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Abstract: A detailed analysis of distribution shifts in Pinus hartwegii Lindl. is provided across time

for Izta-Popo National Park (México). Combining satellite images, species distribution models, and

connectivity analysis we disentangled the effect of climate change and anthropogenic land use on

the habitat availability. Twenty-four Maxent habitat suitability models with varying complexity

were combined with insights on vegetation and land cover change derived from two Landsat

satellite images at 30-m resolution from 1993 and 2013. To evaluate effects of climate change on

Izta-Popo’s P. hartwegii forest, projections for future climatic conditions (averaged for 2050 and 2070)

were derived using two General Circulation Models under three Representative CO2 concentration

pathways (RCPs). Calculated fragmentation and connectivity indexes (Equivalent Connected Area

and Probability of Connectivity metrics) showed significant habitat loss and habitat fragmentation

that weakens P. hartwegii dispersion flux and the strength of connections. Projections of future climate

conditions showed a reduction of P. hartwegii habitat suitability as populations would have to migrate

to higher altitudes. However, the impact of anthropogenic land use change documented over the

20 years masks the predicted impact of climate change in Izta-Popo National Park.

Keywords: model complexity; model validation; Landsat; satellite data; species distribution models;

connectivity; fragmentation; Maxent; land-use change

1. Introduction

Studies over the last three decades have shown that land change and climate changes
produce major impacts on biological systems across many scales [1]. The work by Fo-
den et al. [2] provides an overview of this exponentially developing field of climate change
vulnerability assessment of species to choose effective conservation strategies. However,
there is an ongoing challenge to reduce uncertainties on the quantification of climate
change and land use impacts, particularly in heterogeneous areas or those more intensively
affected, typified in mountain ecosystems [3,4]. Usually, in these areas, species’ inventories
are incomplete and climate models are inaccurate due to the lack of meteorological stations
at high altitudes [5]. Here, the combination of the widely accessible remote sensing data
with field-based climate change impact models can be used as an alternative approach to
improve land use and climate change vulnerability assessment of ecosystems.
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Species Distribution Models (SDM) can be used to forecast climate change impacts
on species’ distributions [6–8]. SDM are based on modeling the potential distribution of a
species by establishing algorithms between (1) field observation points as a current species
distribution proxy, and (2) their current associated environmental conditions as predictor
variables [9,10]. This correlative approach, often conducted at a 1-km2 scale, considers
climate as the dominant environmental factor defining the “fundamental ecological niche”
of a species’ distribution [11]. Such correlations can be projected to future climate conditions
associated with different anthropogenic scenarios, to evaluate habitat suitability impacts.
This approach is strongly dependent on the different algorithms used, the selection of
predictor variables, and the quantity and quality of the input data used to construct the
models [12–15]. Maxent, the modeling technique employed here, uses the principle of
maximum entropy on presence-only data to estimate the relative suitability of habitat in the
study area [16,17]; this can overfit the training data, making transferability unreliable [18].
To control overfitting, parallel to choices on function settings and the number of explaining
variables, Maxent uses a β regularization parameter that relaxes the suitability functions to
lie within an interval around the empirical mean rather than matching it exactly [17]. The
pre-selected features, explaining variables and β-parameter, define the complexity level of
each Maxent model as quoted on the “number of parameters” [16].

To compare the different model selections, their predictive ability must be evaluated,
ideally with independent observations [19]. However, due to the lack of such data, valida-
tion is performed by dividing the presence data set into a ‘calibration’ and a ‘validation’
data set [20].

Biased or incomplete field data are common due to environmental, economic, or
security handicaps (as in this case study), where data are not collected across the environ-
mental range, in more inaccessible areas, or from conflict zones, respectively. These issues
combine to result in an incomplete picture of the realized niche [11,21]. Using alternative
sources of presence data would benefit the calibration and validation modeling processes,
especially in remote areas that house an important part of the world biodiversity. Here,
Remote Sensing Data (RSD) stands out as an alternative low-cost and independent data to
cross-validate SDM, while furthermore informing about habitat structure changes through
time at a complementary spatio-temporal scale, accounting for biological interactions and
human activity [9,11].

Satellite spectral information (RSD) in combination with attributes obtained from
inventory plots is a growing research field to investigate ecosystem functioning and to
detect plant assemblages or ecosystem properties’ changes in time that complement in
situ terrestrial monitoring approaches [22,23]. Multi-spectral biophysical estimates of
vegetation have been used to map large areas of forests [24] or to assist forest surveys for
stratification and post-stratification field sampling [25]. The continuous advances on multi-
and hyper-spectral approaches and techniques to obtain biophysical estimates at higher
temporal and spatial resolution [26–28] in parallel increasing quality and accessibility
of in situ observations [29] open new horizons in biodiversity studies [30]. However,
few studies integrate RSD with SDM, and usually they are limited to the inclusion of
RSD estimates as explanatory variables to calibrate SDM; this handicaps the possibility to
project such models under future scenarios due to the absence of RSD estimates in future
conditions [31–33].

In areas where a lack of data field information exists, RSD have been proven to provide
valuable and complementary information in landscape structure (i.e., disruption of the
landscape patters, resulting in habitat loss, habitat fragmentation, and connectivity) at
broad scales [34–39]. Importantly, habitat loss and fragmentation due to anthropogenic
land use change is a major ecological concern that might result in a decrease of habitat
availability and reachability (i.e., the amount of habitat and capacity to move among habitat
patches) that can lead to habitat isolation, decrease of genetic diversity, and population
decline or local extinctions [40–42].
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Connectivity analyses have shown a great utility and effectiveness to guide conserva-
tion efforts to preserve and restore habitat connectivity in a cost-effective way, e.g., [43,44].
These studies normally focus on characterizing ecological networks in order to quantify
functional habitat changes along time and providing explicit information about the most
important areas for genes and species to move [43,45]. Recently, some studies have high-
lighted the contribution of RSD to derive more accurate connectivity predictions with a
large potential to support the best-informed conservation plans, e.g., [40,42].

