UNIVERSITY OF LEEDS

This is a repository copy of Two-step crystal nucleation kinetics: Solution of the master equation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/182013/
Version: Supplemental Material

Article:

Auer, S orcid.org/0000-0003-0418-1745 and Kashchiev, D (2022) Two-step crystal nucleation kinetics: Solution of the master equation. Journal of Crystal Growth, 580. 126469. ISSN 0022-0248
https://doi.org/10.1016/j.jcrysgro.2021.126469
© 2021, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SUPPLEMENTARY MATERIAL

Two-Step Crystal Nucleation Kinetics: Solution of the Master Equation

Stefan Auer ${ }^{\text {a }}$ and Dimo Kashchiev ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
${ }^{\mathrm{b}}$ Institute of Physical Chemistry, Bulgarian Academy of Sciences, ul. Acad. G. Bonchev 11, Sofia 1113, Bulgaria

E-mail addresses:
${ }^{\text {a }}$ s.auer@leeds.ac.uk
${ }^{\text {b }}$ kash@ipc.bas.bg

Contents

S1. Fluxes, formation work, and attachment/detachment frequencies
S2. Master equation
S3. Parameter values
S4. Nonstationary nucleation rates
S5. Stationary nucleation rates
S6. The J_{c}^{s} components
S7. Effect of M on the stationary nucleation rates
S8. Relevance of our study to homogeneous nucleation of water droplets
S9. Number densities of supernuclei
S10. Nucleation delay times
S11. Effect of M on the nucleation delay times
S12. Chaotic growth of small subnucleus composites

Below, some issues in the main text (MT) of the paper are further discussed and additional data from our numerical study of two-step (2 S) crystal nucleation are presented.

S1. Fluxes, formation work, and attachment/detachment frequencies

The three cluster fluxes $I_{i, n}, G_{i, n}$ and $K_{i, i}$ in eqs. (1)-(3) and in Fig. 1b of MT are given by [1]

$$
\begin{align*}
& I_{i, n}=f_{i, n} C_{i, n}\left(\frac{Z_{i, n}}{C_{i, n}}-\frac{Z_{i+1, n}}{C_{i+1, n}}\right) \tag{S1}\\
& G_{i, n}=g_{i, n} C_{i, n}\left(\frac{Z_{i, n}}{C_{i, n}}-\frac{Z_{i, n+1}}{C_{i, n+1}}\right) \tag{S2}\\
& K_{i, i}=k_{i, i} C_{i, i}\left(\frac{Z_{i, i}}{C_{i, i}}-\frac{Z_{i+1, i+1}}{C_{i+1, i+1}}\right) \tag{S3}
\end{align*}
$$

and are analogous to the sole cluster flux in Classical Nucleation Theory (CNT) [2]. As illustrated in Fig. 1a of MT, $f_{i, n}\left(\mathrm{~s}^{-1}\right)$ and $g_{i, n}\left(\mathrm{~s}^{-1}\right)$ are the attachment frequencies, respectively, of monomers of the old phase (O-phase) to the surface of an i, n-sized composite and of monomers of the metastable-phase (M-phase) layer of such composite to the surface of the n-sized crystal in it, and $k_{i, i}\left(\mathrm{~s}^{-1}\right)$ is the attachment frequency of those monomers of the O-phase to the surface of an i-sized crystal in the O-phase (i.e. of an i, i-sized cluster) that transform it into a crystal of size $i+1$. Also, $C_{i, n}\left(\mathrm{~m}^{-3}\right)$ is the equilibrium concentration of i, n sized clusters and $Z_{i, n}\left(\mathrm{~m}^{-3}\right)$ is the actual concentration of these clusters.

All three fluxes depend exponentially on the dimensionless work $w_{i, n}$ to form an i, n sized cluster, because $C_{i, n}$ is related to $w_{i, n}$ by the Boltzmann-type formula [1] ($i=1,2,3, \ldots$,

$$
\begin{align*}
& n=1,2,3, \ldots, i) \\
& \quad C_{i, n}=C_{1} \exp \left(w_{1,1}-w_{i, n}\right) \tag{S4}
\end{align*}
$$

in which C_{1} is the concentration of monomers in the O-phase, and $w_{1,1}$ is the value of $w_{i, n}$ at $i=n=1$. Equation (S4) is self-consistent in the sense that at $i=n=1$ it returns the equality $C_{1,1}=C_{1}$. Also, it is general and can be used with any model for $w_{i, n}$. The simplest expression for $w_{i, n}$ is of the form [1] $\left(i=1,2,3, \ldots, n=1,2,3, \ldots, i, s_{c o}>s_{c m}>0\right)$

$$
\begin{equation*}
w_{i, n}=-\left(s_{c o}-s_{c m}\right) i+\gamma_{m o} i^{2 / 3}-s_{c m} n+\gamma_{c m} n^{2 / 3} \tag{S5}
\end{equation*}
$$

where $s_{c o}-s_{c m}=s_{m o}$ is the dimensionless supersaturation of the O-phase with respect to the M-phase, $s_{c o}$ is the dimensionless supersaturation of the O-phase with respect to the crystal phase (C-phase), $s_{c m}$ is the dimensionless supersaturation of the M-phase with respect to the C-phase, $\gamma_{m o}$ is the dimensionless M-phase/O-phase specific surface energy, and $\gamma_{c m}$ is the dimensionless C-phase/M-phase specific surface energy.

When the O-phase is a single-component vapor behaving as ideal gas, the three supersaturations are given by [1]

$$
\begin{equation*}
s_{c o}=\ln \left(\frac{p}{p_{e, c}}\right), \quad s_{m o}=\ln \left(\frac{p}{p_{e, m}}\right), \quad s_{c m}=\ln \left(\frac{p_{e, m}}{p_{e, c}}\right) \tag{S6}
\end{equation*}
$$

where p is the actual pressure of the O-phase monomers, and $p_{e, m}$ and $p_{e, c}$ are their saturation pressures over the bulk M-phase and C-phase, respectively. Expressions for the above three supersaturations in the case of O-phase which is a single-component melt are presented elsewhere [1],[3]. It is important to note that $S_{c m}$ is independent of $s_{c o}$ when $S_{c o}$ is changed via
p. When both the M-phase and the C-phase clusters are treated as spherical, for $\gamma_{m o}$ and $\gamma_{c m}$ we have [1]

$$
\begin{equation*}
\gamma_{m o}=\frac{\left(36 \pi v_{0}^{2}\right)^{1 / 3} \sigma_{m o}}{k_{B} T}, \quad \gamma_{c m}=\frac{\left(36 \pi v_{0}^{2}\right)^{1 / 3} \sigma_{c m}}{k_{B} T} \tag{S7}
\end{equation*}
$$

where $\sigma_{m o}\left(\mathrm{~J} \mathrm{~m}^{-2}\right)$ and $\sigma_{c m}\left(\mathrm{~J} \mathrm{~m}^{-2}\right)$ are the specific M-phase/O-phase and C-phase/M-phase surface energies, respectively, v_{0} is the monomer volume, k_{B} is the Boltzmann constant, and T is the absolute temperature of the system. Also, due to the assumed spherical shape of the clusters, $\gamma_{m o}$ and $\gamma_{c m}$ are related to the dimensionless C-phase/O-phase specific surface energy $\gamma_{c o}$ by the simple equality [1]

$$
\begin{equation*}
\gamma_{c o}=\gamma_{c m}+\gamma_{m o} \tag{S8}
\end{equation*}
$$

in which $\gamma_{c o}$ is defined as $\left(\sigma_{c o}\left(\mathrm{~J} \mathrm{~m}^{-2}\right)\right.$ is the specific C-phase/O-phase surface energy)

$$
\begin{equation*}
\gamma_{c o}=\frac{\left(36 \pi v_{0}^{2}\right)^{1 / 3} \sigma_{c o}}{k_{B} T} . \tag{S9}
\end{equation*}
$$

