̃ = ĥ, with the following properties:

(a) the restriction of h̃ to
⊔

x∈z � × �x ⊂ X is constant along C , where each �x ⊂ C

is a sufficiently small open disc centred at x ∈ z, and
(b) h̃ takes the constant value e ∈ Ĝ on an open neighbourhood of X \

⊔
x∈z � × �′

x ,
where each �′

x � �x is a strictly larger open disc centred at x ∈ z.

Using the diffeomorphism Ĝ ∼= G × gn−1 from [Viz], h̃ ∈ C∞(X, Ĝ) can also be
regarded as a tuple of maps on X , where h̃0 ∈ C∞(X, G) is G-valued and h̃i ∈ C∞(X, g)

is g-valued, for i = 1, . . . , n − 1. Below we use these data to construct g ∈ C∞(X, G)

such that ι∗ j∗X g = ĥ. For each x ∈ z, consider the local coordinate z − x on �′
x centred

at x and define g on � × �′
x by

g := exp

( n−1∑

i=1

(z − x)i

i !
ξi

)
h̃0,

where each ξi ∈ C∞(� × �′
x , g), for i = 1, . . . , n − 1, is a linear combination of

the h̃i ’s and of their Lie brackets. Arguing by induction on i , the explicit expression
of the ξi ’s is obtained by imposing the condition ι∗ j∗X g = ĥ. (Explicitly, using (a) one

finds ξ1 := h̃1, ξ2 := h̃2, ξ3 := h̃3 + 1
2
[ξ1, ξ2], …, see [Viz].) So far, we defined g

only on
⊔

x∈z � × �′
x ⊂ X . Recalling (b), g can be extended smoothly by e ∈ G

outside of
⊔

x∈z � × �′
x ⊂ X . This extension provides the desired g ∈ C∞(X, G)

such that ι∗ j∗X g = ι∗h̃ = ĥ. In particular, by (3.15) we find j∗g = h, from which it

follows that j∗(g−1
A) = h−1

( j∗ A) ∈ �1(�, k), i.e. g−1
A is an object of Fbc(X), and

that (g, e) : �(g−1
A) → (A, h) is a morphism in F(X). This completes the proof. ⊓⊔

In other words, Theorem 4.3 expresses the fact that the gauge field theories described
by the two groupoids Fbc(X) and F(X) are equivalent. That is, one may either use fields

A ∈ �
1
(X, g) satisfying the strict boundary condition j∗ A ∈ �1(�, k), or alternatively

one may use pairs of fields (A, h) ∈ �
1
(X, g) × C∞(�, G ẑ) such that j∗ A lies in

�1(�, k) only up to a gauge transformation determined by the given additional field
h on the surface defect D̂. The additional field h ∈ C∞(�, G ẑ) living on the surface
defect D̂ is called the edge mode.
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Using the equivalence � from Theorem 4.3, we extend the gauge invariant action
Sω on the groupoid Fbc(X) to the field groupoid F(X) including the edge modes. The
extended action Sext

ω on F(X) is uniquely determined by

Sext
ω ◦ � = Sω. (4.6a)

Explicitly, for each (A, h) ∈ F(X), we use that � is essentially surjective to choose an
object Ã ∈ Fbc(X) and a morphism (g, k) : �( Ã) → (A, h) in F(X) and set

Sext
ω (A, h) := Sω( Ã). (4.6b)

Using that � is also full, one checks that the above definition actually gives a gauge
invariant action Sext

ω on the field groupoid F(X). In particular, we can choose k = e and
g ∈ C∞(X, G) such that j∗g = h as in the proof of Theorem 4.3 and, using also (3.4)
and Propositions 3.4 and 3.7, we compute Sext

ω explicitly as

Sext
ω (A, h) = Sω(g−1

A) = Sω(A) +
1

2

∫

�

〈〈d�hh−1, j∗ A〉〉ω −
1

2

∫

�×I

ĥ∗χG ẑ , (4.7)

where ĥ ∈ C∞(� × I, G ẑ) is any lazy homotopy between h ∈ C∞(�, G ẑ) and the
constant map e ∈ C∞(�, G ẑ). The action (4.7) is to be compared with the action of
ordinary 3-dimensional (abelian) Chern-Simons theory given in [MMST, (5.1)].