In this work, we show a framework for habitat evaluation across time to overcome
limitations of field-based data by integrating RSD, correlative distribution models, and con-
nectivity metrics. First, the climate change effect on Pinus hartwegii Lindl. habitat suitability
was tracked by the projections of Maxent models to future climate conditions on Izta Popo
National Park. Second, the variation of P. hartwegii habitat distribution and its connectivity
observed on the land cover variation during a 20-year interval (tracked by RSD) were
investigated. Our results help a spatially explicit understanding of P. hartwegii distribu-
tion under climate change, giving support to develop management recommendations for
its conservation.

2. Materials and Methods

2.1. Species and Study Area

The re-sprouting 30-m-tall P. hartwegii is found naturally in Mexico, Guatemala, and
Honduras mountain summits, between 2300 to 4300 m above sea level (m a.s.l.) [46,47]
(Figure 1), making it an ideal candidate to explore modeling challenges on mountain areas.
The main range of the species is found in México, where P. hartwegii dominates forest up
to the tree line ~4000 m a.s.l., forming pure stands above 3000 m a.s.l. [48]. At present,
the 1:125,00 INEGI vegetation map only provides for rough limits’ distribution of the
p. hartwegii target species [49]. Species’ occurrence information can be found from the
Mexican Forest Inventory [48,50] and from the Atlas of the world’s conifers [47].

Land 2021, 10, x FOR PEER REVIEW 3 of 21 
 

 

habitat patches) that can lead to habitat isolation, decrease of genetic diversity, and 
population decline or local extinctions [40–42]. 

Connectivity analyses have shown a great utility and effectiveness to guide 
conservation efforts to preserve and restore habitat connectivity in a cost-effective way, 
e.g., [43,44]. These studies normally focus on characterizing ecological networks in order 
to quantify functional habitat changes along time and providing explicit information 
about the most important areas for genes and species to move [43,45]. Recently, some 
studies have highlighted the contribution of RSD to derive more accurate connectivity 
predictions with a large potential to support the best-informed conservation plans, e.g., 
[40,42]. 

In this work, we show a framework for habitat evaluation across time to overcome 
limitations of field-based data by integrating RSD, correlative distribution models, and 
connectivity metrics. First, the climate change effect on Pinus hartwegii Lindl. habitat 
suitability was tracked by the projections of Maxent models to future climate conditions 
on Izta Popo National Park. Second, the variation of P. hartwegii habitat distribution and 
its connectivity observed on the land cover variation during a 20-year interval (tracked by 
RSD) were investigated. Our results help a spatially explicit understanding of P. hartwegii 
distribution under climate change, giving support to develop management 
recommendations for its conservation. 

2. Materials and Methods 
2.1. Species and Study Area 

The re-sprouting 30-m-tall P. hartwegii is found naturally in Mexico, Guatemala, and 
Honduras mountain summits, between 2300 to 4300 m above sea level (m a.s.l.) [46,47] 
(Figure 1), making it an ideal candidate to explore modeling challenges on mountain 
areas. The main range of the species is found in México, where P. hartwegii dominates 
forest up to the tree line ~4000 m a.s.l., forming pure stands above 3000 m a.s.l. [48]. At 
present, the 1:125,00 INEGI vegetation map only provides for rough limits’ distribution of 
the p. hartwegii target species [49]. Species’ occurrence information can be found from the 
Mexican Forest Inventory [48,50] and from the Atlas of the world’s conifers [47]. 

 
Figure 1. P. hartwegii occurrence data. (A): Mexican National Forest Inventory (Green dots); World’s 
Conifer Atlas [47] (Yellow dots). (B): Available meteorological stations [51] (Black dots) on the 
topographic map of Izta Popo National Park (lines ranging from 3600 to 5400 m a.s.l. every 200 m). 
1: Tláloc (4120 m a.s.l.); 2: Iztaccíhuatl (5230 m a.s.l.); 3: Popocatépetl (5452 m a.s.l.). 

Ranging from 3600 to 5480 m a.s.l., and covering an area of 39,819.09 ha, the Izta-
Popo National Park hosts two of the three highest volcanoes in Mexico (Figure 1). This 

Figure 1. P. hartwegii occurrence data. (A): Mexican National Forest Inventory (Green dots); World’s

Conifer Atlas [47] (Yellow dots). (B): Available meteorological stations [51] (Black dots) on the

topographic map of Izta Popo National Park (lines ranging from 3600 to 5400 m a.s.l. every 200 m).

1: Tláloc (4120 m a.s.l.); 2: Iztaccíhuatl (5230 m a.s.l.); 3: Popocatépetl (5452 m a.s.l.).

Ranging from 3600 to 5480 m a.s.l., and covering an area of 39,819.09 ha, the Izta-Popo
National Park hosts two of the three highest volcanoes in Mexico (Figure 1). This area
provides for key environmental services (e.g., water, timber, carbon storage) to Morelos,
Puebla, and downstream Mexican states. The climate is characterized by 928 mm mean
annual rainfall, with September being the wettest month (185.6 mm) and February the
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driest (6.9 mm). The monthly mean temperature is 14.5 ± 5.4 ◦C. January with 10.8 ◦C and
May with 16.2 ◦C are the coldest and warmest months, respectively [48].