Besides thermodynamics (via $w_{i, n}$), kinetics is also involved in the $I_{i, n}, G_{i, n}$ and $K_{i, i}$ fluxes through the monomer attachment frequencies $f_{i, n}, g_{i, n}$ and $k_{i, i}$. For the simplest version of the composite-cluster model used by us, provided all monomers arriving at the cluster surface are attached to the cluster, we can approximate the i, n dependence of these frequencies by the CNT expressions for 1S nucleation [1],[2]

$$
\begin{align*}
& f_{i, i}=(1-Q) f_{0} e^{s_{c o i}} i^{2 / 3}, f_{i, n}=f_{0} e^{s_{c o}} i^{2 / 3}(\text { for } n<i) \tag{S10}\\
& \left.g_{i, n}=g_{0} e^{s_{c n}} n^{2 / 3} \text { (for } n<i\right) \tag{S11}\\
& k_{i, i}=Q f_{0} e^{s_{c o i}}{ }^{2 / 3} . \tag{S12}
\end{align*}
$$

These expressions correspond to the case of monomer attachment to the clusters in the gaseous O-phase by direct impingement onto the cluster surface and to monomer attachment to the crystals within the composites by interface-transfer control. In this case, when all clusters are spherical and the M-phase is a melt, for the frequency factors $f_{0}\left(\mathrm{~s}^{-1}\right)$ and g_{0} (s^{-1}) we have [1]

$$
\begin{equation*}
f_{0}=\frac{\left(36 \pi v_{0}^{2}\right)^{1 / 3} p_{e, c}}{\left(2 \pi m_{0} k_{B} T\right)^{1 / 2}}, \quad g_{0}=\frac{k_{B} T e^{-\lambda}}{3 v_{0} \eta} . \tag{S13}
\end{equation*}
$$

Here m_{0} is the monomer mass, η is the viscosity of the melt (the M-phase) surrounding the crystal within a composite, $\lambda=l_{m} / k_{B} T$, and l_{m} is the per-monomer latent heat of melting of this crystal. As to the factor Q in eqs. (S10) and (S12), it is that fraction of O-phase monomers attached to an i, i-sized crystal in the O-phase, which is responsible for the growth of this crystal to an $i+1, i+1$-sized one. The $Q=0$ limit implies neither growth of the $i, i-$ sized crystals to $i+1, i+1$-sized ones nor decay of the latter into the former (no $k_{i, i}$ and $K_{i, i}$ arrows in Fig. 1 of MT). Similarly, in the $Q=1$ limit, neither transition of the i, i-sized crystals to $i+1, i$-sized composites nor the opposite transition is possible (no $f_{i, i}$ and $I_{i, i}$ arrows in Fig. 1 of MT). According to eqs. (S10) and (S12), $f_{i, i}$ and $k_{i, i}$ are interrelated by the equation $f_{i, i}+k_{i, i}=f_{0} e^{s_{c o}} i^{2 / 3}$ so that, as it should be, all i-sized clusters in the O-phase (droplets, composites, and crystals) attach the same number of O-phase monomers per unit time ($f_{0} e^{s_{c o}} i^{2 / 3}$ in our case), because they have the same surface area.

S2. Master equation

When $s_{c o}$ and T are fixed, $C_{i, n}$ is time-independent so that using eqs. (S1)-(S3) in eqs. (1)-(3) of MT results in ($i=3,4, \ldots, M-1, n=2,3, \ldots, i-1$)

$$
\begin{align*}
\frac{d}{d t}\left(\frac{Z_{i, n}}{C_{i, n}}\right)=f_{i-1, n} & \frac{C_{i-1, n}}{C_{i, n}}\left(\frac{Z_{i-1, n}}{C_{i-1, n}}-\frac{Z_{i, n}}{C_{i, n}}\right)-f_{i, n}\left(\frac{Z_{i, n}}{C_{i, n}}-\frac{Z_{i+1, n}}{C_{i+1, n}}\right) \\
& +g_{i, n-1} \frac{C_{i, n-1}}{C_{i, n}}\left(\frac{Z_{i, n-1}}{C_{i, n-1}}-\frac{Z_{i, n}}{C_{i, n}}\right)-g_{i, n}\left(\frac{Z_{i, n}}{C_{i, n}}-\frac{Z_{i, n+1}}{C_{i, n+1}}\right) \tag{S14}
\end{align*}
$$

and in $(i=2,3, \ldots, M-1)$

$$
\begin{gather*}
\frac{d}{d t}\left(\frac{Z_{i, 1}}{C_{i, 1}}\right)=f_{i-1,1} \frac{C_{i-1,1}}{C_{i, 1}}\left(\frac{Z_{i-1,1}}{C_{i-1,1}}-\frac{Z_{i, 1}}{C_{i, 1}}\right)-f_{i, 1}\left(\frac{Z_{i, 1}}{C_{i, 1}}-\frac{Z_{i+1,1}}{C_{i+1,1}}\right)-g_{i, 1}\left(\frac{Z_{i, 1}}{C_{i, 1}}-\frac{Z_{i, 2}}{C_{i, 2}}\right) \tag{S15}\\
\frac{d}{d t}\left(\frac{Z_{i, i}}{C_{i, i}}\right)=k_{i-1, i-1} \frac{C_{i-1, i-1}}{C_{i, i}}\left(\frac{Z_{i-1, i-1}}{C_{i-1, i-1}}-\frac{Z_{i, i}}{C_{i, i}}\right)-k_{i, i}\left(\frac{Z_{i, i}}{C_{i, i}}-\frac{Z_{i+1, i+1}}{C_{i+1, i+1}}\right) \\
\quad+g_{i, i-1} \frac{C_{i, i-1}}{C_{i, i}}\left(\frac{Z_{i, i-1}}{C_{i, i-1}}-\frac{Z_{i, i}}{C_{i, i}}\right)-f_{i, i}\left(\frac{Z_{i, i}}{C_{i, i}}-\frac{Z_{i+1, i}}{C_{i+1, i}}\right) . \tag{S16}
\end{gather*}
$$

To numerically solve these three equations (in which t is time and M is the number of O-phase monomers), it is convenient to combine them into a single equation of the form ($i=2,3, \ldots, M-1, n=1,2, \ldots, i$)

$$
\begin{align*}
\frac{d F_{i, n}}{d x}= & a_{i, n}\left(F_{i-1, n}-F_{i, n}\right)-b_{i, n}\left(F_{i, n}-F_{i+1, n}\right)+c_{i, n}\left(F_{i, n-1}-F_{i, n}\right) \\
& -d_{i, n}\left(F_{i, n}-F_{i, n+1}\right)+e_{i, n}\left(F_{i-1, i-1}-F_{i, i}\right)-h_{i, n}\left(F_{i, i}-F_{i+1, i+1}\right) . \tag{S17}
\end{align*}
$$

