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KDLPCCA-Based Projection for Feature Extraction in SSVEP-Based Brain-Computer 

Interfaces 

HUANG Jiayang1(黄嘉阳), YANG Pengfei1* (杨鹏飞), WAN Bo1(万波), ZHANG Zhiqiang2（张志强） 

(1. School of Computer Science and Technology, Xidian University, Xi’an 710071, China; 

 2. School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK. ) 

⚫ Abstract:  An electroencephalogram (EEG) signal projection using kernel discriminative locality 

preserving canonical correlation analysis (KDLPCCA)-based correlation with steady-state visual 

evoked potential (SSVEP) templates for frequency recognition is presented in this paper. With 

KDLPCCA, not only a non-linear correlation but also local properties and discriminative information 

of each class sample are considered to extract temporal and frequency features of SSVEP signals. The 

new projected EEG features are classified with classical machine learning algorithms, namely, K-

nearest neighbors (KNNs), naive Bayes, and random forest classifiers. To demonstrate the 

effectiveness of the proposed method, 16-channel SSVEP data corresponding to 4 frequencies 

collected from 5 subjects were used to evaluate the performance. Compared with the state of the art 

canonical correlation analysis (CCA), experimental results show significant improvements in 

classification accuracy and information transfer rate (ITR), achieving 100% and 240 bits/min with 

0.5s sample block. The superior performance demonstrates that this method holds the promising 

potential to achieve satisfactory performance for high-accuracy SSVEP-based brain-computer 

interfaces. 

Key words: steady-state visual evoked potential, brain-computer interface, feature extraction, kernel 

discriminative locality preserving canonical correlation analysis 
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0  Introduction 

Brain-computer interfaces (BCIs) provide a direct pathway for users interacting with external 

interfaces through brain activities independent from the neuromuscular pathways[1]. Among the various 

brain-sensing modalities, electroencephalography (EEG)-based BCIs, which have relatively short-time 

constants, can function in most environments, and require relatively simple and inexpensive equipment, 

are widely adopted as a new non-muscular communication and control interface[2]. For instance, steady-

state visual evoked potentials (SSVEPs)[3], slow cortical potentials[4], P300 evoked potentials[5], event-

related (de)synchronization[6], and mental tasks[7] are several commonly used non-invasive 

electrophysiological signal sources for control signals in BCI systems. Particularly, SSVEP-based BCIs 

provide the highest classification accuracy[8], information transfer rate (ITR)[9], and signal-to-noise ratio 

(SNR)[10]. A major challenge of SSVEP-based BCI research is how to improve the classification accuracy 

under the short response time, which would ensure that BCI transfers accurate control commands in time 

for practical applications[11]. 

1To improve the classification accuracy of frequency recognition, the key is to precisely describe the 

features of EEG induced by SSVEP. Varieties of methods such as discrete Fourier transform[12], short-

time Fourier transform[13], minimum energy combination (MEC)[14], and maximum contrast combination 

(MCC) [15], have been proposed and demonstrated to be efficient SSVEP feature extraction methods. 
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Among them, canonical correlation analysis (CCA), which uses the synthetically constructed SSVEP 

references consisting of sinusoidal signals to improve the detection accuracy, is the most widely used in 

SSVEP-based BCI[16]. In addition, some extended CCA-based methods such as cluster analysis of CCA 

coefficient (CACC)[17], individual template-based CCA (IT-CCA)[18], and multi-set CCA (MsetCCA)[19], 

have been proposed recently to improve the performance of frequency recognition. All of the existing 

methods only utilize the linear correlation between SSVEP signals and the reference signals. EEG signals 

induced by SSVEP, as a type of physiological electrical signals, have the non-linear characteristic. To be 

specific, based on the generation process of SSVEP signals, the response signals are transmitted to the 

surface of the scalp through the skull and they are mixed multiple times during the transmission[20]. So 

the correlation between SSVEP signals and the reference signals should not only be linear but also be 

non-linear. Therefore, the non-linear correlation between SSVEP signals and the reference signals should 

also be considered to fully describe the linear and non-linear temporal and frequency features of SSVEP 

signals. 