Following Rzedowski’s classification of the Mexican vegetation in 1978, three veg-
etation zones have been distinguished in Izta-Popo National Park; these are strongly
dependent on the altitude and orientation [48]. On the most hygrophilic areas of the
basal belt (below ~3700 m a.s.l.), a Pino-Oyamel (i.e., Pinus hartwegii Lindl.—Abies religiosa
Kunth Schltdl. et Cham.) mixed forest can be found. Pinus ayacahuite Ehrenb. ex Schltdl.
and P. montezumae Lamb. are found on more xerophytic areas, up to this ~3400 m a.s.l.
Above this altitude a second vegetation zone is formed by P. hartwegii monospecific forests
alternating with altitudinal pastures that dominate above ~4000 m a.s.l. (third vegetation
zone). From ~4500 m a.s.l., glaciers inhibit the establishment of permanent vegetation.
More vegetation types can be found in the areas surrounding Izta-Popo National Park,
below 3600 m a.s.l., where Pinus montezumae-Stipa spp. or Pinus leiophylla-Stellaria cuspidate
associations grow [52].

2.2. Remote Sensing-Based Maps

To analyze the spatial variation of P. hartwegii habitat between 1993 and 2013, two
Landsat Satellite images were acquired on 5 June 2013 (Sensor 8, Path 26, Row 47, Id:
LC80260472013156LGN00) and on 2 September 1993 (Sensors 5, Path 26, Row 47,
LT50260471993053AAA04) from the United States Geological Survey [53]. The 30-m resolu-
tion images were geo-referenced and atmospherically and geometrically corrected with
ground control points using ENVI 4.5 Software (C Exelis Visual Information Solutions,
Boulder, Colorado). The images were classified to create supervised vegetation maps of
the National Park, for which seven classes were previously defined following Rzedowski
(1978) [52] (Table 1).

Table 1. Predefined classes were previously defined following Rzedowski (1978) [52] to classify the satellite images.

Class Description

Pine forest Areas dominated by Pinus hartwegii

Pino-Encino-Oyamel forest
Mixed formations dominated by P. hartwegii, Pinus ayacahuite Ehrenb. ex Schltdl., P. montezumae
Lamb., Quercus crassifolia Benth., Quercus laurina M. Martens & Galeotti, and Abies religiosa Kunth
Schltdl. et Chamy

Urban zones
Crops

Pastures
Areas dominated by Festuca spp., Camalagrostis tolucensis Trin. ex Steud., Agrostis tolucensis Kunth.,
and Juniperus montícola Martínez

Clouds Clouds and glaciers
Shadows

The 1993 images were classified by means of the Mahalanobis’ Mínimum distance
supervised algorithm, with 70 % of the area ground-truthed [54,55]. The ground-truthing
data set was obtained from random polygons selected on Quickbird and Ikonos Satellite
images assessed with four field observations obtained in the Western slopes of the Tláloc,
Iztaccíhuatl, and Popoctépetl (Figure 1, Table S1) from September 2011–March 2012 (given
the significant social unrest in the area and consequent risk of sampling at that time, no
more field observation points were visited). The same polygons were used as field-based
training areas to classify the 2013 Landsat images.

The accuracy of the 1993 and 2013 classification maps were quantified with the 30%
remaining ground-truth for each map (16,345 and 9753 pixels, respectively). The accuracy
was assessed with the confusion matrix (matrix indicating accordance of the classified
pixels with the ground-truth) and the Kappa’s Statistic (a proxy of the difference between
the confusion matrix with a random accordance between the classified map and the ground-
truth [55]). All maps were created using the ArcMap 10.1 software [56].
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2.3. Changes in Habitat Availability

To assess P. hartwegii habitat changes from 1993 to 2013 in the National Park, we
calculated the relative variation of the total habitat (dA):

dA = (A2013 − A1993)/A1993, (1)

where AX is the area occupied by the Pine forest class the year X. A connectivity analysis
was performed based on the graph theory [57] as applied by, e.g., [39,43]. Probabilities
for every existing link between patches (pij) were calculated using two median dispersal
distances (19.1 and 52.1 m) to capture the most common range of dispersal variability
of pine seeds [58–61]. Those were obtained from a negative exponential function with a
probability value of 0.5 [62].

The change of the total reachable habitat for P. hartwegii (i.e., connected area) was
quantified by the relative difference on the Equivalent Connected Area (44) between 1993
and 2013:

dECA = (ECA2013 − ECA1993)/ECA1993, (2)

calculated for the different pine seed dispersal distances. The Equivalent Connected Area
(4), which is obtained from the Probability of Connectivity index (3), represents the size of
a hypothetical and unique patch with the same area than the overall reachable habitat for
the species in the entire landscape [45,63,64]:

PC =

∑
n
i=1 ∑

n
j=1 ai·aj·p∗

ij

A2
L

, (3)

ECA = A2
L·
√

PC, (4)

where PC is the Probability of Connectivity index, i and j are the source and destination
nodes (i.e., habitat patches), ai and aj are their attributes (habitat area), n is the total number
of patches, ECA is the Equivalent Connected Area, AL is the maximum landscape attribute,
and p*ij is the probability of connection between patches i and j (considering both direct
dispersal or through intermediate stepping stones) [63].

Additionally, the contribution of the different habitat patch to the overall connectivity
was portioned into three components [64]:

dPC = dPCintra + dPCflux + dPCconn. (5)

The intra fraction measures the amount of habitat existing within a particular patch.
The flux fraction quantifies how much dispersal flux a patch is expected to receive or
produce. Connector fraction (conn) measures the role of a patch as connecting an element
or stepping-stone.

All calculations were performed in Conefor 2.6 [65], using habitat area as patch attribute.

2.4. Species Distribution Models

Twenty-four SDMs were fitted for present climate conditions with Maxent software [16,66],
combining two sets of current occurrence data (sets 1 and 2) and different complexity
by varying the climatic variables, the features allowed in the modeling process, and β-
multiplier [17,67].