5. Passage to Integrable Field Theories

In order to link 4-dimensional Chern-Simons theory to integrable field theories, we
introduce the full subgroupoid F1,0,0(X) ⊂ F(X) whose objects (L, h) ∈ F1,0,0(X)

are those objects of F(X) (cf. (4.5)) which satisfy the additional condition that L ∈

�1,0,0(X, g) ⊂ �
1
(X, g) is a (1, 0, 0)-form on X , i.e. L has no dz and dz̄ components.

Let us mention that morphisms (g, k) : (L, h) → (gL, ( j∗g)hk−1) in F1,0,0(X) are
then given by pairs of maps (g, k) ∈ C∞(X, G) × C∞(�, K ) satisfying ∂̄gg−1 = 0,
which follows from the fact that, by definition, also (gL, ( j∗g)hk−1) lies in F1,0,0(X).
Explicitly, the groupoid introduced above reads as

F1,0,0(X) :=

⎧
⎨
⎩

Obj : (L, h) ∈ �1,0,0(X, g) × C∞(�, G ẑ), s.t. h−1
( j∗L) ∈ �1(�, k),

Mor : (g, k) : (L, h) → (gL, ( j∗g)hk−1),

with g ∈ C∞(X, G) s.t. ∂̄gg−1 = 0 and k ∈ C∞(�, K ).

(5.1)

Remark 5.1. The inclusion functor F1,0,0(X) →֒ F(X) is by definition fully faithful. One
might ask if it is also essentially surjective, hence an equivalence. By direct inspection,
it is easy to realise that the answer is positive provided that, for each (A, h) ∈ F(X),
there exists g ∈ C∞(X, G) such that g−1∂̄g = A0,0,1, where A0,0,1 ∈ �0,0,1(X, g)

denotes the (0, 0, 1)-component of A ∈ �
1
(X, g). In order to simplify the problem,

suppose G = GLN (C), let us fix a point a ∈ � and consider the problem of finding
such a g on Ca := {a} × C ⊂ X . Then an argument based on the inverse function
theorem for Banach manifolds and elliptic regularity, cf. [AB, Section 5], shows that
the above equation admits local solutions {gα} subordinate to a cover {Uα ⊆ Ca} by

sufficiently small open subsets of Ca . As a consequence, {gαβ} := {gαg−1
β } is a Čech
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1-cocycle on Ca taking values in the sheaf of holomorphic G-valued functions. The
latter is always trivial by [Fos, Theorem 30.5] because Ca is a non-compact Riemann
surface. This allows us to find a Čech 0-cochain {hα} trivialising {gαβ}. It follows that

setting g := h−1
α gα on each Uα defines g ∈ C∞(Ca, G) such that g−1∂̄g = A0,0,1, as

required. (Note that, in contrast to {gα}, {hα} is holomorphic, which is crucial to check
that g indeed solves the above equation.) Extending this argument to the whole of X

and for arbitrary G requires to establish smoothly �-parametrised analogues with target
an arbitrary Lie group G of the arguments in [AB, Section 5] and [Fos, Theorem 30.5].
Since essential surjectivity of F1,0,0(X) →֒ F(X) is not needed for our constructions
below, we shall not further address this issue.

Since F1,0,0(X) ⊂ F(X) is a subgroupoid, we can restrict the action on F(X) defined
in (4.6) to F1,0,0(X). From the explicit expression (4.7), we obtain

Sext
ω (L, h) =

i

4π

∫

X

(
ω ∧ j∗X 〈L, ∂̄L〉

)
reg

+
1

2

∫

�

〈〈d�hh−1, j∗L〉〉ω −
1

2

∫

�×I

ĥ∗χG ẑ ,

(5.2)
where the simplification in the first term follows from L ∈ �1,0,0(X, g) by definition of
the subgroupoid F1,0,0(X) ⊂ F(X), cf. (5.1).

