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Abstract

We study reductive subgroups H of a reductive linear algebraic group G – possibly nonconnected – such that

H contains a regular unipotent element of G. We show that under suitable hypotheses, such subgroups are G-

irreducible in the sense of Serre. This generalises results of Malle, Testerman and Zalesski. We obtain analogous

results for Lie algebras and for finite groups of Lie type. Our proofs are short, conceptual and uniform.

Dedicated to Professor Jean-Pierre Serre on the occasion of his 95th birthday, with great admiration.
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1. Introduction

Much effort has gone into describing the subgroup structure of reductive algebraic groups. In this paper

we study reductive subgroups containing a regular unipotent element of the ambient group. For simple

G, Saxl and Seitz determined the maximal closed positive-dimensional subgroups containing a regular

unipotent element of G in [19], building on work of Suprunenko [27]. Subsequently, these classifications

have been extended and refined, for example by Testerman and Zalesski [28], Guralnick and Malle [13]

and Craven [12], so that there is now a very good understanding of how subgroups containing regular

unipotent elements can arise ‘in nature’.
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2 Michael Bate et al.

Using these classification results, Testerman and Zalesski proved the following striking result in [28,

Theorem 1.2]: if G is connected and H is a connected reductive subgroup of G containing a regular

unipotent element of G, then H is G-irreducible in the sense defined by J-P. Serre (i.e., it is not contained

in any proper parabolic subgroup of G). Note that this is false if we replace ‘regular unipotent’ with

‘regular semisimple’: just take H to be a Levi subgroup of a proper parabolic subgroup of G; then H is

connected reductive and contains a maximal torus of G (and hence regular semisimple elements of G),

but is not G-irreducible.

Malle and Testerman extended this result to nonconnected H inside simple G [16, Theorem 1],

and also considered a few cases when G is nonconnected. (The notion of a regular unipotent element

of a nonconnected reductive group G was introduced by Spaltenstein; see Section 4.) The proofs of

[28, Theorem 1.2] and [16, Theorem 1] involved long and intricate case-by-case considerations for the

various possible Dynkin types of G.

The first purpose of this paper is to give a short and uniform proof of the following more general

result. For the definitions of G-complete reducibility and G-irreducibility, see Section 2.3.

Theorem 1.1. Let 𝐻 ⊆ 𝐺 be reductive groups (possibly nonconnected). Suppose H contains a regular
unipotent element of G. Then the following are true:

(i) The identity component 𝐻0 of H is G-completely reducible.
(ii) If the projection of 𝐻0 onto each simple factor of the identity component 𝐺0 of G is not a torus,

then H does not normalise any proper parabolic subgroup of 𝐺0.
(iii) If the hypothesis of (ii) holds and H meets every connected component of G, then H is G-irreducible.

The key ingredient in our proof is the observation, due to Steinberg (for connected G, [26, Section 3.7,

Theorem 1]) and Spaltenstein (for nonconnected G, [22, Proposition II.10.2]), that a regular unipotent

element normalises a unique Borel subgroup of 𝐺0.

Remark 1.2.

(i) The conclusion of part (i) follows from [3, Theorem 3.10] whenever (ii) or (iii) holds, because 𝐻0

is normal in H. Note, however, that (i) in fact holds in complete generality – that is, without the

additional hypotheses of (ii) and (iii). For nonconnected H, this is a new result even in the case that

G itself is connected. See also Corollary 5.3.

(ii) Note that the hypotheses in (ii) and (iii) are automatic if H and G are both connected: for if H is

connected and contains a regular unipotent element of G, then H cannot project to a torus in any

simple factor of G, and if G is connected, then H meets every component of G. Hence Theorem

1.1 specialises to [28, Theorem 1.2] in this case.

(iii) For G simple, we recover [16, Theorem 1], and for 𝐺0 simple we get [16, Corollary 6.2].

(iv) We note that the restriction on 𝐻0 in (ii) and (iii) is necessary. For let G be connected in positive

characteristic and let H be the closed subgroup of G generated by a regular unipotent element u of

G. Then, since u is contained in a unique Borel subgroup B of G [26, Section 3.7, Theorem 1], so

is H, and so H is not G-irreducible. For instances of a positive-dimensional reductive subgroup H
containing a regular unipotent element of G which is not G-irreducible, see [16, Section 7].

(v) We observed earlier that (ii) and (iii) can fail if we replace ‘regular unipotent’ with ‘regular

semisimple’. In fact, (i) can also fail: for example, take H to be the image of the adjoint representation

of SL2 in 𝐺 = SL3 in characteristic 2 (note that since H does not act completely reducibly on the

natural module for G, H is not G-cr; see [5, Section 1]).

Many of the technicalities in the proof of Theorem 1.1 disappear in the special case where both G
and the reductive subgroup H are connected. We give a separate short proof in this case which uses only

very basic properties of reductive groups and regular unipotent elements. It illustrates some of the key

ideas of the general case, and a slight variation gives an analogous result for Lie algebras when Lie(𝐻)

contains a regular nilpotent element of Lie(𝐺) (see Theorem 3.2).

Our second main result is an analogue of Theorem 1.1 for finite groups of Lie type. Suppose G is

a connected reductive group and recall that a Steinberg endomorphism of G is a surjective morphism
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𝜎 : 𝐺 → 𝐺 such that the corresponding fixed point subgroup 𝐺𝜎 := {𝑔 ∈ 𝐺 | 𝜎(𝑔) = 𝑔} of G is finite;

Frobenius endomorphisms of reductive groups over finite fields are familiar examples, giving rise to

finite groups of Lie type (see [25, Section 10]). Let 𝜎 be a Steinberg endomorphism of G and suppose

H is a connected reductive 𝜎-stable subgroup of G. Then 𝜎 is also a Steinberg endomorphism for H
with finite fixed point subgroup 𝐻𝜎 = 𝐻 ∩𝐺𝜎 [25, 7.1(b)]. Obviously, one cannot immediately appeal

to Theorem 1.1 to deduce anything about 𝐻𝜎 , because 𝐻0
𝜎 is trivial. However, our proof does still go

through with some minor changes. We give here the version of the result for connected groups; see

Proposition 5.4 for the most general analogue of Theorem 1.1 in this setting.

Theorem 1.3. Let 𝐻 ⊆ 𝐺 be connected reductive groups and suppose 𝜎 is a Steinberg endomorphism
of G such that H is 𝜎-stable. Suppose that H contains a regular unipotent element of G. Then 𝐻𝜎 is
G-irreducible.

As pointed out in [10, Section 1], there are instances where one can embed a finite group of Lie type

into a connected reductive group G so that the image contains a regular unipotent element of G but is

not G-irreducible. For example, PSL2(𝑝) has a p-dimensional reducible indecomposable representation

V such that the image contains an element acting as a single Jordan block on V, and hence the image

in GL(𝑉) contains a regular unipotent element but is not G-irreducible (see [10, Section 2.1] and

[1, p. 48]). Theorem 1.3 shows that such a finite subgroup cannot arise as the fixed point subgroup of a

connected reductive 𝜎-stable subgroup H of G (since a subgroup M of GL𝑛 is GL𝑛-irreducible if and

only if the corresponding representation of M is irreducible). This was proved for exceptional simple G
and subgroups isomorphic to PSL2(𝑝) by an exhaustive case check in [10, Theorem 2]; our result holds

for arbitrary reductive G and finite subgroups of arbitrary Lie type.