One hundred Pinus hartwegii natural occurrences (data set 1) from the Mexican Forest
Inventory that benefit from an ad-hoc design inventory [50] were used to account for the
species’ current presence. To account for a wider ecological native range of P. hartwegii [68],
43 herbarium occurrence records from Guatemala and Honduras [47] were added to the
Mexican data to construct the models (Figure 1). Occurrence coincidences in 1-km pixels
were aggregated, and ecological outliers were discarded after performing non-metric
multidimensional scaling (NMDS) ecological analysis of their annual and seasonal related
precipitations and temperatures [69] (Figure S1).
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Current climate data for the 1960–1990 period at 30-arc-second (~1 km) resolution
were downloaded from the WorldClim 1.4 database [51,70], which provides 19 bioclimatic
variables (Table 2) that account for annual trends, seasonality, and extremes in climate that
have been reported to act as limiting environmental factors for many organisms [70]. The
ecological space of P. hartwegii was defined by 10,000 background points randomly selected
in (1) México and (2) Mexico, Honduras, and Guatemala [16] to build all the models.

Table 2. Wc. V: WorldClim v1.4 climatic variables and their descriptions [51,70]. S1, S2: The two

climatic variable sets used to calibrate the model.

Wc. V Description S1 S2

BIO 01 Annual Mean Temperature X
BIO 02 Mean Diurnal Range (Mean of monthly: max temp—min temp)
BIO 03 Isothermality (BIO2/BIO7) (×100)
BIO 04 Temperature Seasonality (standard deviation ×100)
BIO 05 Max Temperature of Warmest Month X X
BIO 06 Min Temperature of Coldest Month X
BIO 07 Temperature Annual Range (BIO5-BIO6)
BIO 08 Mean Temperature of Wettest Quarter X
BIO 09 Mean Temperature of Driest Quarter X X
BIO 10 Mean Temperature of Warmest Quarter
BIO 11 Mean Temperature of Coldest Quarter
BIO 12 Annual Precipitation X X
BIO 13 Precipitation of Wettest Month
BIO 14 Precipitation of Driest Month
BIO 15 Precipitation Seasonality (Coefficient of Variation) X X
BIO 16 Precipitation of Wettest Quarter
BIO 17 Precipitation Driest Quarter
BIO 18 Precipitation of Warmest Quarter X
BIO 19 Precipitation of Coldest Quarter X

The selection of climatic variables was based on expert ecological analysis (i.e., step-
wise selection following physiologically relevant criteria) [7] among the less correlated
variables (Pearson r < 0.75; variance inflation factor < 5) [71,72]. The following options of
feature classes provided by Maxent were included in the analysis: “auto-features” (that
allow the inclusion of thresholds and hinge features due to physiological limits) and “LQP”
(i.e., only linear, quadratic, and product features). Finally, three different β-multipliers,
which Maxent uses to control the allowed model complexity, were set: β = 0 (no complexity
control), β = 5 (to minimize the complexity of the model), and β = 1 [67].

The models were calibrated with 70% of the occurrence data, after a random selection
for set 1 and set 2 data points. The remaining 30% were reserved to perform a non-
independent validation [19]: each model was evaluated through the AUC statistic (Area
Under the receiver operating characteristic curve), which informs about the ability of the
model to discriminate between species’ presences and absences [21,73]. To account for
the goodness of fit and the model complexity, the AICc (Akaike Information Criterion
corrected for small sample sizes) was also calculated [17,74].

Due to the absence of other available independent data to validate the models, remote
sensing data were used as an alternative to evaluate the habitat suitability models. Valida-
tion was performed by calculating the Pearson correlation coefficient between the habitat
suitability values predicted by each Maxent model in each pixel and the corresponding
P. hartwegii occupation percentages calculated from the 2013 RSD-based map (rHS-PO). To
calculate P. hartwegii’s surface occupation at 1-km resolution, the original 30-m P. hartwegii
pixeled map was converted to relative percentage occupation on a 1-km2 map.

Validation of the habitat suitability models with the RSD-based map was graphically
counter-checked with the usual data-partitioning method to visualize agreements between
rHS-PO and AIC. A detailed description of the modelling process can be found in Table S2,
following the ODMAP v1.0 standardized protocol for reporting SDM [75]
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2.5. Climate Change Impact on P. hartwegii Distribution

As a baseline, the present realized niche (the niche occupation index (NOI)) of
P. hartwegii was calculated as the percentage occupation of the suitable area (as calcu-
lated from the model with best rHS-PO and AIC performance). Present species’ occupation
was derived from the 2013 P. hartwegii RSD-based map.

To evaluate P. hartwegii habitat suitability changes under different future human-
developing scenarios in the study area, the Maxent models were projected to the corre-
sponding climate conditions. We used the reproduction of future climatic conditions from
two Earth System Models (ESMs) with three representative CO2 Concentration pathways
(RCP2.6, RCP4.5, and RCP8.5.): NorESM1-M y MPI-ESM-MR [76–78]. Among the available
ESMs, these were selected after proving to perform well in the region when reproducing
present and future climate conditions (see Figures S2 and S3) [79,80]. The values of the
bioclimatic variables for the future scenarios were obtained from the WorldClim database
for the periods 2050 (2041–2060) and 2070 (2061–2080). This database provides 1-km spatial
resolution, after following a delta change-factor approach to downscale the original 2.5◦

cell size provided by the ESMs for each RCP [81]. To evaluate the sensitivity of P. hartwegii
to the forecasted climate change, percentage variations of habitat suitability (HSV) between
the present (2013) and the future climate conditions (2050 and 2070) were calculated [82,83].

To calculate NOI and HSV indexes, the suitability maps were converted into binary
maps (0: non suitable pixel; 1: suitable pixel) with different suitable thresholds [84,85].
To account for permitted commission and omission errors, four different thresholds were
utilized [71,85]: (1) the “Maximum test sensitivity plus specificity” Maxent threshold option
(that predicts as absences the 10% of the inventoried presences with the most extreme
environmental values), (2) the “10 percentile training presence” (that includes the 90% of the
occurrences on the suitable areas), (3) 0.25 habitat suitability threshold, and (4) 0.5 habitat
suitability threshold.