Besides, for most SSVEP-based BCI applications, it is desirable for the processing to occur in real-

time. In other words, the feature vectors should be extracted from small sample blocks segmented from 

incoming signal samples and be accurately translated to device commands. It is required that even with 

small amounts of sampling points, the temporal and frequency features of SSVEP signals should be fully 

described. 

To resolve these problems, an EEG feature projection using kernel discriminative locality preserving 

canonical correlation analysis (KDLPCCA)-based correlation with SSVEP templates for frequency 

recognition is proposed in this paper. With KDLPCCA, not only a non-linear correlation but also local 

properties and discriminative information of each class sample are considered to fully describe the 

temporal and frequency features of SSVEP signals. The new projected EEG features are classified with 

classical machine learning algorithms, namely, K-nearest neighbors (KNNs), naive Bayes and random 

forest classifiers. The effectiveness of the proposed method was demonstrated with 16-channel SSVEP 

data corresponding to 4 frequencies (6Hz, 7.5Hz, 8.5Hz, and 10Hz) collected from 5 subjects. The 

promising experimental results show that the proposed method can achieve satisfactory performance for 

high-accuracy SSVEP-based BCIs.  

The main contributions of KDLPCCA for SSVEP-based BCI are as follows. On one hand, 

KDLPCCA significantly increased the classification accuracy and ITR, thus making SSVEP-based BCI 



highly efficient. On the other hand, KDLPCCA can fully describe temporal and frequency features from 

SSVEP signals even with small sample blocks, thus increasing the classification accuracy and ITR of 

small sample blocks data, which makes SSVEP-based BCI system with fast response and high speed. 

1  Methodology 

In this paper, we employed a feature extraction method KDLPCCA for SSVEP detection and 

recognition. KDLPCCA[21] is an expansion of kernel CCA (KCCA)[22] combining with discriminative 

locality preserving CCA (DLPCCA)[23] to measure the linear and non-linear correlation between SSVEP 

EEG and reference signals. Therefore, KDLPCCA attempts to find a pair of projection vectors 𝒂𝑒 and 𝒂𝑟 by maximizing the correlation   between SSVEP EEG and reference signals, which considers not 

only local structures but also class information. The optimization problem for correlation coefficient   

can be expressed as 
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The terms 𝐶1, 𝐶2, 𝐶3, 𝐶4 are defined in equation (11)-(14) presented in the following parts. And 

the specific details of KDLPCCA-based projection for feature extraction will be presented as follows. 

1.1 Constructing Reference Signals 

Supposing that EEG signals of one subject are collected from c  channels at K  frequencies, and 

EEG signals are first segmented into sample blocks as 𝑬 ∈ ℝ𝑐×𝑇, where T  is the number of sampling 

points of a sample block. The reference signals 𝑹 ∈ ℝ2ℎ×𝑇 are constructed as[16] 

 𝑹 = [𝑟1(𝑡)⋮𝑟2ℎ(𝑡)] = [  
  𝑠𝑖𝑛( 2𝜋𝑓𝑡)𝑐𝑜𝑠( 2𝜋𝑓𝑡)⋮𝑠𝑖𝑛( 2ℎ𝜋𝑓𝑡)𝑐𝑜𝑠( 2ℎ𝜋𝑓𝑡)]  

  , 𝑡 = 1𝑆 , 2𝑆 , … , 𝑇𝑆, (2) 

where h  is the number of harmonics, f  is the base frequency, and S  is the sampling rate. Then, the 

c  rows of 𝑬 are concatenated as a row, obtaining𝒆𝑖 ∈ ℝ𝑐×𝑇 , 𝑖 = 1,2, … ,𝑁. In the same manner, 𝑹 

are concatenated as𝒓𝑖 ∈ ℝ2ℎ×𝑇, 𝑖 = 1,2, … ,𝑁. Hence, we obtain 𝑿𝑒 = [𝒆1, 𝒆2, … , 𝒆𝑁] ∈ ℝ𝑚×𝑁 

for EEG signals, where 𝑚 = 𝑐𝑇 , and 𝑿𝑟 = [𝒓1, 𝒓2, … , 𝒓𝑁] ∈ ℝ𝑛×𝑁  for reference signals, 

where𝑛 = 2ℎ𝑇, N  denotes the total number of sample blocks of all stimulus frequencies collected 

from one subject. 