Let us now derive the Euler-Lagrange equations corresponding to the action (5.2).
For this we have to consider variations of objects (L, h) ∈ F1,0,0(X), i.e. variations

(L′, h′) = (L + ǫℓ, eǫχ h), with ℓ ∈ �
1,0,0
c (X, g) and χ ∈ C∞

c (�, ĝz), satisfying the

condition h′−1
( j∗

L′) ∈ �1(�, k). Expanding this condition to first order in ǫ, one finds
that the variations are constrained by

h−1
(
d�χ + [ j∗

L, χ ] + j∗ℓ
)
h ∈ �1(�, k). (5.3)

Varying the action (5.2) and using (5.3), one obtains

δ(ℓ,χ)Sext
ω (L, h) =

i

2π

∫

X

(
ω ∧ j∗X 〈ℓ, ∂̄L〉

)
reg

−

∫

�

〈〈
χ, d�( j∗

L) + 1
2

[
j∗

L, j∗
L
]〉〉

ω
.

From bulk variations, i.e. (ℓ, χ) = (ℓ, 0) with supp ℓ ⊂ X \ D (note that the constraint
(5.3) is trivially satisfied), we obtain the equation of motion

∂̄L = 0 on X \ D.

Because L ∈ �1,0,0(X, g) is a smooth 1-form on X , this equation implies that L is
holomorphic on all of C , i.e.

∂̄L = 0 on X. (5.4)

(Recall that X = � × C , where C = CP1 \ ζ is the Riemann sphere with the zeroes
of ω removed. In particular, solutions to (5.4) on X may have poles at ζ ⊂ CP1 with
coefficients in �1(�, g), as required for Lax connections in integrable field theories.)

To study variations with support on the defect, we first observe that, given any χ ∈

C∞
c (�, ĝz), there exists ℓ ∈ �1

c(X, g) such that the pair (ℓ, χ) satisfies (5.3). Indeed,
the equation j∗ℓ = −d�χ − [ j∗

L, χ ] on the jets of ℓ can be solved for an arbitrary
right hand side by the same method as in the proof of Theorem 4.3. Hence, we obtain
the equation of motion

d�( j∗
L) + 1

2

[
j∗

L, j∗
L
]

= 0 on �, (5.5)

which means that j∗
L ∈ �1(�, ĝz) defines a flat G ẑ-connection on �.
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To perform the passage to integrable field theories on �, we shall consider suitable
solutions to the bulk equation of motion (5.4) with properties that resemble those of Lax
connections. We will do this in two steps. First, we restrict attention to solutions that are
meromorphic on CP1. Subsequently, we will further restrict attention to those solutions
for which the defect equation of motion (5.5) can be lifted to a flatness condition for L

on all of X . (Note that we do not solve the defect equation of motion (5.5) on �.)
More precisely, we introduce the following

Definition 5.2. Denoting by m y ∈ Z≥1 the order of the zero y ∈ ζ of ω, we let

�
r,0,0
M

(X, g) ⊂ �r,0,0(X, g) be the subspace of those g-valued (r, 0, 0)-forms on X

that are meromorphic on CP1 with poles at each y ∈ ζ of order at most m y .

Note that, by definition, every L ∈ �
1,0,0
M

(X, g) is a solution to the bulk equation of

motion (5.4). Furthermore, every L ∈ �
1,0,0
M

(X, g) can be written explicitly as

L = Lc +
∑

y∈ζ\{∞}

m y−1∑

q=0

L
y
q

(z − y)q+1
+

m∞−1∑

q=0

L
∞
q zq+1, (5.6)

where Lc ∈ �1(�, g) and L
y
q ∈ �1(�, g), for every y ∈ ζ and q = 0, . . . , m y − 1, are

g-valued 1-forms on �. Note that the first term of (5.6) is constant on CP1, while the
second and third terms describe the poles at y ∈ ζ \ {∞} and at the zero y = ∞ of ω,
respectively.

The 1-form L ∈ �
1,0,0
M

(X, g) is still too general to serve as a Lax connection for
integrable field theories. The reason is that the flatness condition, which is encoded by
the defect equation of motion (5.5), is a priori imposed only for the restriction via j∗

to � of (the jets of) the curvature F�(L) := d�L + 1
2
[L,L] ∈ �2,0,0(X, g). (Note that

j∗F�(L) = d�( j∗
L) + 1

2
[ j∗L, j∗L] because j∗ given in (3.11) preserves both the

differential d� and the Lie bracket [·, ·].) In order to upgrade the flatness condition from
j∗F�(L) = 0 on � (cf. (5.5)) to F�(L) = 0 on X , i.e. prior to applying j∗, we require
the following

Definition 5.3. A form L ∈ �
1,0,0
M

(X, g) is called admissible if F�(L) ∈ �
2,0,0
M

(X, g).