Changes in P. hartwegii habitat suitability for the future scenarios were counterchecked
with the observed changes on land use from 1993 to 2013, to balance climate change impacts
relative to the observed anthropogenic landscape fragmentation.

3. Results

3.1. Remote Sensing Data

The classification of the 1993 and 2013 Landsat images provided a vegetation map
of the study area (Figure 2), with a 0.64 and 0.81 Kappa’s statistic, respectively. The
2013 confusion’s matrix showed that the errors were mainly due to confusions between
P. hartwegii and the Pino-Encino-Oyamel mixed forest (19.02% and 18.14% misclassified
pixels, respectively), and between urban and crop lands (24.60% urban misclassified pixels).
The errors on the 1993 vegetation map were due to misclassifications among Pine, Pino-
Encino-Oyamel, and pasture classes (19.5, 16.2, and 40.2), and among urban, crops, and
snow classes (59.2, 39.8, and 20.5 misclassification percentages).

The 1993 and 2013 vegetation maps show the existence of two large habitat patches of
P. hartwegii surrounding the Tláloc and Iztaccíhuatl-Popocatépelt volcanoes (Figure 2). In 1993,
the pine forest occupied 58.80% of the National Park, in contrast to 50.59% in 2013, which
corresponds to a habitat loss of 14.1%. However, when the connection between patches is
taken into account (i.e., Equivalent Connected Area), a reduction of the reachable habitat up
to 59.7% and 56.3% was observed for dispersal distances of 19.1 m and 52.7 m, respectively.

Simultaneously, at the expense of the P. hartwegii forest type, habitat increases from
16.57% to 23.42% were detected in the mixed pine forest (Pino-Encino-Oyamel) between
1993 and 2013. This pattern is clearly visible in the surrounding areas of the Popocatépetl
volcano, although the area covered by clouds in the south for the 2013 image could be
over-enhancing the effect of such change in this area. (Figure 2). Other noticeable changes
observed in landcover during this period were related to pastures and crop lands (from
23.54% to 20.32% cover). Surrounding the Iztaccíhuatl volcano, the observed P. hartwegii
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tree-line decrease on the Western slope between 1993 and 2013 was compensated by an
altitudinal gain on the Southern slope (Figure 2).
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Regarding the importance of the individual patches to maintain the overall connectiv-
ity (dPC), the habitat patches showed a higher density in the north compared to the south
of the study area (Figure 3).

When analyzing the ways that patches contributed to maintain the overall connectivity,
marked differences in the role of patches were observed in the 20-year span. Besides
observing the loss of some connections between patches, a noticeable decrease of the
intrapatch connectivity was observed in 2013. Conversely, the contribution of patches as
elements of dispersal flux (dPCflux) and connector elements (dPCconn) increased in 2013, a
trend that is more evident with 52.72-m dispersal distance (Table 3).

Table 3. Decomposition of dCP (intra, flux, and connector) for the varying dispersal distances D

(meters) and years (yr) (5).

Yr D (m) dPCintra dPCflux dPCconn

1993 19.1 98.79 1.03 0.18
1993 52.72 95.76 3.47 0.76
2013 19.1 94.81 4.67 0.52
2013 52.72 77.29 17.80 4.91
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sensing data-classified habitats, with a dispersal distance of 52.72 m.

Additionally, a relative decrease of dA = −14.15% (1) was observed on P. hartwegii
habitat between 1993 and 2013. The relative variation of the total reachable habitat be-
tween 1993 and 2013 (dECA = −59.7% and −56.3% for dispersal distances of 19.10 and
52.72 m, respectively) and (2) evidenced the levered effect of the anthropogenic habitat
fragmentation on the habitat loss.

3.2. P. hartwegii Habitat Suitability Models

After aggregating duplicated data, removing outliers and poorly georeferenced data,
and performing the non-metric multidimensional scaling ecological analysis (Figure S1),
97 P. hartwegii natural occurrences from the Mexican Forest Inventory were used in the
analysis as data set 1. The additional herbarium data from Honduras and Guatemala
comprised 121 occurrences and were used as data set 2 (Figure 1A). As independent
variables to explain the occurrence data, two sets of WorldClim climatic variables were
selected after correlation and expert-based analysis (Table 2).

The standard cross evaluation of the 24 fitted Maxent models showed similar AUC
values above 0.98. Small differences were observed between the models calibrated with
the Mexican data set (0.9805 to 0.9888 AUC) and the models performed with the world’s
distribution data set (0.9919 to 0.9942 AUC) (Table 4). Focusing on the RSD-based validation
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index (rHS-PO) of the models differing only from the occurrence data set, better models
were also observed on those calibrated with Mexican data (data set 1).

Table 4. Characterization of the different distribution models. Model Id.: Identification number of the

model). Occ: Occurrence data (97 Mexican occurrences. 24 Guatemala and Honduras occurrences).

n: number of independent variables included in the model. Features: features classes allowed in the

modeling process. L.Q.P: Linear, quadratic and product features. β: Maxent β-multiplier. AUC: Area

Under the receiver operating characteristic curve. AIC: Akaike Information Criterion corrected for

small sample sizes. p: number of parameters of each model. rHS-PO: Spearman correlation between

habitat suitability values (HS) and the percentage occupation (PO) of P. hartwegii on the 2013 satellite

derived map. Shadowed in gray: best and worst model rHS-PO model. Bold: best models.