1.2 KDLPCCA-Based Projection for Feature Extraction 

Next, KDLPCCA-based projection is applied for SSVEP signals feature extraction. By applying a 

kernel trick[22] for 𝑋𝑒  and 𝑋𝑟 , 𝛹𝑒 = (𝜓𝑒(𝑒1), 𝜓𝑒(𝑒2),… , 𝜓𝑒(𝑒𝑁)) ∈ ℝ𝑝×𝑁  and 𝛹𝑟 =(𝜓𝑟(𝑟1), 𝜓𝑟(𝑟2),… , 𝜓𝑟(𝑟𝑁)) ∈ ℝ𝑞×𝑁 are first obtained in the mapped Hilbert space, where p  and 

q  are the dimensions of EEG and reference feature vectors in the Hilbert space respectively. Then we 

compute the similarity matrices 𝛩𝑒 = {𝛩𝑖𝑗𝑒 }𝑖,𝑗=1𝑁 ∈ ℝ𝑁×𝑁  and �̃�𝑒 = {�̃�𝑖𝑗𝑒 }𝑖,𝑗=1𝑁 ∈ ℝ𝑁×𝑁  by 

calculating the similarities between samples of i -th and j -th stimulus frequencies from 𝛹𝑒 as[23] 

 𝛩𝑖𝑗𝑒 = {𝑒𝑥𝑝( − 𝜃𝑖𝑗𝑒 /𝜎𝑒), 𝒆𝑖  and 𝐞𝑗from the same frequency,0, otherwise;  (3) 

 �̃�𝑖𝑗𝑒 = {𝑒𝑥𝑝( − 𝜃𝑖𝑗𝑒 /𝜎𝑒), 𝒆𝑖  and 𝐞𝑗from different frequencies,0, otherwise.  (4) 

e

ij  and e  are calculated as 

 𝜃𝑖𝑗𝑒 = ‖𝜓𝑒(𝒆𝑖) − 𝜓𝑒(𝒆𝑗)‖2 = (𝐾𝑒)𝑖𝑖 − 2(𝐾𝑒)𝑖𝑗 + (𝐾𝑒)𝑗𝑗, (5) 

 𝜎𝑒 = 1𝑁(𝑁−1) ∑ ∑ 𝜃𝑖𝑗𝑒𝑁𝑗=1𝑁𝑖=1 , (6) 

where 𝐾𝑒 ∈ ℝ𝑁×𝑁  is the gram matrix and calculated as (𝐾𝑒)𝑖𝑗 = 𝑘𝑒(𝑒𝑖, 𝑒𝑗) = 𝜓𝑒(𝑒𝑖)𝑇𝜓𝑒(𝑒𝑗) 

with a kernel trick. And the similarity matrices 𝛩𝑟 and �̃�𝑟 of 𝛹𝑟 are calculated in the same manner. 

Considering local structures and the class information based on locality preserving projection (LPP) 

[24] to fully describe EEG features, Laplacian matrices 𝐿𝑒 ∈ ℝ𝑁×𝑁 and �̃�𝑒 ∈ ℝ𝑁×𝑁 are calculated 

based on the similarity matrices as 

 𝐿𝑒 = 𝐷𝑒 − 𝛩𝑒 ∘ 𝛩𝑒 , (7) 

 �̃�𝑒 = �̃�𝑒 − �̃�𝑒 ∘ �̃�𝑒 , (8) 

where the symbol ∘ represents the Hadamard product. 