The proofs of Theorems 1.1 and 1.3 use the machinery of G-complete reducibility and optimality

developed by the authors and others in a series of papers [2, 3, 4, 5, 6, 7]. This yields, for instance, a

very quick way to see Theorem 1.1 in characteristic 0 (Remark 6.1). These methods are particularly

well suited to dealing with nonconnected G. We prove Theorem 1.1 in full generality in Section 5; the

shorter argument for connected G and H is given in Section 3.

During the buildup to the main proof, we show that the notion of regular unipotent elements behaves

well when passing to quotients and reductive subgroups of G (Section 4); we believe this is of independent

interest. We also give some natural examples in Section 6 where 𝐻0 is a torus – so the hypotheses of

Theorem 1.1 fail – but H is still G-irreducible.

2. Preliminaries

Throughout, we work over an algebraically closed field k of characteristic 𝑝 ≥ 0. A linear algebraic

group H over k has identity component 𝐻0; if 𝐻 = 𝐻0, then we say that H is connected. We denote by

𝑅𝑢 (𝐻) the unipotent radical of H; if 𝑅𝑢 (𝐻) is trivial, then we say H is reductive – we do not insist that

a reductive group is connected. The derived subgroup of H is denoted by [𝐻, 𝐻], the centre of H by

𝑍 (𝐻) and its Lie algebra by Lie(𝐻).

Throughout, G denotes a reductive linear algebraic group over k. The semisimple group
[
𝐺0, 𝐺0

]

can be written as a product 𝐺1 · · ·𝐺𝑟 of pairwise commuting simple groups 𝐺1, . . . , 𝐺𝑟 ; these are the

simple factors of 𝐺0. For each i there is a surjective homomorphism from 𝐺0 onto a quotient of 𝐺𝑖 by a

finite subgroup; we call this map projection of 𝐺0onto the ith simple factor. Given any element 𝑔 ∈ 𝐺,

the 𝐺0-conjugacy class of g is denoted by 𝐺0 · 𝑔; the Zariski closure of this class is denoted by 𝐺0 · 𝑔.

2.1. Endomorphisms

We give two results of Steinberg [25] which are used in the sequel.

Lemma 2.1. Let H be a linear algebraic group and let 𝜎 : 𝐻 → 𝐻 be any surjective homomorphism.
Then 𝜎 stabilises a Borel subgroup of H. In particular, for every 𝑥 ∈ 𝐻 there is a Borel subgroup of H
normalised by x.
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Proof. The first statement is precisely [25, Theorem 7.2]. The second follows by applying this to the

endomorphism given by conjugation by x. �

Recall that a Steinberg endomorphism of a linear algebraic group H is a surjective endomorphism

𝜎 : 𝐻 → 𝐻 such that the fixed point subgroup 𝐻𝜎 is finite. As noted in Section 1, if 𝜎 is a Steinberg

endomorphism of H, then the restriction of 𝜎 to 𝐻0 is a Steinberg endomorphism of 𝐻0. Hence we may

deduce the following by applying [25, 10.4, Corollary 10.10] to 𝐻0:

Lemma 2.2. Let H be a linear algebraic group and 𝜎 a Steinberg endomorphism of H.

(i) Each 𝜎-stable Borel subgroup of H contains a 𝜎-stable maximal torus.
(ii) Any two pairs consisting of a 𝜎-stable Borel subgroup and a 𝜎-stable maximal torus of H are

conjugate by an element of
(
𝐻0

)
𝜎

.

2.2. Cocharacters and R-parabolic subgroups

For a linear algebraic group H, we let 𝑌 (𝐻) denote the set of cocharacters of H – that is, the set

of algebraic group homomorphisms 𝜆 : G𝑚 → 𝐻. The group H acts on the set of cocharacters: for

𝜆 ∈ 𝑌 (𝐻) and ℎ ∈ 𝐻, we write ℎ ·𝜆 for the cocharacter defined by (ℎ ·𝜆) (𝑡) = ℎ𝜆(𝑡)ℎ−1 for each 𝑡 ∈ G𝑚.

Given an affine variety X and a morphic action of H on X, for each 𝜆 ∈ 𝑌 (𝐻) and 𝑥 ∈ 𝑋 we can define

a morphism 𝜙𝑥,𝜆 : G𝑚 → 𝑋 by the rule 𝜙𝜆 (𝑡) = 𝜆(𝑡) · 𝑥. Identifying G𝑚 as a principal open set in A1

in the usual way, if 𝜙𝑥,𝜆 extends to a (necessarily unique) morphism 𝜙𝑥,𝜆 from all of A1 to X, then we

say that lim𝑡→0 𝜆(𝑡) · 𝑥 exists and set lim𝑡→0 𝜆(𝑡) · 𝑥 = 𝜙𝑥,𝜆(0).

This setup is important to us in this paper when we consider the action of G on itself by conjugation.

Here, for each 𝜆 ∈ 𝑌 (𝐺), the set 𝑃𝜆 :=
{
𝑔 ∈ 𝐺 | lim𝑡→0 𝜆(𝑡)𝑔𝜆(𝑡)

−1 exists
}

is a so-called R-parabolic
subgroup of G [3, Section 6]. An R-parabolic subgroup of G is a parabolic subgroup of G in the usual

sense, and it has a Levi decomposition 𝑃𝜆 = 𝐿𝜆 ⋉ 𝑅𝑢 (𝑃𝜆), where

𝐿𝜆 :=

{
𝑔 ∈ 𝐺 | lim

𝑡→0
𝜆(𝑡)𝑔𝜆(𝑡)−1

= 𝑔

}
= 𝐶𝐺 (Im(𝜆)),

𝑅𝑢 (𝑃𝜆) =

{
𝑔 ∈ 𝐺 | lim

𝑡→0
𝜆(𝑡)𝑔𝜆(𝑡)−1

= 1

}
;

see [17, Proposition 5.2] for this description of 𝑅𝑢 (𝑃𝜆). Since 𝑅𝑢 (𝑃𝜆) is connected, 𝑃𝜆 and 𝐿𝜆 have

the same number of connected components. We call 𝐿𝜆 an R-Levi subgroup of 𝑃𝜆. Note that for all

𝑔 ∈ 𝑃𝜆, we have lim𝑡→0 𝜆(𝑡)𝑔𝜆(𝑡)
−1 ∈ 𝐿𝜆 – in fact, the map 𝑔 ↦→ lim𝑡→0 𝜆(𝑡)𝑔𝜆(𝑡)

−1 is the canonical

projection 𝑃𝜆 → 𝐿𝜆 which arises by quotienting out 𝑅𝑢 (𝑃𝜆). For more properties of these subgroups,

see [3, Section 6]; we recall here that for connected G, the R-parabolic subgroups and their R-Levi

subgroups are precisely the parabolic subgroups and their Levi subgroups [23, Section 8.4]. Moreover,

𝑃𝜆 ∩ 𝑃−𝜆 = 𝐿𝜆, so if G is connected, then 𝑃𝜆 and 𝑃−𝜆 are opposite parabolic subgroups.