Model Id. Occ. n Features β AUC AIC p rHS-PO

1 121 7 Auto-features 0 0.981 - 159 0.180
2 121 7 Auto-features 1 0.986 3274.54 33 0.395
3 121 7 Auto-features 5 0.986 2908.33 14 0.403
4 121 7 L.Q.P 0 0.988 2846.66 12 0.443
5 121 7 L.Q.P 1 0.988 2839.50 10 0.446
6 121 7 L.Q.P 5 0.988 2858.54 8 0.421
13 121 6 Auto-features 0 0.981 - 140 0.233
14 121 6 Auto-features 1 0.988 2960.42 28 0.363
15 121 6 Auto-features 5 0.988 2868.96 9 0.330
16 121 6 L.Q.P 0 0.988 2867.29 12 0.357
17 121 6 L.Q.P 1 0.989 2861.54 7 0.343
18 121 6 L.Q.P 5 0.989 2868.03 6 0.321

7 97 7 Auto-features 0 0.994 3071.03 79 0.340
8 97 7 Auto-features 1 0.994 2369.42 18 0.213
9 97 7 Auto-features 5 0.994 2257.98 11 0.325
10 97 7 L.Q.P 0 0.994 2276.60 14 0.351
11 97 7 L.Q.P 1 0.993 2322.88 9 0.397
12 97 7 L.Q.P 5 0.993 2279.90 8 0.381
19 97 6 Auto-features 0 0.992 2688.57 69 0.240
20 97 6 Auto-features 1 0.992 2282.71 18 0.153
21 97 6 Auto-features 5 0.992 2279.01 8 0.225
22 97 6 L.Q.P 0 0.993 2284.95 11 0.342
23 97 6 L.Q.P 1 0.992 2313.13 9 0.285
24 97 6 L.Q.P 5 0.992 2333.28 5 0.265

The AIC, considering both the complexity (number of parameters) and the goodness
of fit of the models, showed varying penalization when using different combinations of
occurrence data sets and complexity (Table 4).

The models’ performance with the world’s occurrence data set (set 2), after removing
the most complex model, showed AIC ranging from 2839.50 to 3274.54 (Table 4). When
removing the three models with AIC higher than 3000, an inverse relationship trend
can be seen between AIC and the RSD-based validation index (rHS-PO) (see Figure S4).
Model 5, which was performed with seven climatic variables (see weights in Table S2), LQP
features, and β-multiplier =1, resulted to be the best model among those performed with
the set 2 of P. hartwegii occurrences (see Table 4). When comparing the choices to perform
the models, the auto-feature option had the worst performance compared to the models
restricted to only linear, quadratic, and products relationships (L.Q.P.). However, within
the auto-feature selection, the models improved when restricting complexity (β = 1 or 5)
and reducing the independent climatic variables to six.

Similarly, the AIC ranged from 2257.98 to 3071.03 on the models performed with the
Mexican data set (set 1) (Table 4). In this case, the best model differed when taking AIC
or rHS-PO into consideration (being models 9 and 11 the best ones, respectively). Better
models were those performed with seven independent variables and two choices to control
the complexity of the model: no mathematical control (i.e., auto-features) but maximum
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control with β-multiplier (β = 5), or mathematic relationships restricted to L.Q.P with an
intermediate β-multiplier control (β = 1). Parallel to the world’s occurrence data set, an
inverse trend between both validation parameters (AIC and rHS-PO) was observed on the
Mexican data set, after removing the most complex models with an AIC > 3000 (Figure S4).

The three best models (5, 9, and 11), the ones performed with the world’s occurrence
data set, L.Q.P. features, and intermediate β control (=1), showed better rHS-PO correlation
(≥0.40) than the one performed with auto-features compensated with β = 5 and the occur-
rence data restricted to Mexico. The worst model derived from the RSD-based validation
index was model 20, which, surprisingly, did not show a poor AIC (Table 4). This model was
performed with the most restricted occurrence data and climatic variables, auto-features,
and an intermediate β control. Within the best model (model 5), the weights of the climatic
variables showed Bio 5 (Maximum temperature of the warmest month) to be the most
important variable, with 94.4% contribution in the worst model (See Table S2). However,
the best model showed other temperature variables to complement Bio 5 information with
an additional 15.8% of model performance.

3.3. Projections to Present and Future Climate Conditions

Projections of P. hartwegii habitat suitability to present climate conditions of the best
and worst RSD validated models (models 5 and 20; Figure 4B,C) showed contrasting agree-
ments with the 2013 RSD-based P. hartwegii occupation map (Figure 4A). This reinforces
the importance of calibrating models with different complexity, followed by a validation
process best performed with independent occurrence data. Model 5 (Figure 4B) showed a
high P. hartwegii habitat suitability except for the valley between Tláloc and Iztaccíhuatl
volcanoes and the Iztaccíhuatl and Popocatépetl summits. No inferences can be made from
the visual disagreements between the 2013 RSD occupation map and the model 5 habitat
suitability projection on the Popocatépetl southern slope (bottom of Figure 4A), as this part
of the satellite image was covered with clouds (see Figure 2, right).
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As the baseline, niche occupation index (NOI) varied between 47.81% and 49.28%
depending on the different threshold options for present climate conditions. The worst,
47.81%, occupation index was performed with 0.5 probability threshold, while for 0.25, a



Land 2021, 10, 1037 12 of 20

10-percentile presence (10p), maximum training sensitivity plus specificity (max), and NOI
between 49.08 and 49.28 were observed.

Projections of model 5 to 2050 future climate conditions showed an increased P. hartwegii
habitat suitability in Izta Popo National Park, however, decreasing its suitability as the CO2

emission scenarios worsens (from RCP 2.6 to RCP 8.5). The decrease in habitat suitability
is clearly observed on the lowest areas, somehow counterbalanced with increases in the
summits of the National Park. Projections to 2070 show the same pattern, although with
worse suitability values (Figure 5).
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represent 3000 (brown-fine line), 4000 (blue), and 4800 (red) m a.s.l.