The derivations of 𝐷𝑒 ∈ ℝ𝑁×𝑁 and �̃�𝑒 ∈ ℝ𝑁×𝑁 are calculated with 𝛩𝑖𝑗𝑒  and �̃�𝑖𝑗𝑒  in Eqs. (3) 

and (4):  

 𝐷𝑒 = diag[∑ (𝛩1𝑗𝑒 )2𝑗 , ∑ (𝛩2𝑗𝑒 )2𝑗 , … , ∑ (𝛩𝑁𝑗𝑒 )2𝑗 ], (9) 

 �̃�𝑒 = diag[∑ (�̃�1𝑗𝑒 )2𝑗 , ∑ (�̃�2𝑗𝑒 )2𝑗 , … , ∑ (�̃�𝑁𝑗𝑒 )2𝑗 ]. (10) 

 The same way operated in Eqs.(9) and (10), 𝐷𝑟 and �̃�𝑟 are calculated, thereby obtaining 𝐿𝑟 

and �̃�𝑟 based on Eqs.(7) and (8). 



Then the terms 𝑪1, 𝑪2, 𝑪3, 𝑪4 ∈ ℝ𝑁×𝑁 in Eq. (1) are defined as 

 𝑪1 = 𝑴𝑲𝑒𝑴(𝜣𝑒°𝜣𝑟)𝑴𝑲𝑟𝑴, (11) 

 𝑪2 = 𝑴𝑲𝑒𝑴(�̃�𝑒° �̃�𝑟)𝑴𝑲𝑟𝑴, (12) 

 𝑪3 = 𝑴𝑲𝑒𝑴(𝑳𝑒 + �̃�𝑒)𝑴𝑲𝑒𝑴 + 𝜀𝑒𝑴𝑲𝑒𝑴, (13) 

 𝑪4 = 𝑴𝑲𝑟𝑴(𝑳𝑟 + �̃�𝑟)𝑴𝑲𝑟𝑴 + 𝜀𝑟𝑴𝑲𝑟𝑴, (14) 

where 𝑴 = 𝑰 − 1𝑁 𝑩𝑩𝑇 ∈ ℝ𝑁×𝑁 is a centering matrix, 𝑰 ∈ ℝ𝑁×𝑁 is the identity matrix, and 𝑩 =(1,… ,1)𝑇 ∈ ℝ𝑁. 

Equation (1) can be transformed into a generalized eigenvalue problem as: 

 [ (𝑪1 − 𝜁𝑪2)(𝑪1 − 𝜁𝑪2)𝑇 ] [𝒂𝑒𝒂𝑟] = 𝜆 [𝑪3 𝑪4] [𝒂𝑒𝒂𝑟], (15) 

By solving Eq.(15), we obtain 𝑨𝑒 = (𝒂𝑒1 , 𝒂𝑒2 , … , 𝒂𝑒𝑑) ∈ ℝ𝑁×𝑑  and 𝑨𝑟 =(𝒂𝑟1 , 𝒂𝑟2 , … , 𝒂𝑟𝑑) ∈ ℝ𝑁×𝑑  by extracting the basis vector pairs (𝒂𝑒𝑤 , 𝒂𝑟𝑤)  corresponding to the 

first d   largest generalized eigenvalues ( 1,2, , )w w d =   . Based on 𝑨𝑒  and𝑨𝑟  , the projection 

vectors 𝝎𝑒 ∈ ℝ𝑝×𝑑 and 𝝎𝑟 ∈ ℝ𝑞×𝑑 are calculated as: 

 𝝎𝑒 = 𝜳𝑒𝑴𝑨𝑒 , (16) 

 𝝎𝑟 = 𝜳𝑟𝑴𝑨𝑟 . (17) 

With the projection𝝎𝑒 , the projected EEG feature vector 𝒔te ∈ ℝ𝑑  of a new EEG feature vector 𝒆te ∈ ℝ𝑝 is calculated as 

 𝒔te  = 𝝎𝑒𝑇{𝜓𝑒(𝒆te) − �̄�𝑒} = 𝑨𝑒𝑇𝑴{𝜳𝑒𝑇𝜓𝑒(𝒆te) − 1𝑁 𝑲𝑒𝑩}, (18) 

where �̄�𝑒 = 1𝑁 𝜳𝑒𝑩 ∈ ℝ𝑝 is the mean vector of 𝜓𝑒(𝒆𝑖)(𝑖 = 1, 2, … ,𝑁). 