This equation is eq. (6) of MT, and in it the unknown function $F_{i, n}$ is defined by

$$
\begin{equation*}
F_{i, n}(x)=\frac{Z_{i, n}(x)}{C_{i, n}} \tag{S18}
\end{equation*}
$$

$x=f_{0} t$ is dimensionless time, and $f_{0}\left(\mathrm{~s}^{-1}\right)$ is a suitably chosen frequency parameter. Due to eq. (S4) for $C_{i, n}$, the x-independent dimensionless attachment ($b_{i, n}, d_{i, n}, h_{i, n}$) and detachment ($a_{i, n}, c_{i, n}, e_{i, n}$) frequencies read

$$
\begin{align*}
& a_{i, i}=0, a_{i, n}=\left(f_{i-1, n} / f_{0}\right) \exp \left(w_{i, n}-w_{i-1, n}\right)(\text { for } n<i) \tag{S19}\\
& b_{i, n}=f_{i, n} / f_{0}(\text { for } n \leq i) \tag{S20}\\
& c_{i, 1}=0, c_{i, n}=\left(g_{i, n-1} / f_{0}\right) \exp \left(w_{i, n}-w_{i, n-1}\right)(\text { for } 2 \leq n \leq i) \tag{S21}\\
& d_{i, i}=0, d_{i, n}=g_{i, n} / f_{0}(\text { for } n<i) \tag{S22}\\
& e_{i, n}=0(\text { for } n<i), e_{i, i}=\left(k_{i-1, i-1} / f_{0}\right) \exp \left(w_{i, i}-w_{i-1, i-1}\right) \tag{S23}\\
& h_{i, n}=0(\text { for } n<i), h_{i, i}=k_{i, i} / f_{0} . \tag{S24}
\end{align*}
$$

Equations (S17)-(S24) are general in the sense that they are in force for any model for the cluster formation work and the monomer attachment frequencies. With our model
expressions for $w_{i, n}, f_{i, n}, g_{i, n}$ and $k_{i, i}$, eqs. (S5) and (S10)-(S12), eqs. (S19)-(S24) become the equations used by us in solving eq. (S17) ($s_{c o}>s_{c m}>0$)

$$
\begin{align*}
& a_{i, i}=0, a_{i, i-1}=(1-Q)(i-1)^{2 / 3} \exp \left\{s_{c m}+\gamma_{m o}\left[i^{2 / 3}-(i-1)^{2 / 3}\right]\right\} \tag{S25}\\
& a_{i, n n<i<i 1)}=(i-1)^{2 / 3} \exp \left\{s_{c m}+\gamma_{m o}\left[i^{2 / 3}-(i-1)^{2 / 3}\right]\right\} \tag{S26}\\
& b_{i, i}=(1-Q) i^{2 / 3} \exp \left(s_{c o}\right), b_{i, n(n<i)}=i^{2 / 3} \exp \left(s_{c o}\right) \tag{S27}\\
& c_{i, n(n \leq i)}=L(n-1)^{2 / 3} \exp \left\{\gamma_{c m}\left[n^{2 / 3}-(n-1)^{2 / 3}\right]\right\} \tag{S28}\\
& d_{i, i}=0, d_{i, n(n<i)}=L n^{2 / 3} \exp \left(s_{c m}\right) \tag{S29}\\
& e_{i, n(n<i)}=0, e_{i, i}=Q(i-1)^{2 / 3} \exp \left\{\gamma_{c o}\left[i^{2 / 3}-(i-1)^{2 / 3}\right]\right\} \tag{S30}\\
& h_{i, n(n<i)}=0, h_{i, i}=Q i^{2 / 3} \exp \left(s_{c o}\right) \tag{S31}
\end{align*}
$$

($L=g_{0} / f_{0} \geq 0$ is a numerical factor with f_{0} and g_{0} given by eq. (S13)). It is seen from these equations that, as the system temperature is fixed, the experimentally controlled supersaturation $s_{c o}$ only affects $b_{i, i}, b_{i, n(n<i)}$ and $h_{i, i}$ (i.e. the monomer attachment solely to the clusters in the O-phase), because $s_{c m}$ does not change with changing $s_{c o}$.

S3. Parameter values

Our task is to numerically solve the master equation (S17) for $F_{i, n}(x)$ when the attachment/detachment frequencies from eqs. (S25)-(S31) are approximately relevant to homogeneous nucleation of water droplets (the M-phase) and ice crystals (the C-phase) in steam (the O-phase) at temperature $T \approx 220-230 \mathrm{~K}$ and of ice crystals in liquid water at the same temperature. In this case, we have $p_{e, c} \approx 5 \mathrm{~Pa}$ and $p_{e, m} \approx 8 \mathrm{~Pa}[4], \sigma_{c o} \approx 106 \mathrm{~mJ} \mathrm{~m}^{-2}$, $\sigma_{m o} \approx 88 \mathrm{~mJ} \mathrm{~m}^{-2}$ and $\sigma_{c m} \approx 18 \mathrm{~mJ} \mathrm{~m}^{-2}$ (Ref. [5], p. 160), and $\eta \approx 0.07 \mathrm{~Pa}$ (from eq. (13.47) of Ref. [2]). Also, as for water $m_{0} \approx 3 \times 10^{-26} \mathrm{~kg}, v_{0} \approx 3 \times 10^{-29} \mathrm{~m}^{3}$ and $l_{m} \approx 10^{-20} \mathrm{~J}$, from eqs. (S6), (S7), (S9) and (S13) we find $s_{c m}=0.5, \gamma_{m o}=12.8, \gamma_{c m}=2.6, \gamma_{c o}=15.4, f_{0}=10^{5} \mathrm{~s}^{-1}$, and $g_{0}=2 \times 10^{7} \mathrm{~s}^{-1}$. Regarding C_{1}, we use $C_{1}=1.6 \times 10^{21} e^{s_{c o}} \mathrm{~m}^{-3}$ which follows from $C_{1}=p / k_{B} T$ and $p=p_{e, c} e^{s_{c o}}$ (this formula for C_{1} represents the ideal-gas equation of state $p=C_{1} k_{B} T$ in which $C_{1}=N_{1} / V$ is the monomer concentration, N_{1} is the number of gas molecules, and V is the gas volume). As seen, the three γ 's satisfy eq. (S8). Also, for the ratio $L=g_{0} / f_{0}$ we have $L=200$. This means that when $s_{c o}$ is sufficiently small, monomer attachment to an n-sized ice crystal inside a water composite of $i>n$ monomers can be much faster than that to the liquid layer of the composite or to a droplet of the same size i as long as i is not too much greater than n (see eqs. (S 10) and (S 11)). As to the parameter Q, its value is unknown and we choose $Q=1 / 2$, the value corresponding to equal frequencies $f_{i, i}$ and $k_{i, i}$ of monomer attachment to equisized water droplets and ice crystals in the steam (see eqs. (S10) and (S12)).

