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A B S T R A C T 

 

The master equation of two-step nucleation is numerically solved with parameters 

characterizing isothermal homogeneous nucleation of ice crystals and water droplets in steam 

below the water freezing temperature. The time dependences of the crystal and droplet size 

distributions and nucleation rates as well as of the nucleation rate of ice crystals in the 

droplets are determined at different constant supersaturations. The stationary values of these 

nucleation rates are obtained in a wide supersaturation range. It is found that when the 

crystallization of the water droplets is slower than their growth, the stationary rate of two-

step crystal nucleation is orders of magnitude lower than the corresponding stationary rate of 

one-step crystal nucleation. As to the stationary nucleation rate of the water droplets, it is 

practically unaffected by the ice crystals nucleating and growing in both the droplets and the 

steam. Finally, the delay times of the different nucleation processes are determined and it is 

found that at both low and high supersaturations the delay time of the two-step crystal 

nucleation is negative because of the presence of high initial peak in the nonstationary rate of 

this process. The results obtained provide unprecedented mechanistic insight into the kinetics 

of two-step crystal nucleation. 
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1. Introduction 

 

 Crystal nucleation is a process whose understanding and control are of great academic 

and technological interest. In 1926, Volmer and Weber’s pivotal paper [1] initiated the 

theoretical study of the kinetics of nucleation, and the results obtained in the following dozen 

or so years have come to be collectively known as the classical nucleation theory (CNT) 

(e.g., Refs. [2–4]). Regarding crystal nucleation, this theory is applicable when the crystals 

appear directly, i.e. in one step, in the supersaturated old phase (O-phase) by self-assembling 

of O-phase monomers (atoms or molecules or building blocks) into clusters of the 

thermodynamically stable crystal phase (C-phase). The only parameter used in CNT to 

distinguish these single-phase clusters from each other is the cluster size, i.e. the number of 

monomers constituting them. 

  Recently, however, compelling evidence has emerged from experiments, computer 

simulations and numerical studies (e.g., Refs. [5–34]) that crystals can often come into being 

by the so-called two-step (2S) nucleation in which the first step is the appearance of a 

thermodynamically metastable phase (M-phase) in the O-phase, and the second step is the 

crystal nucleation in this precursor M-phase. The theoretical description of 2S nucleation 

thus requires considering the appearance in the O-phase of two-phase clusters composed of 

two single-phase clusters, one of the M-phase, and the other of the C-phase. In the spirit of 

CNT, these composite clusters can be characterized by two cluster sizes: the total number i of 

monomers constituting the composite and the number n of monomers building-up the crystal 

cluster which is part of the composite ( in  ). When these two sizes are equal, the composite 

cluster is identical with the crystal cluster used in CNT for description of one-step (1S) 

nucleation of crystals [2–4]. In this way, 1S nucleation appears merely as a limiting case of 

2S nucleation. 

 Owing to this clear nexus between 1S and 2S nucleations, the composite-cluster 

model has been used to extend CNT in a way allowing the description of these two kinds of 

nucleation from a unified point of view [10,13,26,33,35–38]. In particular, in Ref. 38 the 

CNT master equation of 1S nucleation was generalized to apply to 2S nucleation by 

considering the process as evolving in the two-dimensional i,n space of the two cluster sizes, 

and general expressions were derived for the rates of 2S nucleation of crystals in the O-phase 
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and of crystal nucleation in the droplets. Mathematically, the master equation of 2S 

nucleation in Ref. 38 is of considerable complexity and it is not a simple matter to 

analytically obtain the time and supersaturation dependences of these nucleation rates. We 

still do not have the luxury to possess a sufficiently general analytical expression for the 2S 

nucleation rate, such as the exact Becker-Döring formula [39] for the rate of stationary 1S 

nucleation. In the absence of analytical results, the alternative is to employ numerical 

methods to solve the master equation with reference to a given nucleating system and thereby 

gain mechanistic insight into the idiosyncrasies of the kinetics of 2S nucleation. 