1.3 Classification for Frequency Recognition 

Finally, with the KDLPCCA projected EEG features, the corresponding stimulation frequencies can 

be recognized by classification. Three classical machine learning algorithms, namely, KNNs [25], naive 

Bayes [26], and random forest classifiers [27], are applied in this work. The training set 𝑺tr ={(𝒔𝑘tr, 𝑓𝑘)}𝑘=1𝑁tr   is used to train the classifiers, and the class of a projected EEG feature vector 𝒔te 

without label is estimated by the trained classifiers. 𝒔𝑘tr is calculated from the 𝒆𝑘tr in the same way as 𝒔te, and {1,2,3,4}kf   correspond to the 4 stimulus frequencies.  



In this way, the classification of SSVEP signals is realized for each subject adaptively and efficiently, 

because KDLPCCA projected EEG features have the best linear and non-linear correlation with the 

reference signals. 

2  Experiments and Results 

2.1 Dataset Description 

The dataset includes 16-channel EEG data sampled at 256Hz with 4 stimulus frequencies. Five 

healthy subjects (including 3 males and 2 females, aged from 22 to 26 years) with normal or corrected-

to-normal vision, without any brain-related diseases, participated in this study. All subjects had the 

experience of using the SSVEP-based BCIs. Each participant was informed with the experimental 

procedure before the experiment.  

This study designed an offline BCI experiment using an SSVEP BCI controller with 4 control 

commands stimulated by the light-emitting diode (LED) flashing at 4 frequencies (6Hz, 7.5Hz, 8.5Hz, 

10Hz). According to the research of Herrmann [28], the response of SSVEP decreases as the stimulus 

frequency increases. As a result, compared to medium frequency (15—30Hz) and high frequency 

(>30Hz), SSVEP response stimulated by low frequencies (<15Hz) is the greatest. Therefore, we choose 

4 different frequencies (6Hz, 7.5Hz, 8.5Hz, and 10Hz) from the low frequency range. For each subject, 

EEG data were collected 5 trials at each stimulus frequency, and the acquisition time was 20 s each trial. 

All 5 trials provide enough blocks to analyze the performance of KDLPCCA. Each trial started as subjects 

were asked to focus on the stimulus as soon as possible. Subjects were instructed to avoid eye blinks 

during the stimulation duration. There was a rest for 2 min between two consecutive trials. 

The acquisition equipment used in this experiment is g.USBamp. EEG data were recorded at a 

sampling rate of 256 Hz. The usable bandwidth of the system was 0.15—200 Hz. According to the 10—

20 standard system, 16 channels (Pz, PO3, PO4, O1, O2, Oz, O9, FP2, C4, C6, CP3, CP1, CPz, CP2, 

CP4, PO8, the ground electrode is FPz) signals were collected. Electrode impedances were kept below 

10 kΩ during recording. A notch filter at 50 Hz was applied to remove the power-line noise. During the 

experiment, subjects were seated in a comfortable chair in a dimly lit and quiet room. 

2.2 Experiment Design 

In our experiment, first, multi-channel EEG signals were segmented into sample blocks with 

different sizes, then pre-processed by 5—40 Hz bandpass filtering, and normalized to zero mean and unit 



variance. The reference signals were generated according to 4 stimulus frequencies and the number of 

harmonics was specified as 3. Next, in the process of KDLPCCA-based projection, we adopted Gaussian 

kernel, i.e., 𝑘𝑒(𝒆𝑖, 𝒆𝑗) = 𝑒𝑥𝑝( − ‖𝒆𝑖−𝒆𝑗‖22𝜇𝑒2 ) , 𝑘𝑟(𝒓𝑖, 𝒓𝑗) = 𝑒𝑥𝑝( − ‖𝒓𝑖−𝒓𝑗‖22𝜇𝑟2 ) , where the kernel 

widths 𝜇𝑒2 = 𝜇𝑟2 = 0.3536. 