These results have analogues in the Lie algebra Lie(𝐺) = Lie
(
𝐺0

)
of G. Recall that G acts on Lie(𝐺)

via the adjoint representation Ad; then for each 𝜆 ∈ 𝑌 (𝐺) we have

Lie(𝑃𝜆) =

{
𝑋 ∈ Lie(𝐺) | lim

𝑡→0
Ad(𝜆(𝑡)) (𝑋) exists

}
,

Lie(𝐿𝜆) =

{
𝑋 ∈ Lie(𝐺) | lim

𝑡→0
Ad(𝜆(𝑡)) (𝑋) = 𝑋

}
,

Lie(𝑅𝑢 (𝑃𝜆)) =

{
𝑋 ∈ Lie(𝐺) | lim

𝑡→0
Ad(𝜆(𝑡)) (𝑋) = 0

}

(see, e.g., [18, Section 2]).
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If H is a reductive subgroup of G, then we may identify 𝑌 (𝐻) with a subset of 𝑌 (𝐺). Then a

cocharacter of H gives rise to an R-parabolic subgroup of H and of G – in this situation, we write 𝑃𝜆 (𝐻)

for the R-parabolic subgroup of H and reserve the notation 𝑃𝜆 for the R-parabolic subgroup of G; we

similarly write 𝐿𝜆 (𝐻). It is clear from the definitions that 𝑃𝜆 (𝐻) = 𝑃𝜆 ∩ 𝐻, 𝐿𝜆 (𝐻) = 𝐿𝜆 ∩ 𝐻 and

𝑅𝑢 (𝑃𝜆 (𝐻)) = 𝑅𝑢 (𝑃𝜆) ∩ 𝐻.

In what follows, we occasionally need to use the root system of 𝐺0, so we introduce some notation

here. Let T be a maximal torus of G and let Φ = Φ
(
𝐺0, 𝑇

)
be the set of roots of 𝐺0 with respect to T.

Let B be a Borel subgroup of G containing T and let Φ+
= Φ(𝐵,𝑇) denote the positive system of roots

with respect to B. For each 𝛼 ∈ Φ, we have a root subgroup 𝑋𝛼 of G. For a cocharacter 𝜆 ∈ 𝑌 (𝑇), we

have 𝑋𝛼 ⊆ 𝑃𝜆 if and only if 〈𝜆, 𝛼〉 ≥ 0, where 〈 , 〉 : 𝑌 (𝑇) × 𝑋 (𝑇) → Z is the usual pairing between

cocharacters and characters of T. We have 𝑋𝛼 ⊆ 𝐿𝜆 if and only if 〈𝜆, 𝛼〉 = 0, and also 𝑅𝑢 (𝑃𝜆) is

generated by the 𝑋𝛼 with 〈𝜆, 𝛼〉 > 0 (compare the proof of [23, Proposition 8.4.5]).

We finish this section with a key result [17, Proposition 5.4(a)] which we use often in the sequel

(note that there, R-parabolic subgroups are called ‘generalised parabolic subgroups’):

Lemma 2.3. Suppose P is a parabolic subgroup of 𝐺0. Then 𝑁𝐺 (𝑃) is an R-parabolic subgroup of G
with 𝑁𝐺 (𝑃)0

= 𝑃.

2.3. G-complete reducibility and optimal R-parabolic subgroups

We collect some basic results concerning Serre’s notion of complete reducibility; for further background

and results, see [3, 20, 21, 29]. A subgroup H of G is called G-completely reducible (G-cr) if whenever

𝐻 ⊆ 𝑃 for an R-parabolic subgroup P, there exists an R-Levi subgroup L of P with 𝐻 ⊆ 𝐿. If H is a

subgroup of 𝐺0, then H is G-cr if and only if H is 𝐺0-cr [4, Proposition 2.12]. Note that if 𝐺0 is a torus,

then 𝑅𝑢 (𝑃𝜆) = 1 for any 𝜆 ∈ 𝑌 (𝐺), so every subgroup of G is G-cr.

A subgroup H of G is G-irreducible (G-ir) if H is not contained in any proper R-parabolic subgroup

of G; a G-ir subgroup is automatically G-cr. We note that if H meets every component of G, then H is

G-ir if and only if it normalises no proper parabolic subgroup of 𝐺0 – this follows from Lemma 2.3.

Only the forward implication holds if H does not meet every component of G: whenever 𝑍
(
𝐺0

)
is not

central in G, there are cocharacters 𝜆 ∈ 𝑌
(
𝑍
(
𝐺0

) )
such that 𝑃𝜆 = 𝐿𝜆 is a proper subgroup of G. These

subgroups are G-cr but not G-ir, and yet have identity component equal to 𝐺0, so do not normalise any

proper parabolic subgroup of 𝐺0.

Our next result is an easy fact about G-complete reducibility which we use in the proof of

Theorem 1.1(i):

Lemma 2.4. Suppose K is a connected reductive subgroup of G. Then K is G-completely reducible if
and only if [𝐾, 𝐾] is G-completely reducible.

Proof. We may write 𝐾 = [𝐾, 𝐾]𝑍 , with 𝑍 = 𝑍 (𝐾)0. Let 𝐿 = 𝐶𝐺 (𝑍). Since Z is a torus centralising K
and [𝐾, 𝐾], we have that K (resp., [𝐾, 𝐾]) is G-cr if and only if K (resp., [𝐾, 𝐾]) is L-cr, by [3, Corollary

3.22, Section 6.3]. But Z is contained in every R-parabolic subgroup and every R-Levi subgroup of L,

because it is a central torus in L. So K is L-cr if and only if [𝐾, 𝐾] is L-cr. �

The next result follows quickly from [9, Proposition 4.11]. We give the details because they are useful

in what follows.

Lemma 2.5. Let P and Q be opposite parabolic subgroups of 𝐺0. Let M be the subgroup of G generated
by 𝑅𝑢 (𝑃) ∪ 𝑅𝑢 (𝑄). Then M is connected and G-completely reducible. Moreover, if P and Q do not
contain any simple factors of 𝐺0, then 𝑀 =

[
𝐺0, 𝐺0

]
.

Proof. Since M is generated by the connected groups 𝑅𝑢 (𝑃) and 𝑅𝑢 (𝑄), it is connected by [8, Propo-

sition 2.2]. Now we use the proof of [9, Proposition 4.11]: the opposite parabolic subgroups P and Q
have a common Levi subgroup L which normalises 𝑅𝑢 (𝑃) and 𝑅𝑢 (𝑄). Hence 𝑁𝐺0 (𝑀) contains 𝑅𝑢 (𝑃),

𝑅𝑢 (𝑄) and L, which puts a maximal torus 𝑇 ⊆ 𝐿 and all the root subgroups of 𝐺0 inside 𝑁𝐺0 (𝑀).
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6 Michael Bate et al.

Thus 𝑁𝐺0 (𝑀) = 𝐺0, and we see that M is normal in 𝐺0 (which is the result of [9, Proposition 4.11]).

Therefore M is 𝐺0-cr, by [3, Theorem 3.10], and hence M is G-cr.