S4. Nonstationary nucleation rates

The nonstationary nucleation rates $J_{d+\text { com }}$ of $i>i^{*}$-sized droplets plus composites, $J_{\text {com }}$ of $i>i^{*}$-sized composites, $J_{d+c o m+c}$ of $i>i^{*}$-sized droplets plus $i>i^{*}$-sized composites plus $i>i_{c o}{ }^{*}$-sized crystals, $J_{c, 1 S}$ of 1 S nucleation of $i>i_{c o} *$-sized ice crystals in the O-phase, and $J_{d, 1 S}$ of 1 S droplet nucleation are given by [1]

$$
\begin{align*}
& J_{d+c o m}(t)=\sum_{n=1}^{i^{*}} I_{i^{*}, n}+\sum_{i=i^{*}+1}^{M-1}\left(I_{i, i}-G_{i, i-1}\right) \tag{S32}\\
& J_{c o m}(t)=J_{d+c o m}-J_{d}=\sum_{n=2}^{i^{*}} I_{i^{*}, n}+\sum_{i=i^{*}+1}^{M-1}\left(I_{i, i}-G_{i, i-1}+G_{i, 1}\right) \tag{S33}\\
& J_{d+c o m+c}(t)=J_{d+c o m}+J_{c} . \tag{S34}\\
& J_{c, 1 S}(t)=K_{i_{c_{c} * i_{c o *}^{* *}}}\left(\text { at } Q=1 \text { and } a_{i, n}=b_{i, n}=c_{i, n}=d_{i, n}=0\right) \tag{S35}\\
& J_{d, 1 S}(t)=I_{i^{*}, 1}\left(\text { at } Q=c_{i, n}=d_{i, n}=e_{i, n}=h_{i, n}=0\right) . \tag{S36}
\end{align*}
$$

Here J_{c} and J_{d}, specified by eqs. (12) and (14) of MT, are the 2 S nucleation rates of, respectively, crystals and droplets in the O-phase. Also, $I_{i^{*}, n}, I_{i, i}, G_{i, i-1}, G_{i, 1}, K_{i_{c o} *, i_{c o} *}$, and $I_{i^{*}, 1}$ are cluster fluxes defined by eqs. (S1)-(S3), i^{*} is the size of the droplet nucleus, and $i_{c o}{ }^{*}$ is the size of the crystal nucleus in the O-phase. It should be noted that unlike in Ref. [1] in which the droplets and the composites are collectively called "composites" so that their nucleation rate is given by eq. (S32), in the present paper the composites are regarded as distinct from the droplets and, accordingly, $J_{c o m}$ is determined by eq. (S33). The rate $J_{c, 1 S}$ is obtained from the solution of eq. (S17) at $Q=1$ and $a_{i, n}, b_{i, n}, c_{i, n}$ and $d_{i, n}$ set equal to zero and corresponds to the CNT 1S process of droplet-unaffected crystal nucleation in the onedimensional cluster size space of the $n=i$ diagonal in Fig. 1b of MT. Similarly, the rate $J_{d, 1 S}$ is obtained from the solution of eq. (S17) at annulled $Q, c_{i, n}, d_{i, n}, e_{i, n}$, and $h_{i, n}$. This is the rate of the CNT 1S process of crystal-unaffected droplet nucleation in the one-dimensional cluster size space of the i axis in Fig. 1b of MT (then no ice crystals nucleate in either the O-phase or the droplets).

Figure S1 displays the time dependences of the nucleation rates from eqs. (S32)(S34) and from eq. (14) of MT at $s_{c o}=2.5,3$ and 5 (panels (a), (b) and (c), respectively). We see that at these three supersaturations: (i) all these rates have the sigmoidal shape known from the CNT 1S nucleation [2], but J_{d} has an almost imperceptible maximum before attaining stationarity; (ii) J_{d} is only a little greater than $J_{\text {com }}$; and (iii) $J_{d+c o m}$ (solid line) is practically equal to $J_{d+c o m+c}$ (dashed line) because of the negligible contribution of the 2 S crystal nucleation rate J_{c} from eq. (12) of MT to the droplet and composite nucleation rates.

Figure S1. Time dependence of the nucleation rates J and the number densities N of supernuclei (as indicated) from eqs. (S32)-(S34) and eq. (14) of MT, and from eqs. (S41) and (S43) at $s_{c o}=2.5$ (left panels), $s_{c o}=3$ (middle panels), and $s_{c o}=5$ (right panels). The dotted lines in the $J(t)$ panels represent the respective stationary nucleation rates, the thin dashed lines in the $N(t)$ panels are the long-time $N(t)$ asymptotes, and the arrows in these panels indicate the delay time $\theta_{d+c o m}$ of droplet-plus-composite nucleation. The thick dashed lines graph $J_{d+\text { com }+c}$ and $N_{d+c o m+c}$.

S5. Stationary nucleation rates

The stationary nucleation rates $J_{d+c o m}^{s}$ of $i>i^{*}$-sized droplets plus composites, $J_{\text {com }}^{s}$ of $i>i^{*}$-sized composites, and $J_{d+c o m+c}^{s}$ of $i>i^{*}$-sized droplets plus $i>i^{*}$-sized composites plus $i>i_{c o} *$-sized crystals are the $t \rightarrow \infty$ values of $J_{d+c o m}, J_{c o m}$ and $J_{d+c o m+c}$ from eqs. (S32)-(S34). Figure S2 exhibits the supersaturation dependence of these rates and of the stationary rate J_{d}^{s} of droplet nucleation from eq. (14) of MT. It is seen that $J_{c o m}^{s}$, $J_{d+c o m}^{s}$ and $J_{d+c o m+c}^{s}$ are practically equal to each other and that J_{d}^{s} is also equal to them except for $s_{c o} \leq 2.2$. The inset in Fig. S2 shows that at these low supersaturations the nucleation rate of the composites can be orders of magnitude higher than the droplet nucleation rate.

Figure S2. Supersaturation dependence of the stationary nucleation rates $J_{\text {com }}^{s}, J_{d+\text { com }}^{s}$, and $J_{d+c o m+c}^{s}$ from eqs. (S32)-(S34) and J_{d}^{s} from eq. (14) of MT (as indicated). The inset illustrates the ratio between the composite and the droplet stationary nucleation rates, and the lines are drawn to guide the eye.

Table S1 presents numerically the supersaturation dependence of all stationary nucleation rates obtained in our study from eqs. (12)-(14) of MT and eqs. (S32)-(S36) (graphically, these dependences are shown in Fig. 6 of MT and Fig. S2 above). In the table, "lg" denotes the base-10 (a.k.a. common) logarithm.

Table S1. Dependence of stationary nucleation rates $J^{s}\left(\mathrm{~m}^{-3} \mathrm{~s}^{-1}\right)$ on the supersaturation $s_{c o}$ at $M=240$.