 The objective of the present study is thus to obtain a numerical solution of the master 

equation of 2S nucleation [38] with parameters corresponding to homogeneous nucleation of 

water droplets (the M-phase) and ice crystals (the C-phase) in steam (the O-phase) at a fixed 

temperature below the water freezing one. In particular, we find the size distributions of 

crystals, droplets, and composites as functions of time and use them for determination of the 

supersaturation dependence of the crystal and droplet nucleation rates and delay times, as 

well as for comparison of these dependences with those corresponding to 1S nucleation. The 

comparison of the nucleation rate of droplets involved in 2S nucleation with their rate 

corresponding to 1S nucleation is of special interest, because the nucleation of crystals in the 

droplets might be a factor in the well-documented discrepancy between CNT and 

experimental results for homogeneous nucleation of water droplets in steam below the water 

freezing temperature (e.g., Refs. [40–44]). 

 

2. The master equation of 2S nucleation 

 

 We consider a supersaturated O-phase in which a single-component M-phase and the 

C-phase of the same component can nucleate homogeneously. The O-phase contains 

monomers that can directly self-assemble into M-phase or C-phase clusters by 1S nucleation 

as described by CNT (e.g., Ref. [4]). Alternatively, the O-phase can transform into C-phase 

indirectly, i.e. by 2S nucleation which involves appearance of M-phase clusters followed by 

nucleation of crystals in them. Most simply, 2S nucleation is thus characterized with the 

formation of i,n-sized clusters in the O-phase, each of them constituted of a single C-phase 

cluster of n monomers ( in 1 ) and a covering M-phase layer of ni −  monomers (Fig. 1a, 
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top). The more complicated case of two or more C-phase clusters nucleating in an M-phase 

cluster is not considered here. As i is the total number of monomers in the cluster, in the 

in =  limit, the cluster is of size i,i and is an i-sized crystal in the O-phase because of the 

absence of M-phase layer around it (Fig. 1a, bottom left). In the opposite limit of 1=n , the 

cluster is of size i,1 and is an i-sized M-phase cluster (Fig. 1a, bottom right), because in CNT 

an ( 1=n )-sized crystal in the M-phase is actually a monomer of the M-phase and is thus 

indistinguishable from the other monomers of the M-phase around it. To differentiate 

between the i,n-sized clusters in the O-phase, we shall hereafter call them M-phase clusters, 

composites, and crystals when 1=n , in 1 , and in = , respectively. Correspondingly, the 

clusters of 1,...,3,2 −= in  monomers inside the composites will be referred to as crystals in 

the M-phase. 

 

     

Fig. 1. (a) Schematic of composite cluster of i monomers with n-sized M-phase cluster in it 

(top), of crystal cluster of i monomers (bottom left) in O-phase, and of M-phase cluster of i 

monomers (bottom right) (the arrows illustrate the frequencies fi,n, gi,n, fi,i, ki,i and fi,1 of 

monomer attachment to the respective clusters). (b) The triangular i,n cluster-size space with 

the Ii,n, Gi,n, and Ki,i fluxes (shown by arrows) that control the nucleation and growth of M-

phase and composite clusters, of crystals in the M-phase, and of crystals in the O-phase, 
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respectively. The Ii,i arrow visualizes the flux of i,i-sized crystals in the O-phase that transit 

to ii ,1+ -sized composites, and the circles represent points i,n and i,i in the size space. 

 

 The above is a compendious description of the composite-cluster model of CNT. In 

the framework of this model, the master equation of 2S nucleation is of the form [38] 

( 1,...,4,3 −= Mi , 1,...,3,2 −= in ) 

 )()()()(
)(

,1,,,1

,
tGtGtItI

dt

tdZ
nininini

ni −+−= −− .    (1) 

Here Zi,n (m−3) is the actual concentration of i,n-sized clusters at time t, and Ii,n and Gi,n are 

given by Eqs. (S1) and (S2) of Supplementary Material (SM). Also, 11,1 CZ =  and 0)(, =tZ nM  

for any n [38], because the smallest clusters (for them 1== ni ) are identical with the O-

phase monomers whose concentration is C1 (m−3) and because the formation of a cluster 

containing all M monomers of the O-phase is ruled out. As the crystal size n cannot exceed 

the cluster size i, the i,n cluster-size space in which 2S nucleation evolves is triangular (Fig. 

1b). For the boundary lines 1=n  and in =  of this space (Fig. 1b), instead of Eq. (1) we have 

[38] ( 1,...,3,2 −= Mi ) 

 )()()(
)(

1,1,1,1

1,
tGtItI

dt

tdZ
iii

i −−= −       (2) 

 )()()()(
)(

,1,,1,1

,
tItGtKtK

dt

tdZ
iiiiiiii

ii −+−= −−−     (3) 

where Ki,i is given by Eq. (S3) of SM. 