Focusing on the 0.5 suitability threshold and 2050, habitat decreases from 5.94% to
23.19% were observed in the Habitat Suitability Variation index (HSV) for the varying
scenarios. The remaining threshold options did not show any significant variation for the
2050 projections. The 2070 projections showed relevant increases in habitat losses in every
different threshold except for “Maximum test sensitivity plus specificity”, which remained
flat (Table S3). The 0.5 threshold showed habitat losses from 6.35% (RCP 2.6) to 43.74%
(RCP 8.5). Between the two climatic models, MPI-ESM-MR showed higher climate change
impact on the P. hartwegii habitat suitability, except for RCP 2.6, where similar values were
observed (Table S3).

4. Discussion

The integration of RSD, SDMs, and connectivity metrics provide a powerful tool to
assess the impact of climate change and anthropogenic land conversion that are the main
drivers impacting biological systems [1]. Although the use of RSD to generate predictor
variables is becoming more common in SDM, its potential as a validation tool in areas
with poor field data remains relatively unexplored. Furthermore, RSD can be particularly
valuable to assess ecological networks, by quantifying habitat connectivity levels and
characterizing priorities to maintain connectivity.
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4.1. The Use of Remote Sensing Data to Validate Species Distribution Models

The use of RSD to validate vegetation models and identify vegetation types has been
useful at large scales (e.g., 0.5◦ resolution) [86]. However, its use to validate SDM at higher
scales (e.g., 1-km2 resolution) is rare, as identifying species from remote sensing data is
not straightforward. First experiences to identify individual tree species confirmed the
high value of RSD, thanks to the increasing availability of higher-resolution images at high
frequency [28,87,88]. Parallel efforts to generate ground data [50] provide fundamental
knowledge to get better accuracy on RSD-based maps [22]. As RSD classification maps are
assessed by “ground-truthing” [55], obtaining accurate field data is key to getting accurate
species distribution maps. This is particularly relevant in areas with steep environmental
gradients with corresponding high vegetation cover diversity, such as mountain areas. In
these zones, ecological data are usually biased towards lower altitudes, whose limitations
are added to constraints of climatic models that are usually based on few stations at low
altitudes (e.g., see available meteorological stations for the study area in Figure 1B) [33,89].

In our case study, due to the monospecific forests of P. hartwegii, the presence maps at
1-km resolution obtained from the 1993 and 2013 RSD can be used with good confidence
(Kappa’s index > 0.6) [90]. The 0.81 accuracy of the 2013 map makes it a valuable map to
assess the effect of the different calibration options on the predictive ability of the fitted
P. hartwegii habitat suitability models. Although the Kappa’s accuracy of the 1993 remote
sensing map is relatively lower (0.64), its errors are majorly attributed to misclassification of
urban, crop lands, pastures, and snow classes. This map, however, is used only to evaluate
land use fragmentation and connectivity changes.

4.2. Species Distribution Modeling

The higher RSD-based validation index rHS-PO shown by the models run with global
presence data set compared with those run with the Mexican data (0.38 ± 0.05 vs. 0.29 ± 0.07;
Table 4) agrees with previous studies that conclude that performing habitat suitability models
with the species’ full ecological range achieve better results in model calibration [5,67,68].
This is best observed on the environmental envelopes (NMDS) performed on both data
sets; these show how P. hartwegii environmental conditions from Guatemala and Honduras
complement the climatic spectrum provided by the Mexican occurrences (see e.g., Annual
precipitation in Figure S1B). This conclusion supports the recommendations made by other
authors to perform environmental envelope analysis, ensuring the meeting of the niche
space assumption (i.e., full range of abiotic conditions are contained) [9,67].

Secondly, the trends observed in the RSD-based model assessment and the AIC agree
with previous studies that indicate that models with intermediate complexity are more
robust [17,67]. In this case study, the best models were achieved either by relaxing the
Maxent β complexity (β > 0) or alternatively reducing the allowed function features
(to L,Q,P).

Regarding the number of explanatory variables to fit the models, we followed the
advice of many authors who recommend a previous stepwise selection of those variables
to avoid the negative effects of auto-correlation [67,91–93]. In our study area, key climatic
variables regarding the duration and amplitude of cold and dry seasons [7] and leaving
more variables in the model produced slightly better models.

The small differences observed in AUC for the different Maxent models, compared
with the contrasting AIC and RSD-based validation indexes, could be a consequence of
using the same data for training and validating the model, which could be partially solved
using a spatial data-partitioning method to train and validate the model [20,71]. The small
difference in AUC also agrees with other studies that state that AUC ignores the goodness
of fit of the models and provides very high values when the extension of the species’
distribution is much smaller than the geographical area of the study [21,90].

In contrast, the RSD-based validation method proposed in this study has advantages
over AUC and AIC, as it emerges from a completely independent data source and can
compare the accuracy of models independently using varying calibration options (data sets,
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geographical amplitude, backgrounds) [21,94]. The coincidence of the best model as se-
lected from the RSD validation index and the AIC from those fitted with the world’s data set
stands as evidence of the validity of the proposed remote sensing-based validation method.

4.3. Impact of Cover Change on Habitat Availability and Reachability

The noticeable P. hartwegii forest decrease (14.15%) observed from 1993 to 2013 aligns
with anthropogenic impact [95,96]. To analyze the effect of this loss in the habitat con-
nectivity, the dispersal ability of the species (a key functional element joining pairs of
nodes [57]) needs to be estimated. However, dispersal capability is a complex process
that depends on many factors (e.g., tree density, location, seed production, dispersal,
fecundity, and establishment) [59] that remains largely unexplored in plants [58,60,61].
Although specific data on the species’ movement should ideally be used, the two dispersal
distances here considered to cover the most common range of dispersal ability in other
Pinus species [58–61] showed similar declines of P. hartwegii habitat connectivity from 1993
to 2013 (56.3–59.7%). This dramatic decrease suggests a loss of key habitat patches for
the ecological functionality of the species. The decrease of each patch contribution over
the probability of connectivity index (dPCintra) along the studied time period suggested
that the species lost large habitat patches (that provided significant amount of intrapatch
connectivity in 1993). Consequently, the ecological network shifted in 2013 to a greater
reliance on the remaining patches as a connecting stepping stone (dPCconn) and as patches
receiving or producing dispersion (dPCflux). This pattern of habitat loss and fragmenta-
tion may jeopardize the flux and the strength of connections to other patches, raising the
question of the capability of isolated patches to maintain populations with low dispersal
capacity, such as those associated with P. hartwegii [97]. Habitat change is more acute in
the north and south of the National Park (Figure 2), with a remarkable connectivity drop
between the Tláloc and Iztaccíhuatl summits (Figure 3), where the remaining fragments
cannot compensate for the decrease of connectivity and the increasing patchiness of the
populations. These findings document that the conservation of specific habitat patches can
be critical to maintain habitat functionality and that management efforts should focus on
their conservation.