$s_{c o}$	$\lg J_{c}^{s}$	$\lg J_{c, 1 S}^{s}$	$\lg J_{c, d}^{s}$	$\lg J_{d}^{s}$	$\lg J_{d, 1 S}^{s}$	$\lg J_{\text {com }}^{s}$	$\lg J_{d+c o m}^{s}$	$\lg J_{d+c o m+c}^{s}$
2.0	-25.332	-25.118	-24.077	-27.312	-27.292	-24.327	-24.326	-24.286
2.2	-14.889	-14.836	-13.873	-13.943	-13.926	-13.654	-13.474	-13.457
2.5	-3.177	-3.753	-2.101	-0.849	-0.840	-0.933	-0.588	-0.587
3.0	8.498	7.953	9.745	11.517	11.521	11.411	11.769	11.769
3.5	14.630	15.096	16.255	18.330	18.334	18.220	18.580	18.580
4.0	17.561	19.809	20.170	22.522	22.528	22.410	22.771	22.771
4.5	17.883	23.107	22.648	25.316	25.326	25.201	25.563	25.563
5.0	15.525	25.529	24.220	27.290	27.312	27.173	27.537	27.537
5.5	14.418	27.377	25.100	28.754	28.794	28.634	28.999	28.999
6.0	15.643	28.834	25.223	29.880	29.947	29.756	30.124	30.124

To determine the stationary rate $J_{c, d, d i s}^{s}$ of crystal nucleation in dispersed $Z_{i, 1}^{s}$ droplets, which is displayed in Fig. 6b of MT, we need the stationary rate $J_{c, d, \infty}^{s}$ of homogeneous nucleation of crystals in the bulk M-phase (a macroscopically large droplet). This rate is given exactly by the Becker-Döring formula [2],[6] $J_{c, d, \infty}^{s}=1 / \sum_{n=1}^{\infty}\left(1 / g_{n} C_{n}\right)$. Here $C_{n}=C_{0} \exp \left(-w_{n}\right)$ is the equilibrium concentration of n-sized crystals in the M-phase, $C_{0}=1 / v_{0}$ is the concentration of nucleation sites in this phase [2], v_{0} is the monomer volume, $w_{n}=-s_{c m} n+\gamma_{c m} n^{2 / 3}$ is the work to form an n-sized crystal in this phase [2], and the attachment frequency g_{n} is the frequency $g_{i, n}$ specified by eq. (S11). The rate $J_{c, d, \infty}^{s}$ is thus $s_{c o}$-independent and can be presented as

$$
\begin{equation*}
J_{c, d, \infty}^{s}=\frac{f_{0}}{v_{0}}\left(\sum_{n=1}^{\infty} \frac{e^{w_{n}}}{d_{n}}\right)^{-1} \tag{S37}
\end{equation*}
$$

where d_{n} is the frequency $d_{i, n}$ given by eq. (S29). The crystal nucleation rate within an i-sized M-phase cluster (water droplet in our case) with volume $v_{0} i$ is the product $J_{c, d, \infty}^{s} v_{0} i$ so that $Z_{i, 1}^{s}$ such clusters nucleate crystals at rate $J_{c, d, \infty}^{s} v_{0} Z_{i, 1}^{s}$ ($Z_{i, 1}^{s}$ is the stationary concentration of i-sized M-phase clusters, see Figs. 3d-3f of MT). Hence, the stationary nucleation rate $J_{c, d, d i s}^{s}$ of crystals in the dispersion of M-phase clusters capable of nucleating crystals is the sum of $J_{c, d, \infty}^{s} v_{0} i_{i, 1}^{s}$ over the size i of these clusters. For small $s_{c o}$ values we have $i^{*} \geq n^{*}$ so that all M-phase supernuclei of size $i \geq i^{*}+1$ can nucleate crystals (to a certain approximation, the $i \leq i^{*}$-sized M-phase clusters can be neglected because of their tendency to decay). However, when the supersaturation $s_{c o}$ is so high that $i^{*}<n^{*}$, crystals can be nucleated only within the M-phase supernuclei of size $i \geq n^{*}+1$. Therefore, using $J_{c, d, d i s}^{s}$ from eq. (S37) in the product $J_{c, d, \infty}^{s} v_{0} Z_{i, 1}^{s}$ and summing over i leads to

$$
\begin{equation*}
J_{c, d, d i s}^{s}=f_{0}\left(\sum_{n=1}^{\infty} \frac{e^{w_{n}}}{d_{n}}\right)^{-1} \sum_{i=j^{*}+1}^{M-1} i Z_{i, 1}^{s} \tag{S38}
\end{equation*}
$$

where $j^{*}=i^{*}$ when $i^{*} \geq n^{*}$ (small $s_{c o}$, in our case $s_{c o} \leq 3$) or $j^{*}=n^{*}$ when $i^{*}<n^{*}$ (large $s_{c o}$, in our case $s_{c o}>3$). It is important to note that, in contrast to $J_{c, d, \infty}^{s}, J_{c, d, d i s}^{s}$ depends on $s_{c o}$ due to the change of both i^{*} and $Z_{i, 1}^{s}$ with $s_{c o}$.

Our numerical results for the stationary rates $J_{c, 1 S}^{s}$ and $J_{d, 1 S}^{s}$ of 1 S crystal and droplet nucleations (Figs. 6a and 6c of MT) can be verified with the aid of the exact Becker-Döring formula [2],[6] which in our case is of the form $J_{c, 1 S}^{s}=1 / \sum_{i=1}^{M-1}\left(1 / k_{i, i} C_{i, i}\right)$ for 1 S crystal nucleation and $J_{d, 1 S}^{s}=1 / \sum_{i=1}^{M-1}\left(1 / f_{i, 1} C_{i, 1}\right)$ for 1 S (i.e. crystal-unaffected) droplet nucleation. Owing to eq. (S4), we therefore have

$$
\begin{equation*}
J_{c, 1 S}^{s}=f_{0} C_{1}\left(\sum_{i=1}^{M-1} \frac{e^{w_{i, i}-w_{1,1}}}{h_{i, i}}\right)^{-1}, \quad J_{d, 1 S}^{s}=f_{0} C_{1}\left(\sum_{i=1}^{M-1} \frac{e^{w_{i, 1}-w_{1,1}}}{b_{i, 1}}\right)^{-1} . \tag{S39}
\end{equation*}
$$

Here $h_{i, i}$ and $b_{i, 1}$ are given by eqs. (S31) and (S27), the former with $Q=1$ and the latter with $Q=0$, because $J_{c, 1 S}^{s}$ and $J_{d, 1 S}^{s}$ are 1 S nucleation rates. With $f_{0}=10^{5} \mathrm{~s}^{-1}$ and $C_{1}=1.6 \times 10^{21} e^{s_{c o}} \mathrm{~m}^{-3}$ from Section S3 and with $w_{i, i}, w_{i, 1}$ and $w_{1,1}$ from eq. (S5), the above equations yield $J_{c, 1 S}^{s}$ and $J_{d, 1 S}^{s}$ values which for all supersaturations are equal to those from the solution of eq. (S17).

S6. The J_{c}^{s} components

According to eq. (12) of MT, the stationary rate J_{c}^{s} of 2 S crystal nucleation is given by $J_{c}^{s}=K^{s}+G^{s}-I^{s}$. Here $K^{s} \equiv K_{i_{c o}{ }^{*} i_{c o} *}^{s}$ is the stationary flux of crystals on the $n=i$ diagonal in the cluster size space (Fig. 1b of MT), $G^{s} \equiv \sum_{i=i_{c o}{ }^{*+1}}^{M-1} G_{i, i-1}^{s}$ is the collective stationary flux of crystallizing composites, and $I^{s} \equiv \sum_{i=i_{c o}{ }^{*+1}}^{M-1} I_{i, i}^{s}$ is the collective stationary flux of crystals that become composites. The supersaturation dependence of these three J_{c}^{s} components is illustrated in Fig. S3 by diamonds (component K^{s}), circles (component G^{s}) and squares (component I^{s}). We see that all components increase monotonically with $s_{c o}$ and that I^{s} becomes greater than G^{s} for $s_{c o} \geq 3.5$. As a result, the $G^{s}-I^{s}$ term in the above equation for J_{c}^{s} becomes negative so that it subtracts from K^{s}, and this makes J_{c}^{s} orders of magnitude smaller than K^{s} in the range of high supersaturations. The down triangles in Fig. 3S illustrate the $J_{c}^{s}\left(s_{c o}\right)$ dependence from the above equation for J_{c}^{s} (this dependence is also shown in Fig. 6a of MT).