For the final assertion, let 𝐺1, . . . , 𝐺𝑟 be the simple factors of 𝐺0. For 1 ≤ 𝑖 ≤ 𝑟 , let 𝑃𝑖 and 𝑄𝑖 denote

the opposite parabolic subgroups of 𝐺𝑖 corresponding to P and Q, and let 𝑀𝑖 denote the subgroup of

𝐺𝑖 generated by 𝑅𝑢 (𝑃𝑖) and 𝑅𝑢 (𝑄𝑖); by the first paragraph, 𝑀𝑖 is normal in 𝐺𝑖 . The hypothesis that 𝐺𝑖

is not contained in 𝑃𝑖 and 𝑄𝑖 implies that 𝑀𝑖 is a positive-dimensional connected normal subgroup of

𝐺𝑖 , and hence 𝑀𝑖 = 𝐺𝑖 ⊆ 𝑀 . Thus the final part of the statement also holds. �

If H is a subgroup of G which is not G-cr, then there is a way to associate to it a so-called optimal
R-parabolic subgroup P of G (see [7, Section 4]).

Theorem 2.6. Suppose that the subgroup H of G is not G-completely reducible. Then there exists an
R-parabolic subgroup P of G with the following properties:

(i) H is not contained in any R-Levi subgroup of P.
(ii) 𝑁𝐺 (𝐻) ⊆ 𝑃.

The construction of P relies on the geometric characterisation of complete reducibility introduced in

[3] and developed further in [7] – roughly speaking, one associates to H an orbit in an affine G-variety,

and then the R-parabolic subgroup arises from the optimal class of cocharacters for that orbit; see

also [15].

We finish the section with a result we need for the proof of Theorem 1.1.

Lemma 2.7. Let 𝜋 : 𝐺 → 𝐺 ′ be a homomorphism of connected reductive groups. Let 𝜆 ∈ 𝑌 (𝐺) such
that 𝑃𝜆 is a Borel subgroup of G. Suppose 𝜋(𝐺) is not a torus. Then 𝜋 ◦ 𝜆 is nontrivial. In particular, if
𝐺 ′ is simple, then 𝑃𝜋◦𝜆 � 𝐺 ′.

Proof. Let 𝐺1, . . . , 𝐺𝑟 be the simple factors of G and let 𝑍 = 𝑍 (𝐺)0. Let 𝜇 : 𝐺1 × · · · × 𝐺𝑟 × 𝑍 → 𝐺

be the multiplication map. Since 𝜇 is an isogeny, there exist 𝑛 ∈ N and 𝜈 ∈ 𝑌 (𝐺1 × · · · × 𝐺𝑟 × 𝑍) such

that 𝜇 ◦ 𝜈 = 𝑛𝜆. By [3, Proposition 2.11], 𝑃𝜈 = 𝜇−1(𝑃𝑛𝜆) = 𝜇−1 (𝑃𝜆), so 𝑃𝜆 is a Borel subgroup of G if

and only if 𝑃𝜈 is a Borel subgroup of 𝐺1 × · · · × 𝐺𝑟 × 𝑍 . Without loss, therefore, we can assume that

𝐺 = 𝐺1 × · · · × 𝐺𝑟 × 𝑍 and 𝜈 = 𝜆.

Suppose 𝜋 ◦ 𝜆 is trivial. We can write 𝜆 = 𝜆1 × · · · × 𝜆𝑟 × 𝜖 , where each 𝜆𝑖 belongs to 𝑌 (𝐺𝑖) and

𝜖 belongs to 𝑌 (𝑍). Now ker(𝜋)0 is the product of certain of the 𝐺𝑖 with a subtorus of Z. Each 𝜆𝑖 is

nontrivial, since 𝑃𝜆 is a Borel subgroup, so ker(𝜋) must contain 𝐺1 × · · · ×𝐺𝑟 . The result follows. �

3. The connected case

Recall that if G is connected, then 𝑔 ∈ 𝐺 is regular if dim(𝐶𝐺 (𝑔)) is minimal. We need two properties

of regular unipotent and nilpotent elements for connected reductive groups.

Lemma 3.1. Assume G is connected, and let 𝑢 ∈ 𝐺 be unipotent. Then the following hold:

(i) u is regular if and only if it is contained in a unique Borel subgroup B of G.
(ii) If u is regular and P is a parabolic subgroup of G with 𝑢 ∈ 𝑅𝑢 (𝑃), then 𝑃 = 𝐵.

Similarly, any regular nilpotent element 𝑒 ∈ Lie(𝐺) is contained in a unique Borel subalgebra Lie(𝐵),
and if P is a parabolic subgroup such that 𝑒 ∈ Lie(𝑅𝑢 (𝑃)), then 𝑃 = 𝐵.

Proof. Part (i) is [26, Section 3.7, Theorem 1], and the analogue for the Lie algebra is [14, Corollary

6.8]. If P is a parabolic subgroup containing u, then P contains B, and with respect to a suitable choice

of maximal torus T of B we may write 𝑢 =
∏

𝛼∈Φ+ 𝑥𝛼, where each 𝑥𝛼 ∈ 𝑋𝛼 and 𝑥𝛼 ≠ 1 for each simple

root 𝛼 (see [26, Section 3.7, Theorem 1]). Since u has a nontrivial contribution from each simple root

group, u can only lie in 𝑅𝑢 (𝑃) if 𝑃 = 𝐵. The analogous argument works for e, which has a standard

form involving a nontrivial contribution from each root space Lie(𝑋𝛼) relative to any simple root 𝛼 (see

[14, 6.7(1)]). �
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Theorem 3.2. Let 𝐻 ⊆ 𝐺 be connected reductive groups. If H contains a regular unipotent element of
G, or Lie(𝐻) contains a regular nilpotent element of Lie(𝐺), then H is G-irreducible.

Proof. Suppose 𝑢 ∈ 𝐻 is a regular unipotent element of G. Let B be a Borel subgroup of H containing

u, let S be a maximal torus of B and write 𝐵 = 𝑃𝜆 (𝐻) for some 𝜆 ∈ 𝑌 (𝑆). Then u belongs to 𝑅𝑢 (𝐵),

so lim𝑡→0 𝜆(𝑡)𝑢𝜆(𝑡)
−1

= 1, so 𝑢 ∈ 𝑅𝑢 (𝑃𝜆 (𝐻)) ⊆ 𝑅𝑢 (𝑃𝜆). It follows from Lemma 3.1(ii) that 𝑃𝜆 is the

unique Borel subgroup of G containing u.

Now let 𝐵−
= 𝑃−𝜆 (𝐻) be the opposite Borel subgroup of H with respect to the maximal torus S of

H. The Borel subgroups B and 𝐵− of H are conjugate, say by 𝑥 ∈ 𝐻. Let 𝑣 = 𝑥𝑢𝑥−1 ∈ 𝑃−𝜆 (𝐻) ⊆ 𝐻.

Since v is H-conjugate to u, it is also a regular unipotent element of G belonging to H. The argument of

the first paragraph shows that 𝑃−𝜆 is the unique Borel subgroup of G containing v.