We denote by �
1,0,0
adm (X, g) ⊂ �

1,0,0
M

(X, g) the subspace of admissible forms.

Example 5.4. Note that not every L ∈ �
1,0,0
M

(X, g) is admissible, because the term
[L,L] in the curvature may have poles at y ∈ ζ of order greater than m y . A simple
algebraic condition which ensures that L, written in the form (5.6), is admissible is
given by [

L
y
q ,L

y

q ′

]
= 0,

for all y ∈ ζ and q, q ′ with q + q ′ + 2 > m y . One way to achieve this is the following:
for each y ∈ ζ , we introduce a coordinate σy : � → R on � and take the 1-forms

L
y
q ∈ �1(�, g), for q = 0, . . . , m y − 1, to be proportional to dσy . For example, to

produce a Lorentzian integrable field theory, we fix a Minkowski metric on �, let σ±

denote a corresponding pair of null coordinates, choose a subset ζ + ⊂ ζ and then set
σy = σ + for y ∈ ζ + and σy = σ− for y ∈ ζ \ ζ + in the complement, cf. [DLMV1].

Lemma 5.5. For every r = 0, 1, 2, the restriction j∗ : �
r,0,0
M

(X, g) → �r (�, ĝz) of

the morphism (3.11) to the subspace �
r,0,0
M

(X, g) ⊂ �r (X, g) introduced in Definition

5.2 is injective.
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Proof. By definition, any η ∈ �
r,0,0
M

(X, g) is meromorphic on CP1 with poles at all
y ∈ ζ of order at most m y and with coefficients in �r (�, g). We need to show that if

ι∗x (∂
p
z η) = 0, for all x ∈ z and p = 0, . . . , nx − 1, then η = 0.

Consider the polynomial P(z) :=
∏

y∈ζ\{∞}(z − y)m y . Then Pη is a polynomial

in z of order at most
∑

y∈ζ m y with coefficients in �r (�, g). Since by assumption

ι∗x (∂
p
z η) = 0, for all x ∈ z and p = 0, . . . , nx − 1, it follows by the Leibniz rule that

ι∗x (∂
p
z (Pη)) = 0, for every x ∈ z and p = 0, . . . , nx − 1. Since ω is a meromorphic

1-form on CP1, we have
∑

x∈z nx =
∑

y∈ζ m y + 2, which is greater than the degree of
the polynomial Pη. It follows that Pη = 0 and hence η = 0. ⊓⊔

Proposition 5.6. For any admissible L ∈ �
1,0,0
adm (X, g), the defect equation of motion

(5.5), i.e. j∗F�(L) = 0 on �, is equivalent to F�(L) = 0 on X.

Proof. Suppose j∗F�(L) = 0. Since L is admissible, F�(L) ∈ �
2,0,0
M

(X, g) and hence
F�(L) = 0 by Lemma 5.5. The converse is obvious. ⊓⊔

The above results motivate us to introduce a suitable subgroupoid of F1,0,0(X) whose

objects (L, h) are such that L ∈ �
1,0,0
adm (X, g) is admissible in the sense of Definition

5.3. In particular, such L’s satisfy the bulk equation of motion (5.4), are meromorphic
on CP1 with poles of the form (5.6) and, by Proposition 5.6, the defect equation of
motion (5.5) is equivalent to flatness F�(L) = 0 on X . In other words, such L’s satisfy
all the necessary properties of Lax connections for integrable field theories. Concerning
morphisms (g, k) : (L, h) → (gL, ( j∗g)hk−1) between such objects, by definition of
the groupoid F1,0,0(X) in (5.1) we have that g ∈ C∞(X, G) is holomorphic on C . In
order to preserve the pole structure (5.6) of admissible L’s under gauge transformations,
we further restrict our attention to those g that are holomorphic on all of CP1, and
hence constant along CP1. Summing up this discussion, we introduce the following
(not necessarily full) subgroupoid of (5.1)