4.4. The Impact of Climate Change

As a baseline, a niche occupation index (NOI) between 47.81% and 49.28% (i.e., habitat
occupation of its suitable area) in 2013 documents the limitations to occupy all areas that
are abiotically suitable for P. hartwegii. Anthropogenic impact, demography, and dispersal
constraints, together with biotic interactions, stochastic events, and historical aspects, are
among the responsible factors [9,90].

Illegal logging evidenced even during fieldwork and the extensive cattle indus-
try [98,99] point to anthropogenic impacts as a main driver of the observed landscape
fragmentation from 1993 to 2013 (see Figure 3). The contrasting increase of the mixed
pine forest at the expense of P. hartwegii monospecific forest could be a response of its
intense extraction and its natural replacement by other species (e.g., Pinus patula Schiede ex
Schltdl. & Cham., Quercus crassipes Bonpl., Quercus laurina Bonpl., Abies religiosa (Kunth)
Schltdl. & Cham.) to provide further challenges. At the upper tree line, pastures can
replace P. hartwegii forest under such uncontrolled logging as observed in the Western slope
of Iztaccíhuatl volcano (Figure 2).

In line with numerous studies that show an altitudinal and latitudinal shift of species’
ranges in response to past and forecasted climate changes [100–103], the projections to future
climate conditions show a clear tendency of P. hartwegii to migrate up-slope (Figure 5).
The observed tendency is visible when comparing the habitat suitability under present
(Figure 4B) and future climate conditions (Figure 5) between the Tláloc and the Iztaccíhuatl
volcanoes, and above 4000 m a.s.l., which project a clear reduction of the habitat suitability
in 2070.
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Although the quantification of the total loss of suitable area is highly dependent on
the threshold used to transform a continuous map into a binary map (see HSV index
in Table S2) [85], it gives evidence of the worrying effect of the greenhouse effect as
RCP become more extreme; e.g., up to a 32–43.7% of habitat loss was observed in the
2070 projections using the 0.5 threshold option. This tendency aligns with the observed
and modeled climatic shifts [79,80], which show increases of maximum and minimum
temperatures of up to 3.2 ◦C by 2085 (Figure S2). The essential temperature dependency
of habitat suitability models in mountain environments (see Table S2) continues to be a
concern under warming global climates.

Challenges related to deforestation, fire, and climate change have already been pointed
as being critical in Mexico [98]. Several projects have been launched by the Mexican
Government and wider partnerships to assess the value of the Izta Popo ecosystem services
and to ensure the wider sustainability of the National Park [99]. The specific Payments
of Environmental Services Schemes put forward (i.e., voluntary transaction in which a
user buys a specific ecosystem service [98], or the planting of 300,000 P. hartwegii seedlings
above 4000 m a.s.l. in Izta-Popo [104]) are good examples of responses at a National level
to preserve the ecosystem and associated services threatened by land use and forecasted
climate change evidenced by this study. Other actions aimed to adapt ecosystems to climate
change (e.g., assisted migration of pine for successful colonization [99]), could benefit from
the connectivity analysis presented here to focus ecological restoration in key areas.

5. Conclusions

To overcome limitations of field-based observations in areas that are difficult to mon-
itor or unsafe areas, the incorporation of RSD with SDM can be a useful tool to assess
vegetation change. RSD have been incorporated into the modeling procedure as an inde-
pendent validation tool to test SDM performance.

The contrasting geographical projections of the P. hartwegii habitat suitability modeled
to present conditions point out that during the modeling process there are important
decisions to be made. Contrary to other validation methods, using RSD offers the advantage
to evaluate different models independently.

Anthropogenic pressures on the Izta Popo National Park have led to a reduction of
P. hartwegii forest cover and a drastic drop in its connectivity from 1993 to 2013. During these
20 years a significant number of critical elements for connectivity have disappeared, forcing
a shift of the ecological network of the species to rely on weaker connections between
habitat patches. Undertaking a detailed node analysis could determine the priority areas
that conservation would ensure the habitat connectivity maintenance.

There is a reduction of P. hartwegii habitat suitability under climate projections for
2050 and 2070 parallel to an upslope shift in its altitudinal range. This trend, which is more
acute as CO2 scenarios worsen, can results in the split of the 2013 continuous suitable area
of the species into separate patches. Climate change impacts aggravate the anthropogenic
fragmentation process that the National Park suffered from 1993 to 2013, with impact on
ecosystem services (water supply, carbon storage, diversity conservation, etc.). These shifts
on P. hartwegii ecosystem ultimately impact on the livelihoods of the communities that
live around the Izta Popo National Park as well as down-stream communities and the
wider nation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/land10101037/s1, Figure S1: Non-Multidimensional Scaling, Figure S2: validation of Earth

System Models, Figure S3: climate projections of coupled Earth System Models, Figure S4: model

performances, Table S1: field observations coordinates, Table S2: weights of the explaining climatic

variables in the best and worst modes, Table S2: ODMAP v1.0 standardized protocol of the species

distribution modelling process [75], Table S3: Habitat Suitability Variation indexes.
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