Now suppose P is a parabolic subgroup of G containing H. Then P contains u and v, and hence must

contain Borel subgroups normalised by u and v, by Lemma 2.1. But a Borel subgroup of P is a Borel

subgroup of G, so uniqueness forces P to contain the opposite Borel subgroups 𝑃𝜆 and 𝑃−𝜆 of G. This

implies that 𝑃 = 𝐺, so H is G-ir, as required.

The proof in the case that Lie(𝐻) contains a regular nilpotent element of Lie(𝐺) is essentially the

same – given a parabolic subgroup P of G containing H, Lie(𝑃) must contain a pair of opposite Borel

subalgebras of Lie(𝐺), and therefore Lie(𝑃) = Lie(𝐺), which means that 𝑃 = 𝐺. �

Remark 3.3. Note that it follows from Lemma 3.1(i) that if H is a connected reductive subgroup of

G and 𝑢 ∈ 𝐻 is a regular unipotent element of G, then u is a regular unipotent element of H. To see

this, let B be a Borel subgroup of H containing u and let 𝐵′ be a Borel subgroup of G containing

B. Since 𝑢 ∈ 𝐵 ⊆ 𝐵′, 𝐵′ must be the unique Borel subgroup of G containing u. Maximality of B
amongst connected solvable subgroups of H implies that 𝐵 = (𝐵′ ∩ 𝐻)0 is the only Borel subgroup of

H containing u, and we’re done. See Lemma 4.8 for this result in full generality.

Proof of Theorem 1.3. By Remark 3.3, if H contains a regular unipotent element of G, then the regular

unipotent elements of H are the regular unipotent elements of G contained in H, since these elements

form a single H-conjugacy class in H. It follows from [24, III.1.19] applied to H that we may find a

regular unipotent element u of G lying in 𝐻𝜎 . Since u is fixed by 𝜎, the unique Borel subgroup B of H
containing u is 𝜎-stable. By Lemma 2.2(i), there is a 𝜎-stable maximal torus S in B, and the opposite

Borel subgroup 𝐵− to B in H with respect to S is also 𝜎-stable. Thanks to Lemma 2.2(ii), B and 𝐵− are

conjugate by an element 𝑥 ∈ 𝐻𝜎 . Thus 𝑣 = 𝑥𝑢𝑥−1 is a regular unipotent element of G which belongs to

𝐵− and 𝐻𝜎 . The rest of the proof of Theorem 3.2 now goes through for 𝐻𝜎 . �

4. Regular unipotent elements

We collect some results about unipotent elements in nonconnected reductive groups from [22]; many

of these are the analogues of more familiar results for connected reductive groups.

Following Spaltenstein [22], we say a connected component X of G is unipotent if it contains a

unipotent element. Let X be a unipotent component of G. Spaltenstein showed there is a unique unipotent

𝐺0-conjugacy class C in X such that C is dense in the set of all unipotent elements of X [22, I.4.8]. We

call elements of C regular unipotent elements of X; this agrees with the usual notion if 𝐺 = 𝐺0. We say

that 𝑢 ∈ 𝐺 is regular unipotent if u is a regular unipotent element of some unipotent component X of G.

Example 4.1. A complete classification of unipotent classes when 𝐺0 is simple can be found in [22].

The essential case to consider is when the Dynkin diagram has an automorphism of order p. For example,

let 𝑝 = 3 and suppose 𝐺 =
〈
𝑥, 𝐺0

〉
, where 𝐺0 has type 𝐷4 and x is the triality automorphism. Then the

regular unipotent elements in the component 𝑋 = 𝑥𝐺0 are all 𝐺0-conjugate to the element 𝑥𝑥𝛼 (1)𝑥𝛿 (1),

where 𝛿 is the simple root corresponding to the central node on the Dynkin diagram, 𝛼 is one of the

other simple roots and 𝑥𝛼 and 𝑥𝛿 are the corresponding root group homomorphisms [22, I.3.1].

An element x of G is called quasisemisimple if there exist a Borel subgroup B of G and a maximal

torus T of G such that x normalises both B and T [22, I.1.1]. This notion was introduced by Steinberg

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2021.82
Downloaded from https://www.cambridge.org/core. University of York, on 24 Feb 2022 at 09:24:34, subject to the Cambridge Core terms of use, available at



8 Michael Bate et al.

in the case where G is connected [25, Section 9]. Spaltenstein showed that any unipotent component

X of G contains a unique 𝐺0-class of quasisemisimple unipotent elements [22, Corollary II.2.21], and

in fact the quasisemisimple unipotent elements in X form the unique closed 𝐺0-orbit in the set of all

unipotent elements in X [22, Corollary II.2.22]. We give an alternative construction which works for

arbitrary elements of G using the machinery of G-complete reducibility; the link here is that for any

element 𝑥 ∈ 𝐺, the 𝐺0-conjugacy class of x is closed if and only if the subgroup of G generated by x is

G-cr (compare [3, Corollary 3.7, Section 6]).

Lemma 4.2. Let 𝑔 ∈ 𝐺 and let X be the component of G containing g.

(i) There is a unique closed 𝐺0-conjugacy class in 𝐺0 · 𝑔, and this is a 𝐺0-conjugacy class of qua-
sisemisimple elements in X.

(ii) If, in addition, g is unipotent, then this quasisemisimple class is the unique closed 𝐺0-orbit of
unipotent elements in X.

Proof. (i) First, the uniqueness is a standard property of orbits of reductive algebraic groups – for any

𝐺0-action on an affine variety, there is a unique closed 𝐺0-orbit in the closure of any 𝐺0-orbit.

Let P be a minimal R-parabolic subgroup of G containing g. There exists a Borel subgroup B of P
normalised by g, by Lemma 2.1, and 𝑁𝐺 (𝐵) is an R-parabolic subgroup of G containing g by Lemma 2.3.

Since 𝐵 ⊆ 𝑃0, we have 𝑅𝑢 (𝑃) ⊆ 𝑅𝑢 (𝐵), and [3, Corollary 6.9] shows that 𝑃∩𝑁𝐺 (𝐵) is an R-parabolic

subgroup of G containing g. But this means that 𝑃 ⊆ 𝑁𝐺 (𝐵), by the minimality of P, and hence 𝑃0
= 𝐵.

Let T be a maximal torus of P, let L be the R-Levi subgroup of P with 𝐿0
= 𝑇 and let 𝜆 ∈ 𝑌 (𝐺) be such

that 𝑃 = 𝑃𝜆 and 𝐿 = 𝐿𝜆. It follows from [5, Example 4.8] that 𝑥 := lim𝑡→0 𝜆(𝑡)𝑔𝜆(𝑡)
−1 ∈ 𝐿 generates a

G-cr subgroup of G, and hence the G-orbit of x is closed by [3, Corollary 3.7, Section 6]. Since 𝑥 ∈ 𝑃,

it normalises 𝑃0
= 𝐵; since 𝑥 ∈ 𝐿, it normalises 𝐿0

= 𝑇 ; since the G-conjugacy class of x is closed, so

is the 𝐺0-conjugacy class; since x is obtained as a limit from g along a cocharacter which evaluates in

𝐺0, 𝑥 ∈ 𝐺0 · 𝑔; and since X is a closed subset of G, we also have 𝑥 ∈ 𝑋 . Moreover, if g is unipotent then

x is unipotent, since the set of unipotent elements is closed in G.