FLax(X) :=

⎧
⎨
⎩

Obj : (L, h) ∈ �
1,0,0
adm (X, g) × C∞(�, G ẑ), s.t. h−1

( j∗L) ∈ �1(�, k),

Mor : (g, k) : (L, h) → (gL, ( j∗g)hk−1),

with g ∈ C∞(�, G) and k ∈ C∞(�, K ),

(5.7)
where we are implicitly identifying a map g ∈ C∞(�, G) with its pullback along the
projection p� : X → �. Under this identification, we have that j∗g = �(g), where
� : G → G ẑ , g �→ (g)x∈z is the diagonal map to the defect group (3.7).

With these preparations, we are now ready to describe how 2-dimensional integrable
field theories arise from 4-dimensional Chern-Simons theory. Consider the groupoid

F2d(�) :=

⎧
⎨
⎩

Obj : h ∈ C∞(�, G ẑ),

Mor : (g, k) : h → �(g)hk−1,

with g ∈ C∞(�, G) and k ∈ C∞(�, K ),

(5.8)

of G ẑ-valued fields on � and note that there exists a forgetful functor

π : FLax(X) −→ F2d(�) (5.9)

that sends an object (L, h) to h and a morphism (g, k) : (L, h) → (gL, ( j∗g)hk−1) to
(g, k) : h → �(g)hk−1. If this functor was fully faithful and essentially surjective, i.e.
an equivalence, then we could transfer the action (5.2) to an action

S2d
ω := Sext

ω ◦ π−1 (5.10)
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defined on the groupoid F2d(�) in (5.8), where π−1 : F2d(�) → FLax(X) denotes a
quasi-inverse of π . Gauge invariance of Sext

ω entails that S2d
ω does not depend on the

choice of quasi-inverse. While (5.9) is clearly a faithful functor, fullness and essential
surjectivity do not appear to be automatic. These properties of the functor π can be related

to existence and uniqueness of solutions L ∈ �
1,0,0
adm (X, g) for a fixed h ∈ C∞(�, G ẑ)

to the condition h−1
( j∗

L) ∈ �1(�, k) on objects (L, h) of FLax(X), cf. (5.7).

Proposition 5.7. The functor π in (5.9) is essentially surjective if and only if it is sur-

jective on objects, i.e. for each h ∈ C∞(�, G ẑ) there exists L ∈ �
1,0,0
adm (X, g) such that

(L, h) ∈ FLax(X). It is full if and only if for each h ∈ C∞(�, G ẑ) there exists at most

one object of the form (L, h) in FLax(X).

Proof. For the first statement, the implication “⇐” is obvious. To prove the implication
“⇒”, let us assume that π is essentially surjective. Then there exists, for each h ∈

C∞(�, G ẑ), an object (L′, h′) in FLax(X) and a morphism (g, k) : h → h′ = π(L′, h′)

in F2d(�). Setting L := g−1
L′ ∈ �

1,0,0
adm (X, g), we obtain

h−1

( j∗
L) = h−1�(g−1)( j∗L′) = k−1h′−1

( j∗L′) ∈ �1(�, k),

where in the second step we used h′ = �(g)hk−1. The last step then follows from
h′−1

( j∗
L′) ∈ �1(�, k), as (L′, h′) is by hypothesis an object in FLax(X), and the fact

that k ∈ C∞(�, K ) is a map to the subgroup K ⊂ G ẑ .
Let us consider now the second statement. We prove the implication “⇒” by contra-

position. Suppose that there exist objects (L, h), (L′, h) in FLax(X) such that L′ �= L.
Then there does not exist a morphism (L, h) → (L′, h) in FLax(X) that maps under
π to the identity id : h → h in F2d(�), hence π is not full. To prove the implication
“⇐”, let (L, h), (L′, h′) be arbitrary objects in FLax(X) and consider any morphism
(g, k) : h → h′ in F2d(�). We define the morphism (g, k) : (L, h) → (gL, h′)

in FLax(X) and observe that by hypothesis gL = L′. Hence, we obtain a morphism
(g, k) : (L, h) → (L′, h′) in FLax(X) and thereby prove that π is full. ⊓⊔

Corollary 5.8. The functorπ in (5.9) is an equivalence of groupoids if and only if for each

h ∈ C∞(�, G ẑ) there exists a unique L ∈ �
1,0,0
adm (X, g) such that (L, h) ∈ FLax(X), i.e.

such that h−1
( j∗

L) ∈ �1(�, k).