To obtain the optimal regularization parameters of KDLPCCA, e  and r  were set as 0.001. 

And the balancing parameter   was set as 1.0. The number of dimensions of projected features is equal 

to the number of stimulus frequencies, that is d K= . For classification, the EEG signals were separated 

into training and test sets at a ratio of 75%. Thus a training set 𝑺tr = {(𝒔𝑘tr, 𝑓𝑘)}𝑘=1𝑁tr  and a test set 𝑺te = {𝒔𝑙te}𝑙=1𝑁te   were obtained. Three classical machine learning algorithms, namely, KNNs, naive 

Bayes, and random forest classifiers, were applied in our work. The training set 𝑺tr was used to train 

the classifiers, and the labels of the test set 𝑺te would be estimated.  

2.3 Experiment Results and Analysis 

The three classifiers with KDLPCCA-based projection are compared with CCA and the ones without 

KDLPCCA on classification accuracies and ITR [9]. ITR is the amount of information communicated per 

minute, and can be calculated as 

 𝑛ITR = 60𝑇 [𝑙𝑜𝑔2(𝐾) + 𝑃 𝑙𝑜𝑔2(𝑃) + (1 − 𝑃) 𝑙𝑜𝑔2 (1−𝑃𝐾−1)]. (19) 

where K   is the number of frequencies, 𝑃  is the classification accuracy, and T   represents the 

required time for visual stimulation in each operation period. From the formula, we can see that when the 

classification accuracies (𝑃) are fixed, as the sample block (T ) increases, 𝑛ITR decreases. Meanwhile, 

when the sample block (T ) are fixed, 𝑛ITR increases as the classification accuracy increases. 

The SSVEP signals are segmented into sample blocks with sizes of 0.3s, 0.5s, 0.7s, 1s, 1.5s, and 2s. 

Overall, the classical classifiers (especially naive Bayes) with KDLPCCA projection outperforms CCA 

and the ones without KDLPCCA even with small sample blocks on classification accuracies and ITR, as 

is shown in Figs. 1 and 2 respectively. NB and RF denote naive Bayes and random forest classifiers 

respectively, and the error bar represents the standard deviation (SD). With different sample blocks, the 

performances on the stability of classification accuracies are compared among classifiers for KDLPCCA 

projected features and CCA, as shown in Fig. 3. 



 

Fig. 1 Classification accuracies of classifiers with and without KDLPCCA-based projection and CCA 

Figure 1 shows the classification accuracies of classifiers with and without KDLPCCA projection 

and CCA with different sizes of sample blocks among all subjects. The baseline CCA achieves an 

accuracy under 60% when the size of the sample block is smaller than 1 s. Meanwhile, with KDLPCCA-

based projection, the naive Bayes classifier achieves an accuracy higher than 60%. When the sample 

block is larger than 1 s, classifiers with KDLPCCA projection have the accuracies greater than 90%, 

approaching 100%. With KDLPCCA-based projection, the naive Bayes classifier can achieve accuracy 

of 100% with 0.5 s, 1 s, 1.5 s, and 2 s sample block. Specifically, with 0.5 s sample block, the averaged 

accuracy across all subjects was 96.50±7.83%. Across individuals, the minimal and maximal 

classification accuracies were 82.5% and 100% respectively. Besides, classification accuracies of 1 s 

sample block range from 97.50% to 100%, with the average of 99.5% across all subjects. With sample 

blocks of all different sizes, classification for KDLPCCA projected features with three classifiers 

outperform baseline CCA. Furthermore, comparing the performance of classifiers with and without 

KDLPCCA-based projection, the classification accuracies of the three classical classifiers have greatly 

improved with the KDLPCCA projected features. 



 

Fig. 2 ITR of classifiers with and without KDLPCCA-based projection and CCA. 