Figure S3. Supersaturation dependence of the numerically obtained stationary 2 S crystal nucleation rate J_{c}^{s} (down triangles), of its three components K^{s} (diamonds), G^{s} (circles) and I^{s} (squares), and of the numerical factor β (up triangles). The solid lines are drawn to guide the eye, and the rate J_{c}^{s} and its components are in $\mathrm{m}^{-3} \mathrm{~s}^{-1}$.

As G^{s} and I^{s} characterize 2 S nucleation (they are nil in 1 S crystal nucleation which evolves only on the $n=i$ line of the cluster size space, the diagonal in Fig. 1b of MT), to see their effect on J_{c}^{s}, it is convenient to represent J_{c}^{s} as $J_{c}^{s}=\beta K^{s}$ where $\beta=1+\left(G^{s}-I^{s}\right) / K^{s}$. The up triangles in Fig. S3 display the numerical factor β as a function of $s_{c o}$. When $s_{c o}>3.5$, in absolute value, the negative flux difference $G^{s}-I^{s}$ is so very nearly equal to the positive flux K^{s} (up to 99.99999999999%) that this results in $\beta \ll 1$. We see in Fig. S3 that the strong drop of β below unity (the dotted line) for these high supersaturations is the reason for the orders-of-magnitude smallness of J_{c}^{s} in comparison with K^{s}. The decrease of β with $s_{c o}$ is initially so much faster than the increase of K^{s} that the increasing J_{c}^{s} passes trough a maximum and then starts decreasing with $s_{c o}$. For $s_{c o} \geq 5.5$, however, the decrease of β slows down, whereas K^{s} keeps rising quickly. As a result, after passing through a minimum, J_{c}^{s} resumes its increasing with $s_{c o}$. It should be pointed out that, especially for $s_{c o} \geq 3.5$, this behavior of J_{c}^{s} is influenced by the finite-size effect (see below) intrinsic to our results because of our use of $M=240$ as the maximal cluster size in the numerical solution of the master equation of 2 S nucleation.

S7. Effect of M on the stationary nucleation rates

In general, the value of the maximum cluster size M chosen when numerically solving the master equation of 2 S nucleation, eq. (1) of MT, may have a considerable effect on the values of the various stationary nucleation rates characterizing the process. Our M value of 240 requires the numerical solution of $(M / 2)(M-1)-1=28679$ equations, and this large number prohibited us from using a considerably greater M. The size-effect due to our choice of $M=240$ can be assessed at each supersaturation $s_{c o}$ by determining the various stationary nucleation rates at the smaller $M=100,120,160$ and 200. It turns out that none of the rates $J_{d}^{s}, J_{c o m}^{s}, J_{d+c o m}^{s}, J_{d+c o m+c}^{s}, J_{c, 1 S}^{s}$ and $J_{d, 1 S}^{s}$ is significantly affected by these M values. Regarding J_{c}^{s} and $J_{c, d}^{s}$, however, the situation is quite different. As seen in Figs. S4a and S4c below, the size effect experienced by both these rates is relatively small when $M \geq 160$ and $s_{c o} \leq 3.0$ (then $i^{*} \geq n^{*}$ so that the nucleation energy peak is inside the physically accessible triangular cluster-size space, Figs. 2a and 2 b of MT). When $s_{c o}>3.0$, however, the effect of M on $J_{c, d}^{s}$ remains relatively small for $M \geq 160$, but on J_{c}^{s} it is considerable even at $M=240$, the exception being the highest supersaturation (Figs. S4b and S4d). Interestingly, at many supersaturations, both $\lg J_{c}^{s}$ and $\lg J_{c, d}^{s}$ are nearly linear functions of $1 / M$ when M is between 160 and 240 . As the size effect is expected to disappear in the $M \rightarrow \infty$ limit, in trying to eliminate it, one could extrapolate the $J_{c}^{s}-\mathrm{vs} .-1 / M$ and the $J_{c, d}^{s}$ vs. $-1 / M$ dependences up to $1 / M=0$, but we refrained from doing that because of the dubious validity of any extrapolation procedure, especially when the extrapolation range is too wide.

Figure S4. Dependence of the stationary 2 S crystal nucleation rate J_{c}^{s} and the stationary rate $J_{c, d}^{s}$ of crystal nucleation in droplets on the maximum cluster size M used in solving the master equation of 2 S nucleation, eq. (1) of MT. The symbols are our numerical data, the numbers indicate the supersaturations used in our study, and the lines are drawn to guide the eye.

S8. Relevance of our study to homogeneous nucleation of water droplets

As noted in Section 3.1 of MT, our study is only approximately relevant to homogeneous nucleation of water droplets (the M-phase) and ice crystals in steam (the Ophase) at a temperature T between 220 and 230 K . This is so mainly because experimentally obtained data for the crystal/vapor, crystal/liquid and liquid/vapor specific surface energies $\sigma_{c o}, \sigma_{c m}$ and $\sigma_{m o}$ of water in this temperature range are either available solely from extrapolations ($\sigma_{m o}$) or are not available at all ($\sigma_{c o}$ and $\sigma_{c m}$). We used $\sigma_{m o}=88 \mathrm{~mJ} \mathrm{~m}^{-2}$ in our study, because in Ref. [5] (p. 160) this value is provided together with the $\sigma_{c o}$ and $\sigma_{c m}$ values. For comparison, $\sigma_{m o}$ values from extrapolation are [7] $84.25 \mathrm{~mJ} \mathrm{~m}^{-2}$ and $83.26 \mathrm{~mJ} \mathrm{~m}^{-2}$ at $T=220$ and 230 K , respectively. Also, we used $p_{e, m}=8 \mathrm{~Pa}$ for the liquid/vapor saturation pressure, while $p_{e, m}$ values, also from extrapolation, are [7] 4.42 and 13.57 Pa at $T=220$ and 230 K , respectively.