(ii) Note that since the class of regular unipotent elements in X is dense in the set of all unipotent

elements [22, I.4.8], it follows that there is only one closed 𝐺0-orbit of unipotent elements in X, and it

must be the one constructed in the first paragraph for any unipotent 𝑔 ∈ 𝑋 . �

Spaltenstein also proved the following [22, Proposition II.10.2], which is the crucial ingredient in the

proof of Theorem 1.1:

Proposition 4.3. Let 𝑢 ∈ 𝐺 be unipotent. Then u is regular unipotent if and only if it normalises a
unique Borel subgroup of G.

We quickly obtain the following, which is also used in the proof of the main theorem:

Lemma 4.4. Let P be an R-parabolic subgroup of G containing a regular unipotent element u of G.
Then 𝑃0 contains the unique Borel subgroup of G normalised by u.

Proof. Given that 𝑢 ∈ 𝑃, u normalises a Borel subgroup B of P, by Lemma 2.1. But a Borel subgroup

of P is also a Borel subgroup of G, and so B is the unique Borel subgroup of G normalised by u given

by Proposition 4.3. Since B is connected by definition, 𝐵 ⊆ 𝑃0. �

Remark 4.5. It follows from Proposition 4.3 that if 𝑓 : 𝐺1 → 𝐺2 is an isogeny of reductive groups and

𝑢 ∈ 𝐺1 is unipotent, then u is regular unipotent in 𝐺1 if and only if 𝑓 (𝑢) is regular unipotent in 𝐺2. This

is because a subgroup B of 𝐺0
1

is a Borel subgroup of 𝐺0
1

if and only if 𝑓 (𝐵) is a Borel subgroup of 𝐺0
2
.

Remark 4.6. Spaltenstein also introduced the notion of a distinguished unipotent element of G [22,

II.3.13] – that is, a unipotent element u such that every torus in 𝐶𝐺 (𝑢) is central in 𝐺0. It follows

from [22, Propositions II.3.16 and II.10.2] that a regular unipotent element in G is distinguished. For G
connected, this notion is due to Bala and Carter (see [11, Section 5]).
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Corollary 4.7. Let H be a G-completely reducible subgroup of G containing a regular unipotent element
u of G. Then H does not normalise any proper parabolic subgroup of 𝐺0.

Proof. Suppose H normalises a parabolic subgroup P of 𝐺0. Then 𝐻 ⊆ 𝑁𝐺 (𝑃), which is an R-parabolic

subgroup of G by Lemma 2.3. By hypothesis, H is contained in an R-Levi subgroup L of 𝑁𝐺 (𝑃). Choose

𝜆 ∈ 𝑌 (𝐺) such that 𝑁𝐺 (𝑃) = 𝑃𝜆 and 𝐿 = 𝐿𝜆. Since 𝜆 centralises u, it must belong to 𝑌
(
𝑍
(
𝐺0

) )
, by

Remark 4.6. It follows that 𝐿0
𝜆
= 𝐺0, which implies that 𝑃 = 𝐺0. �

We finish the section by showing that the notion of a regular unipotent element behaves nicely when

we pass to quotients and reductive subgroups of G.

Lemma 4.8. Let u be a regular unipotent element of G. Let H be a reductive subgroup of G such that
𝑢 ∈ 𝐻. Then u is a regular unipotent element of H.

Proof. It is enough by Proposition 4.3 to show that u normalises a unique Borel subgroup of H. By

Lemma 2.1, u normalises at least one Borel subgroup of G. Suppose 𝐵1 and 𝐵2 are Borel subgroups of H
normalised by u, and let ℎ ∈ 𝐻0 be such that 𝐵2 = ℎ𝐵1ℎ

−1. Then 𝑁𝐻 (𝐵𝑖) is an R-parabolic subgroup of

H containing u, with 𝑁𝐻 (𝐵𝑖)
0
= 𝐵𝑖 , for 𝑖 = 1, 2, by Lemma 2.3. Note also that 𝑁𝐻 (𝐵2) = ℎ𝑁𝐻 (𝐵1)ℎ

−1.

Thus we may find a cocharacter 𝜆 ∈ 𝑌 (𝐻) with 𝑁𝐻 (𝐵1) = 𝑃𝜆 (𝐻) and 𝑁𝐻 (𝐵2) = ℎ𝑃𝜆 (𝐻)ℎ−1
=

𝑃ℎ ·𝜆 (𝐻).

Now 𝑃0
𝜆

and 𝑃0
ℎ ·𝜆

are parabolic subgroups of 𝐺0 normalised by u, and hence they both contain the

unique Borel subgroup of G normalised by u, by Lemma 4.4. But conjugate parabolic subgroups of

𝐺0 containing a common Borel subgroup are equal, so 𝑃0
𝜆
= 𝑃0

ℎ ·𝜆
= ℎ𝑃0

𝜆
ℎ−1. Since ℎ ∈ 𝐻0 ⊆ 𝐺0

normalises the parabolic subgroup 𝑃0
𝜆
, we have ℎ ∈ 𝑃0

𝜆
∩ 𝐻0

= 𝑃𝜆

(
𝐻0

)
= 𝑃𝜆 (𝐻)0

= 𝐵1. We finally

conclude that 𝐵1 = 𝐵2, as required. �

The special case of Lemma 4.8 when G is simple and H is connected is [16, Lemma 2.10].

Lemma 4.9. Let u be a regular unipotent element of G. Let 𝐺 ′ be a quotient of G and let 𝜋 : 𝐺 → 𝐺 ′

be the canonical projection. Then 𝜋(𝑢) is a regular unipotent element of 𝐺 ′.

Proof. Let 𝑁 = ker 𝜋 (set-theoretic kernel). The canonical projection factors as 𝐺 → 𝐺/𝑁0 →(
𝐺/𝑁0

)
/
(
𝑁/𝑁0

)
, so we can assume without loss by Remark 4.5 that 𝑁 = 𝑁0. By [4, Lemma 2.6], there

exists a subgroup M of G such that 𝑀𝑁 = 𝐺, 𝑀 ∩𝑁 is a finite normal subgroup of M, 𝑀0 ∩𝑁 is central

in both 𝑀0 and 𝑁0 and 𝑀0 commutes with N; in particular, M is normal in G. By Remark 4.5, we can

assume that 𝐺 = 𝑀 ⋉ 𝑁 , 𝐺 ′
= 𝑀 and 𝐺0

= 𝑀0 × 𝑁0.

Let 𝐵1 and 𝐵2 be Borel subgroups of 𝐺/𝑁 normalised by 𝜋(𝑢). By the previous paragraph, we may

regard 𝐵1 and 𝐵2 as subgroups of M normalised by the conjugation action of u on M. There is also a

Borel subgroup B of N normalised by the action of u on N, by Lemma 2.1. Clearly 𝐵𝐵1 and 𝐵𝐵2 are

Borel subgroups of G normalised by u. Since u is regular unipotent in G, 𝐵𝐵1 = 𝐵𝐵2 by Proposition 4.3.