Figure 2 illustrates the ITR of classifiers with and without KDLPCCA projection and CCA with 

different sizes of sample blocks among all subjects. All three classifiers for KDLPCCA projected features 

can achieve ITR up to 240 bits/min with 0.5 s sample block and 120 bits/min with 1 s sample block, 

which outperforms CCA with ITR under 60 bits/min. Classified by naive Bayes classifier, with 0.5 s 

sample block, the averaged ITR across all subjects is 217.29±50.78 bits/min. Across individuals, the 

minimal and maximal ITR are 126.43 bits/min and 240.00 bits/min respectively. Moreover, with 1s 

sample block, the average ITR of all subjects is 117.51±5.59 bits/min, and the minimum and maximum 

of ITR are 107.50 bits/min and 120.00 bits/min respectively. In addition, ITRs of 0.3s sample block range 

from 95.62 bits/min to 126.97 bits/min, with the average of 110.93 bits/min across all subjects. With 

sample blocks of different sizes, ITRs of all the classifiers have significantly improved with KDLPCCA-

based projection. 



 

Fig. 3 Comparisons on the stability of classification accuracies between classifiers with KDLPCCA-

based projection and CCA with sample blocks of 2 s, 1.5 s, 1 s, and 0.5 s 

In Fig. 3, the performance on the stability of classification accuracies is compared among different 

subjects with sample blocks of 2 s, 1.5 s, 1 s, and 0.5 s. KNN+P, NB+P, and RF+P represent KNN, naive 

Bayes and random forest classifiers with KDLPCCA projection respectively. All classifiers with 

KDLPCCA projection has better stability on classification accuracies than CCA. With 2 s sample block, 

classifiers for KDLPCCA projected features of all subjects have a classification accuracy of 100%. 

Moreover, naive Bayes classifier with KDLPCCA projection has the best performance on stability with 

sample blocks greater than 1 s, while KNN outperforms other classifiers on classification accuracy 

stability with 0.5 s sample block. Superior performances demonstrate the proposed method can achieve 

satisfactory performance for high-accuracy SSVEP-based BCIs. 

3  Discussion 

The proposed feature extraction method, KDLPCCA, extracts not only a non-linear correlation but also 

local properties and discriminative information of each class sample to fully describe the temporal features 

of SSVEP signals. From the analysis with our datasets, KDLPCCA outperforms significantly in SSVEP 

segments with short response time in terms of classification accuracy and ITRs compared with CCA, as 

shown in Figs. 1 and 2. Besides, KDLPCCA shows less variability in classification accuracy compared with 

CCA, as Fig. 3 shows.  



However, from the experiment analysis, it can be seen that there are still drawbacks to our proposed 

method. First, CCA is a classical feature extraction method with the advantage of calibration-free, whilst 

KDLPCCA is a method with the calibration process, which would produce massive computational costs for 

the training process. Also, KDLPCCA's classification accuracy and ITR have significant fluctuations 

between different sample blocks sizes compared with CCA. CCA is a feature extraction method with 

robustness. The classification accuracy and ITR of CCA increase as the sample block increases. But 

KDLPCCA considers linear and non-linear temporal and frequency features, which may be sensitive to other 

factors in temporal and frequency features that we need to further investigate. In other words, KDLPCCA is 

not as robust as CCA. Therefore, we would improve our method aiming at the problems in our future work. 

Furthermore, to further verify the effectiveness of our method, SSVEP signals collected from subjects 

who are naive to SSVEP-based BCI should also be used for evaluation. And more data should be collected 

from more participants with more trials to evaluate the offline performance of the proposed method. 

Moreover, online experiments should also be implemented to evaluate the online performance of KDLPCCA. 

Based on the results of online experiments, we would apply this method to various practical SSVEP-based 

BCIs, such as cursor control and wheelchair control. 

4  Conclusion 

For practical SSVEP BCI applications, it is important to accurately recognize frequencies with small 

sample blocks. Most existing methods neglected non-linear characteristics of SSVEP signals. So the EEG 

signal projection using KDLPCCA-based correlation with SSVEP templates for frequency recognition is 

proposed to accurately describe EEG features for frequency recognition. The experimental results show 

a significant performance improvement in classification accuracies and ITR. The results demonstrated 

the proposed method holds great potential to achieve great performance for high-accuracy SSVEP-based 

BCIs. 
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