The open symbols in Fig. S5 display experimental data [8]-[11] (see also Fig. 5 of Ref. [7]) for the $s_{m o}$ dependence of the stationary rate J_{d}^{s} of homogeneous nucleation of water droplets in steam at $T=220$ and 230 K (as indicated). The supersaturation $s_{m o}$ for droplet nucleation is experimentally controlled according to the relation $s_{m o}=\ln \left(p / p_{e, m o}\right)$ in which p is the actual pressure of the steam. For comparison, the solid circles in Fig. S5 represent, in J_{d}^{s}-vs.- $s_{m o}$ coordinates, our numerical data for J_{d}^{s} from Fig. 6c of MT ($s_{m o}$ in Fig. S5 and $s_{c o}$ in Fig. 6c are interrelated by $s_{m o}=s_{c o}-s_{c m}$, where from Section S3 we have $s_{c m}=0.5$ in our case). As seen, qualitatively, our data are similar to the experimental ones. To visualize the discrepancy between experiment and CNT, the dashed lines in Fig. S5 graph the CNT formula for 1 S droplet nucleation (e.g., eq. (20) of Ref. [7])

$$
\begin{equation*}
J_{d, C N T}^{s}=A_{0} \exp \left(2 s_{m o}-\frac{B}{s_{m o}^{2}}\right) \tag{S40}
\end{equation*}
$$

in which the constants A_{0} and B are specified [7] as $A_{0}=8.85 \times 10^{25} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$ and $B=348.9$ at $T=220 \mathrm{~K}$ and as $A_{0}=7.50 \times 10^{26} \mathrm{~m}^{-3} \mathrm{~s}^{-1}$ and $B=287.3$ at $T=230 \mathrm{~K}$. As pointed out in Section 4.5 of MT, our results for J_{d}^{s} indicate that this discrepancy is so large that it seems unlikely to be attributable to the rather weak effect of the 2 S ice crystal nucleation on the droplet nucleation rate at these temperatures.

Figure S5. Supersaturation dependence of the stationary rate of homogeneous nucleation of water droplets in steam at $T=220$ and 230 K (as indicated): circles - our numerical data from Fig. 6c of MT for the stationary nucleation rate J_{d}^{s} of water droplets involved in 2 S ice crystal nucleation, diamonds (220 K) - data of Wölk and Strey [9], up triangles (220 K) data of Holten et al. [11], squares (230 K) - data of Wölk and Strey [9], down triangles (230 K) - data of Holten et al. [11], pluses (230 K) - data of Miller et al. [8], star (230 K) - data of Kim et al. [10], dashed lines - eq. (S40) of CNT at 220 and at 230 K . The solid line is drawn to guide the eye.

S9. Number densities of supernuclei

In general, the number density $N\left(\mathrm{~m}^{-3}\right)$ of any kind of supernuclei at time t is given by [2] $N(t)=\int_{0}^{t} J\left(t^{\prime}\right) d t^{\prime}$. With the help of eqs. (12)-(14) of MT and eqs. (S32)-(S36), we therefore have

$$
\begin{align*}
& N_{c}(t)=\int_{0}^{t} J_{c}\left(t^{\prime}\right) d t^{\prime}, N_{c, d}(t)=\int_{0}^{t} J_{c, d}\left(t^{\prime}\right) d t^{\prime}, N_{d}(t)=\int_{0}^{t} J_{d}\left(t^{\prime}\right) d t^{\prime} \tag{S41}\\
& N_{c, 1 S}(t)=\int_{0}^{t} J_{c, 1 S}\left(t^{\prime}\right) d t^{\prime}, N_{d, 1 S}(t)=\int_{0}^{t} J_{d, 1 S}\left(t^{\prime}\right) d t^{\prime} \tag{S42}\\
& N_{c o m}(t)=\int_{0}^{t} J_{c o m}\left(t^{\prime}\right) d t^{\prime}, N_{d+c o m}(t)=\int_{0}^{t} J_{d+c o m}\left(t^{\prime}\right) d t^{\prime}, N_{d+c o m+c}(t)=\int_{0}^{t} J_{d+c o m+c}\left(t^{\prime}\right) d t^{\prime} . \tag{S43}
\end{align*}
$$

These equations give the number densities N_{c} and $N_{c, 1 S}$ of $2 S$ - and 1S-nucleated crystal supernuclei of size $i>i_{c o} *$ in the O-phase, the number density $N_{c, d}$ of $n>n^{*}$-sized crystal supernuclei in the composites of size $i \geq n^{*}+1$, the number densities N_{d} and $N_{d, 1 S}$ of $i>i^{*}$ sized supernucleus droplets (which in our case are the M-phase supernuclei) formed, respectively, in the course of 2 S crystal nucleation and in the 1 S process of droplet nucleation described by CNT, the number density $N_{\text {com }}$ of $i>i^{*}$-sized composites, the number densities $N_{d+c o m}$ of $i>i^{*}$-sized droplets plus composites, and the number density $N_{d+c o m+c}$ of $i>i^{*}$-sized droplets plus $i>i^{*}$-sized composites plus $i>i_{c o} *$-sized crystals.

The time dependences of the last three number densities of supernuclei as well as of N_{d} from eq. (S41) are exhibited in Fig. S1 in which panels (d), (e) and (f) refer to $s_{c o}=2.5,3$ and 5 , respectively. It is seen that all these dependencies have the long-time linear portion known from the CNT 1S nucleation [2] and allowing determination of the respective stationary nucleation rate and nucleation delay time. We observe also that at these supersaturations the droplets are only a little more numerous than the composites and that $N_{d+c o m}$ (solid line) is practically equal to $N_{d+c o m+c}$ (thick dashed line) because of the negligible number density N_{c} of 2 S -nucleated crystals.

S10. Nucleation delay times

The nucleation delay times $\theta_{d+\text { com }}$ of $i>i^{*}$-sized droplets plus composites, $\theta_{\text {com }}$ of $i>i^{*}$-sized composites, and $\theta_{d+c o m+c}$ of $i>i^{*}$-sized droplets plus $i>i^{*}$-sized composites plus $i>i_{c o} *$-sized crystals are obtained from eq. (15) of MT in which t is a moment at which the nucleation is already stationary (e.g., the final moments of the $N_{d+c o m}(t), N_{c o m}(t)$ and $N_{d+c o m+c}(t)$ curves in Fig. S1). The supersaturation dependence of these three delay times and of the delay time θ_{d} of 2 S droplet nucleation from Fig. 7b of MT is presented in Fig. S6. We see that all delay times are practically equal to each other except for $s_{c o}>5$. The inset of

Fig. S6 shows that for these high supersaturations $\theta_{\text {com }}$ is up to almost four-fold greater than θ_{d}. This is interesting vis-à-vis the finding that, again for these supersaturations, $J_{c o m}^{s}$ and J_{d}^{s} are practically equal (see the inset of Fig. S2).

Figure S6. Supersaturation dependence of the nucleation delay times $\theta_{\text {com }}$ (solid circles), $\theta_{d+c o m}$ (triangles), $\theta_{d+c o m+c}$ (squares), and θ_{d} (open circles). The data are obtained from eq. (15) of MT, the inset illustrates the $\theta_{\text {com }} / \theta_{d}$ ratio, and the lines are drawn to guide the eye.

Table S2 presents numerically the supersaturation dependence of all nucleation delay times obtained in our study from eq. (15) of MT (graphically, these dependences are shown in Fig. 7 of MT and Fig. S6 above). In the table, " $x \mathrm{E} y$ " stands for $x \times 10^{y}$.

Table S2. Dependence of nucleation delay times $\theta(\mu \mathrm{s})$ on the supersaturation $s_{c o}$ at $M=240$.