Remark 5.9. Let us note that whether or not the functor π in (5.9) is an equivalence will
depend on the choice of isotropic subalgebra k ⊂ ĝz used to impose boundary conditions
at the surface defects in Sect. 4. Examples of suitable choices when nx ≤ 2 for all x ∈ z

can be found in [CY,DLMV2]. In light of the present work, the problem of classifying

isotropic subalgebras k ⊂ ĝz for which the condition h−1
( j∗

L) ∈ �1(�, k) admits a
unique solution for L in terms of h is an important one in view of the broader open
problem of classifying 2-dimensional integrable field theories.

Suppose now that the functor π in (5.9) is an equivalence. Using Corollary 5.8, we
can then construct a strict inverse

π−1 : F2d(�) −→ FLax(X).

This functor sends an object h to (L(h), h), where L(h) ∈ �
1,0,0
adm (X, g) is the unique

element such that (L(h), h) is an object in FLax(X). To a morphism (g, k) : h →

h′ = �(g)hk−1 in F2d(�), this functor assigns the morphism (g, k) : (L(h), h) →
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(L(h′), h′) in FLax(X), where L(h′) = L(�(g)hk−1) = gL(h) by the uniqueness of
Corollary 5.8. Using this description of π−1, we obtain an explicit expression for the
action in (5.10)

S2d
ω (h) = Sext

ω (L(h), h) =
1

2

∫

�

〈〈d�hh−1, j∗
L(h)〉〉ω −

1

2

∫

�×I

ĥ∗χG ẑ , (5.11)

where the first term in (5.2) vanishes because ∂̄L(h) = 0 by definition of the groupoid
FLax(X) in (5.7). We would like to emphasise that the action (5.11) is for a G ẑ-valued
field h living on the 2-dimensional manifold � and that it describes an integrable field
theory with Lax connection L(h). Furthermore, the action S2d

ω is by construction gauge
invariant under the morphisms of the groupoid F2d(�) introduced in (5.8).

Remark 5.10. There is a more minimalistic procedure for transferring the action Sext
ω (cf.

(4.6)) on the subgroupoid FLax(X) ⊂ F(X) to an action S2d
ω on F2d(�) along the functor

π : FLax(X) → F2d(�) in (5.9), which only requires the latter to be essentially surjective
and not necessarily full. This is based on the following observation. The datum of a gauge
invariant action S2d

ω on the groupoid F2d(�) is equivalent to the datum of a function

S2d
ω on the set π0(F2d(�)) of isomorphism classes of objects. Furthermore, essential

surjectivity of the functor π : FLax(X) → F2d(�) is equivalent to surjectivity of the
induced map π : π0(FLax(X)) → π0(F2d(�)) between sets of isomorphism classes.
Therefore, in order to transfer Sext

ω to F2d(�), we can choose a section σ of the surjective

map π : π0(FLax(X)) → π0(F2d(�)) and define S2d
ω := Sext

ω ◦ σ . More generally, we

can choose a suitable measure w on the set of sections σ and define S2d
ω as the w-

average over all sections σ of Sext
ω ◦σ . (For a fixed section σ , the Dirac measure w = δσ

recovers the construction considered previously in this remark.) We stress, however, that
this alternative construction of S2d

ω in general depends on the choice of measure w on the
set of sections σ . Whenever π is both essentially surjective and full, π : π0(FLax(X)) →

π0(F2d(�)) is actually bijective and hence S2d
ω := Sext

ω ◦ π−1 is uniquely determined

(there is exactly one section σ = π−1). In particular, the construction of S2d
ω presented

before this remark agrees with the one considered here.

When π is essentially surjective but not full, however, it becomes more difficult to
interpret the output of our construction as an integrable field theory since the candidate
Lax connection L in general fails to be uniquely determined by the field h living on �.
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