Hence 𝐵1 = 𝐵2. Another application of Proposition 4.3 and Lemma 2.1 gives that 𝜋(𝑢) is regular

unipotent in 𝐺/𝑁 , as required. �

5. Proof of Theorem 1.1

The proof of Theorem 1.1 follows the same lines as the connected case Theorem 3.2. The crucial point

is to show that any R-parabolic subgroup of G containing H must contain the unipotent radicals of

a pair of opposite parabolic subgroups of 𝐺0. Our next results indicate how this allows us to deduce

Theorem 1.1(iii).

Lemma 5.1. Let H be a reductive subgroup of G. Let 𝑢 ∈ 𝐻 be a regular unipotent element of G and let
Q be an R-parabolic subgroup of G containing u. Then every R-parabolic subgroup of G containing H
also contains 𝑅𝑢 (𝑄).
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Proof. Let B be the unique Borel subgroup of 𝐺0 normalised by u. Then 𝐵 ⊆ 𝑄0 by Lemma 4.4, so

𝑅𝑢

(
𝑄0

)
= 𝑅𝑢 (𝑄) ⊆ 𝑅𝑢 (𝐵). Now suppose P is an R-parabolic subgroup of G containing H. Then 𝑢 ∈ 𝑃,

so 𝐵 ⊆ 𝑃, again by Lemma 4.4, so 𝑅𝑢 (𝑄) ⊆ 𝑃, as required. �

Proposition 5.2. Let H be a reductive subgroup of G which meets every connected component of G. Let
𝑢1, 𝑢2 ∈ 𝐻 be regular unipotent elements of G. Suppose there are R-parabolic subgroups 𝑃1, 𝑃2 of G
such that the following are true:

(i) 𝑃1 and 𝑃2 do not contain any simple component of 𝐺0;
(ii) 𝑢1 ∈ 𝑃1, 𝑢2 ∈ 𝑃2; and
(iii) 𝑃0

1
and 𝑃0

2
are opposite parabolic subgroups of 𝐺0.

Then H is G-irreducible.

Proof. Suppose P is an R-parabolic subgroup of G containing H. Then 𝑢1, 𝑢2 ∈ 𝑃, so 𝑅𝑢 (𝑃1)∪𝑅𝑢 (𝑃2) ⊆

𝑃, by Lemma 5.1. But 𝑃0
1

and 𝑃0
2

are opposite parabolic subgroups of 𝐺0 that do not contain any simple

component of𝐺0, so 𝑅𝑢

(
𝑃0

1

)
∪𝑅𝑢

(
𝑃0

2

)
generates

[
𝐺0, 𝐺0

]
, by Lemma 2.5. Hence 𝑃 ⊇ 𝐺0. Since H meets

every connected component of G, we therefore have 𝑃 = 𝐺. This shows that H is G-ir, as claimed. �

Armed with these results, we now address the main theorem.

Proof of Theorem 1.1. We first note that if 𝐻0 is a torus, then (i) holds automatically (compare [3,

Proposition 3.20, Section 6.3] and (ii) and (iii) are not relevant, so we may assume that 𝐻0 is not a torus

for the remainder of the proof. This means in particular that the Borel subgroups in 𝐻0 are proper.

We begin with some general observations. Let 𝑢1 ∈ 𝐻 be a regular unipotent element of G. Then

𝑢1 is also regular in H, by Lemma 4.8, and hence there is a unique Borel subgroup B of H normalised

by 𝑢1, by Proposition 4.3. By Lemma 2.3, 𝑁𝐻 (𝐵) is an R-parabolic subgroup of H, so we may choose

a maximal torus S of B and a cocharacter 𝜆 ∈ 𝑌 (𝑆) with 𝑁𝐻 (𝐵) = 𝑃𝜆 (𝐻). Let 𝐵− be the opposite

Borel subgroup of 𝐻0 such that 𝐵 ∩ 𝐵−
= 𝑆. We claim that 𝑃−𝜆 (𝐻) = 𝑁𝐻 (𝐵−). It is easy to see that

𝑃−𝜆 (𝐻)0
= 𝑃−𝜆

(
𝐻0

)
= 𝐵−, so 𝑃−𝜆 (𝐻) ⊆ 𝑁𝐻 (𝐵−). Now note that 𝑃𝜆 and 𝑃−𝜆 have the same number

of components, since 𝐿𝜆 = 𝐿−𝜆. Further, since B and 𝐵− are conjugate by an element 𝑥 ∈ 𝑁𝐻 0 (𝑆), the

normalisers 𝑁𝐻 (𝐵) and 𝑁𝐻 (𝐵−) are conjugate by x too; this implies that 𝑁𝐻 (𝐵−) has the same number

of components as 𝑁𝐻 (𝐵). Thus 𝑁𝐻 (𝐵−) and 𝑃−𝜆 (𝐻) have the same number of components, and we

have proved the claim. By setting 𝑢2 := 𝑥𝑢1𝑥
−1 ∈ 𝑃−𝜆 (𝐻), we obtain another regular unipotent element

of G and H; note that 𝐵− is the unique Borel subgroup of H normalised by 𝑢2.

We can now prove part (i). We argue by contradiction. Suppose 𝐻0 is not G-cr. Then
[
𝐻0, 𝐻0

]
is not

G-cr either, by Lemma 2.4, and so we may apply Theorem 2.6 to
[
𝐻0, 𝐻0

]
and let P be an R-parabolic

subgroup of G with the properties given there. Since H normalises
[
𝐻0, 𝐻0

]
, we have 𝐻 ⊆ 𝑃 by

Theorem 2.6(ii). Keeping the notation from the previous paragraph, let 𝑃1 := 𝑃𝜆 and 𝑃2 := 𝑃−𝜆; then

Lemma 5.1 implies that 𝑅𝑢 (𝑃1) and 𝑅𝑢 (𝑃2) are contained in P, and hence the subgroup M generated

by 𝑅𝑢 (𝑃1) and 𝑅𝑢 (𝑃2) is contained in P. Since M is G-cr by Lemma 2.5, there is an R-Levi subgroup L
of P containing M. But M contains 𝑅𝑢 (𝑃1) ∩ 𝐻 = 𝑅𝑢 (𝑃𝜆 (𝐻)) and 𝑅𝑢 (𝑃2) ∩ 𝐻 = 𝑅𝑢 (𝑃−𝜆 (𝐻)), which

are the unipotent radicals of opposite Borel subgroups of H. Thus M contains all the root groups of 𝐻0

with respect to the maximal torus S, and hence
[
𝐻0, 𝐻0

]
⊆ 𝑀 ⊆ 𝐿. This contradicts Theorem 2.6(i),

and this contradiction completes the proof.

Now we prove (ii) and (iii). To do so, we may replace G with the subgroup 𝐺 generated by 𝐺0 and H,

since (iii) holds for H in 𝐺 if and only if (ii) holds for H in G. Thus we may also assume that H meets

every component of G. Note that 𝑃1 = 𝑃𝜆 and 𝑃2 = 𝑃−𝜆 satisfy hypotheses (ii) and (iii) of Proposition

5.2. Suppose that, in addition, the projection of 𝐻0 to each simple factor of G is not a torus. It follows

from Lemma 2.7 applied to each of these projection maps that 𝑃1 and 𝑃2 do not contain any simple

factor of 𝐺0. Hence hypothesis (i) of Proposition 5.2 holds, so we may conclude from Proposition 5.2

that H is G-ir. This completes the proof of Theorem 1.1. �
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As noted in the introduction, Theorem 1.1(i) holds without the more restrictive hypotheses needed

for parts (ii) and (iii); this allows us to give the following interesting corollary:

Corollary 5.3. Suppose H is a connected reductive subgroup of G. If H is normalised by a regular
unipotent element of G, then it is G-completely reducible.