$s_{c o}$	θ_{c}	$\theta_{c, 1 S}$	$\theta_{c, d}$	θ_{d}	$\theta_{d, 1 S}$	$\theta_{c o m}$	$\theta_{d+c o m}$	$\theta_{d+c o m+c}$
2.0	-4.79	19.3	-1.95 E 13	29.8	30.3	40.4	40.4	36.3
2.2	-1.99	12.1	-1.16 E 7	17.0	17.6	21.3	19.8	19.0
2.5	10.5	6.49	-16.8	8.09	8.33	8.68	8.36	8.36
3.0	7.00	2.47	9.13	2.64	2.69	2.77	2.69	2.70
3.5	2.16	0.971	4.74	1.10	1.11	1.15	1.12	1.12
4.0	-32.9	0.340	2.56	0.402	0.404	0.428	0.414	0.413
4.5	-1.05 E 4	0.145	1.47	0.155	0.155	0.177	0.165	0.164
5.0	-2.12 E 8	0.0720	0.886	0.0602	0.0622	0.0835	0.0703	0.0701
5.5	-7.08 E 10	0.0374	0.552	0.0189	0.0231	0.0437	0.0296	0.0294
6.0	-3.79 E 10	0.0251	0.335	0.00911	0.0139	0.0310	0.0185	0.0184

The CNT approximate general expression for the delay time of 1S nucleation, used in Section 4.7 of MT, is of the form

$$
\begin{equation*}
\theta=\frac{4 m^{*}}{s f^{*}} \tag{S44}
\end{equation*}
$$

where s is the dimensionless supersaturation, and f^{*} is the frequency of monomer attachment to nucleus of size m^{*}. In our case, $m^{*}=i_{c o} *$ and $s=s_{c o}$ for the ice crystals in steam, whereas $m^{*}=i^{*}$ and $s=s_{m o}=s_{c o}-s_{c m}$ for the droplets. Also, according to eq. (S12) with $Q=1$ and eq. (S10) with $Q=0$ (because $\theta_{c, 1 S}$ and $\theta_{d, 1 S}$ are 1 S nucleation delay times), we have $f^{*}=f_{0} e^{s_{c o}} i_{c o} *^{2 / 3}$ for these crystals and $f^{*}=f_{0} e^{s_{c o}} i *^{2 / 3}$ for the droplets. Hence, with the aid of the Gibbs-Thomson equations [1] $i_{c o} *=\left(2 \gamma_{c o} / 3 s_{c o}\right)^{3}$ and $i^{*}=\left[2 \gamma_{m o} / 3\left(s_{c o}-s_{c m}\right)\right]^{3}$, the above general expression for θ takes the form

$$
\begin{align*}
& \theta_{c, 1 S}=\frac{4 i_{c o} *^{1 / 3}}{f_{0} s_{c o}} e^{-s_{c o}}=\frac{8 \gamma_{c o}}{3 f_{0} s_{c o}^{2}} e^{-s_{c o}} \tag{S45}\\
& \theta_{d, 1 S}=\frac{4 *^{1 / 3}}{f_{0}\left(s_{c o}-s_{c m}\right)} e^{-s_{c o}}=\frac{8 \gamma_{m o}}{3 f_{0}\left(s_{c o}-s_{c m}\right)^{2}} e^{-s_{c o}} \tag{S46}
\end{align*}
$$

for 1S-nucleated crystals and droplets, respectively. Determined with our parameter values in Section S3, these $\theta_{c, 1 S}\left(s_{c o}\right)$ and $\theta_{d, 1 S}\left(s_{c o}\right)$ dependences are displayed in Fig. 7 of MT.

Similarly, for the delay time $\theta_{c, d, \infty}$ of nucleation of the crystals in bulk M-phase (macroscopically large droplet) we have $m^{*}=n^{*}, s=s_{c m}$ and, from eq. (S11), $f^{*}=g_{0} e^{s_{c m}} n *^{2 / 3}$ so that eq. (S44) and the Gibbs-Thomson equation [1] $n^{*}=\left(2 \gamma_{c m} / 3 s_{c m}\right)^{3}$ lead to

$$
\begin{equation*}
\theta_{c, d, \infty}=\frac{4 n * 1 / 3}{g_{0} s_{c m}} e^{-s_{c m}}=\frac{8 \gamma_{c m}}{3 g_{0} s_{c m}^{2}} e^{-s_{c m}} \tag{S47}
\end{equation*}
$$

This $s_{c o}$-independent nucleation delay time is illustrated in Fig. 7a of MT.

S11. Effect of M on the nucleation delay times

The size effect due to our choice of $M=240$ can be assessed at each supersaturation $s_{c o}$ by determining the various nucleation delay times at the smaller $M=100,120,160$ and 200. Like the respective stationary nucleation rates, it turns out that none of the delay times $\theta_{d}, \theta_{c o m}, \theta_{d+c o m}, \theta_{d+c o m+c}, \theta_{c, 1 S}$ and $\theta_{d, 1 S}$ is significantly affected by these M values. However, this is not so with θ_{c} and $\theta_{c, d}$. As seen in Fig. S7, both these delay times increase considerably with M, and the increase of $\theta_{c, d}$ is stronger at the smaller supersaturations.

Figure S7. Dependence of the delay time θ_{c} of 2 S crystal nucleation and the delay time $\theta_{c, d}$ of crystal nucleation in droplets on the maximum cluster size M used in solving the master equation of 2 S nucleation, eq. (1) of MT. The symbols are our numerical data, the numbers indicate the supersaturations used in our study, and the lines are drawn to guide the eye.

S12. Chaotic growth of small subnucleus composites

When the subnucleus composites are sufficiently small, their growth can be very chaotic, because they necessarily follow very steep pathways up the energy hill in the physically accessible cluster size space. This is illustrated in Fig. S8 which represents the cluster flow lines near the origin of this space.

Figure S8. Cluster flow lines mandated by the fluxes from Eqs. (9)-(11) of MT in stationary 2 S nucleation when $s_{c o}=2.5$ (then the peak of the energy hill is at $i=i^{*}=78$ and $n=n^{*}=42$, see Fig. 4a of MT). The arrow heads indicate the flow direction, and the background is the $w_{i, n}$ contour plot from Fig. 4a of MT. Only subnuclei of size i less than about 15 are in the zone of chaotic growth. The upper triangular part of the contour plot is obscure, because it is in the physically inaccessible i, n cluster size space. The $w_{i, n}$ scale is on the right of the figure.

References

[1] D. Kashchiev, J. Cryst. Growth 530 (2020) 125300.
[2] D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinemann, Oxford, 2000.
[3] D. Kashchiev, K. Sato, J. Chem. Phys. 109 (1998) 8530.
[4] D. M. Murphy, T. Koop, Q. J. R. Meteorol. Soc. 131 (2005) 1539.
[5] H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation, Kluwer, New York, 2004.
[6] R. Becker, W. Döring, Ann. Phys. (Leipzig) 24 (1935) 719.
[7] D. Kashchiev, J. Chem. Phys. 125 (2006) 044505.
[8] R. C. Miller, R. J. Anderson, J. L. Kassner, Jr., D. E. Hagen, J. Chem. Phys. 78 (1983) 3204.
[9] J. Wölk, R. Strey, J. Phys. Chem. B 105 (2001) 11683.
[10] Y. J. Kim, B. E. Wyslouzil, G. Wilemski, J. Wölk, R. Strey, J. Phys. Chem. A 108 (2004) 4365.
[11] V. Holten, D. G. Labetski, M. E. H. van Dongen, J. Chem. Phys. 123 (2005) 104505.