Proof. Let u be a regular unipotent element of G normalising H. Since reductivity and complete

reducibility are equivalent in characteristic 0 (see [21, Proposition 4.2], [3, Sections 2.2 and 6.3]), we

may assume that u has finite order. Let K be the subgroup of G generated by u and H; then 𝐾0
= 𝐻, so

K is reductive. Since K contains u, Theorem 1.1(i) applied to K gives the result. �

We finish this section by proving the analogue of Theorem 1.1 in the presence of a Steinberg

endomorphism 𝜎 of G, generalising Theorem 1.3.

Proposition 5.4. Let𝐻 ⊆ 𝐺 be reductive algebraic groups (possibly nonconnected). Let𝜎 be a Steinberg
endomorphism of G with 𝜎(𝐻) ⊆ 𝐻. Suppose the projection of 𝐻0 onto each simple factor of 𝐺0 is not
a torus. If some 𝜎-stable connected component X of H contains a regular unipotent element of G, then
𝐻𝜎 does not normalise any proper parabolic subgroup of 𝐺0. If, moreover, 𝐻𝜎 meets every connected
component of G, then 𝐻𝜎 is G-irreducible.

Proof. Suppose X is a 𝜎-stable connected component of H containing a regular unipotent element u
of G. Then u is a regular unipotent element of H by Lemma 4.8. Hence the regular unipotent elements

of H in X are the regular unipotent elements of G belonging to X, since these elements form a single

𝐻0-conjugacy class C in X [22, II.10.1]. By [24, I.2.7], C contains a 𝜎-fixed point 𝑢1.

We now follow the proof of Theorem 1.1, taking 𝑢1 ∈ 𝐻𝜎 . Since 𝜎(𝑢1) = 𝑢1 and B is the unique

Borel subgroup of H normalised by 𝑢1, B must be 𝜎-stable. Hence we may choose S and 𝐵− in the

proof to be 𝜎-stable as well, and the element 𝑥 ∈ 𝑁𝐻 0 (𝑆) conjugating B to 𝐵− can be chosen in 𝐻𝜎 , by

Lemma 2.2. So 𝑢2 ∈ 𝐻𝜎 as well. Now the rest of the proof goes through unchanged: we conclude that

𝐻𝜎 does not normalise any proper parabolic subgroup of 𝐺0, and if 𝐻𝜎 meets every component of G,

then it is G-ir. �

6. Further discussion

We finish the paper with a discussion of some extensions of the main result and some examples to

illustrate other points of interest. We start by exploring the limits on the hypotheses on H and 𝐻0 in

Theorem 1.1.

Remark 6.1. Recall that in characteristic 0 a subgroup is G-cr if and only if it is reductive (see [21,

Proposition 4.2], [3, Sections 2.2 and 6.3]). Hence Theorem 1.1 follows quickly in characteristic 0 from

Corollary 4.7. There is a similar equivalence between complete reducibility and reductivity in positive

characteristic p if the index of 𝐻0 in H is coprime to p and p is sufficiently large relative to the rank

of G [21, Theorem 4.4]. Thus the conclusion of Theorem 1.1(i) is particularly interesting in ‘small

characteristics’, where it doesn’t simply follow from the reductivity of H, and the conclusions of parts

(ii) and (iii) are of particular note when the index of 𝐻0 in H is divisible by p.

Remark 6.2. As noted in Remark 1.2(iv), some restrictions on 𝐻0 are necessary for Theorem 1.1 to hold.

When 𝐺0 is simple, non-G-irreducible examples of subgroups H of G containing a regular unipotent

element must have 𝐻0 a torus; we refer to [16, Section 7] for such examples.

On the other hand, we also note that there are plenty of examples where 𝐻0 is a torus and yet

the conclusions of Theorem 1.1 do hold. For example, suppose 𝐻0 is a regular torus of G (i.e., one

containing a regular semisimple element of G [8, IV.13.1]), so that 𝑇 = 𝐶𝐺

(
𝐻0

)0
is a maximal torus

of G. Then 𝑁𝐺

(
𝐻0

)0
= 𝐶𝐺

(
𝐻0

)0
= 𝑇 , so 𝑁𝐺

(
𝐻0

)
is a finite extension of T and every subgroup of

𝑁𝐺

(
𝐻0

)
is 𝑁𝐺

(
𝐻0

)
-cr; in particular, H is 𝑁𝐺

(
𝐻0

)
-cr. Since 𝐻0 is G-cr by [3, Proposition 3.20, Section

6.3], it follows from [4, Corollary 3.3] applied to the inclusion of 𝐻0 in H that H is G-cr. Hence by
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Corollary 4.7, the conclusions of Theorem 1.1(ii) and (iii) hold in this case even though the hypotheses

do not. For a concrete example of this phenomenon, let H be the normaliser of the maximal torus in

𝐺 = SL2 when the characteristic is 2: then H contains a regular unipotent element and is G-ir.

Remark 6.3. Let 𝐻 ⊆ 𝐺 be reductive algebraic groups (possibly nonconnected) and suppose H contains

a regular unipotent element of G. If there is a nontrivial normal unipotent subgroup N of H such that

𝑁 ⊆ 𝐺0, then the conclusions of Theorem 1.1 fail for H: for N is not 𝐺0-cr, so N is not G-cr, so H is not

G-cr [3, Theorem 3.10]. The PSL2(𝑝) examples we discussed after Theorem 1.3 show, however, that

the conclusions of Theorem 1.1 can fail even when H is finite simple.

Remark 6.4. For simple G and semisimple H, the classification in [28, Theorem 1.4] says that apart

from some obvious classical group cases, such as Sp2𝑛 ⊆ SL2𝑛, pairs 𝐻 ⊆ 𝐺 with H containing a regular

unipotent element of G are rare. However, if G is not simple and G and H are allowed to be disconnected,

then it is much harder to keep track of the possibilities in a systematic way; see also our next example.

Example 6.5. The following example shows that a given regular unipotent element of G can belong to in-

finitely many distinct connected reductive overgroups. Let 𝐺 = SL2 ×SL2 and assume char(𝑘) = 𝑝 > 0.

Fix unipotent 1 ≠ 𝑣 ∈ SL2

(
F𝑝

)
and let 𝑢 = (𝑣, 𝑣). For each power q of p, define 𝐻𝑞 to be the image of

SL2 under the twisted Frobenius diagonal embedding 𝑔 ↦→
(
𝑔, 𝜎𝑞 (𝑔)

)
, where 𝜎𝑞 is the standard q-power

Frobenius map. Then the 𝐻𝑞 are distinct – in fact, they are pairwise nonconjugate – and 𝑢 ∈ 𝐻𝑞 for all q.
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