 Physically, the quantities Ii,n and Gi,n are the net rates at which the i,n-sized clusters 

become ni ,1+ -sized and 1, +ni -sized, respectively, and Ki,i is the net rate at which the i,i-

sized crystals become 1,1 ++ ii -sized. The rates Ii,n and Gi,n can be regarded as fluxes 

flowing from point ni,  in the two-dimensional cluster-size space to point ni ,1+  and to point 

1, +ni , respectively, which means that whereas Ii,n is parallel to the i-axis, Gi,n is parallel to 

the n-axis of this space (Fig. 1b). Likewise, Ki,i is the flux flowing from point ii,  to point 

1,1 ++ ii  on the diagonal boundary line in =  of this space (Fig. 1b). The particular cases of 

(i) 0,, == nini GI  for all i,n, (ii) 0,, == niii GK  for all i,n and 0, =niI  for 2i , in ,...,3,2= , 

and (iii) 0, =niG  for all i,n and 0, =niI  for 2i , in ,...,3,2=  correspond, respectively, to 1S 
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nucleation of crystals on the in =  line [4], to 1S nucleation of M-phase clusters on the 1=n  

line [4], and to simultaneous occurrence of these two processes [45]. 

 According to Eqs. (S1)–(S3) of SM, the Ii,n, Gi,n and Ki,i fluxes depend strongly on the 

cluster formation work Wi,n, because the equilibrium cluster concentration Ci,n determining 

them is related to Wi,n by the Boltzmann-type formula [38] ( ,...3,2,1=i , in ,...,3,2,1= ) 

 )exp( ,1,11, nini wwCC −= .       (4) 

Here C1 is the concentration of monomers in the O-phase, TkWw Bnini /,,   is the 

dimensionless work to form an i,n-sized cluster, kB is the Boltzmann constant, T is the 

absolute temperature of the system, and w1,1 is the value of wi,n at 1== ni . Eq. (4) is self-

consistent in the sense that at 1== ni  it returns the equality 11,1 CC = . Also, it is general and 

can be used with any model for wi,n. Hereafter, we shall use the expression [38] ( ,...3,2,1=i , 

in ,...,3,2,1= , 0 cmco ss ) 

 3/23/2

, )( nnsiissw cmcmmocmconi  +−+−−=      (5) 

where mocmco sss =−  is the dimensionless supersaturation of the O-phase with respect to the 

M-phase, sco is the dimensionless supersaturation of the O-phase with respect to the C-phase, 

scm is the dimensionless supersaturation of the M-phase with respect to the C-phase, mo is the 

dimensionless M-phase/O-phase specific surface energy, and cm is the dimensionless C-

phase/M-phase specific surface energy. In the case when the O-phase is a single-component 

vapor behaving as ideal gas, the three s’s are given by Eq. (S6) of SM, and expressions for 

them in the case of O-phase which is a single-component melt are presented elsewhere [38, 

46]. It is important to note that scm is independent of sco in the former case provided sco is 

changed via the pressure of the gaseous O-phase. Under the assumption that both the M-

phase and the C-phase clusters are spherical, mo, cm and the dimensionless C-phase/O-phase 

specific surface energy co are given by Eqs. (S7) and (S9) of SM and are related by the 

simple equality [38] mocmco  += . 

 Eq. (5) corresponds to the simplest CNT-inspired version of the composite-cluster 

model [38], in which (i) the interaction between the two surfaces of the composite cluster 

(Fig. 1a) is not taken into account, (ii) the possible i,n dependences of mo and cm are 

ignored, and (iii) the monomer volume is considered as being the same in both the M-phase 
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and the C-phase. A more elaborate version of the model is the one with relaxed point (i) only 

(e.g., Refs. [33] and [35]). This version makes it possible to account for such important 

phenomena as adsorption, wetting, and surface melting that may occur on the surface of the 

crystals in the O-phase. Additionally relaxing points (ii) and (iii) is also of interest, the point 

(iii) relaxation being of particular interest in 2S nucleation in which the M- and O-phases are 

crystal polymorphs. 

 Besides thermodynamics (via wi,n), kinetics is also involved in the Ii,n, Gi,n and Ki,i 

fluxes through the attachment frequencies fi,n, gi,n and ki,i (Fig. 1a) of, respectively, monomers 

of the O-phase to an i,n-sized composite, monomers of the M-phase layer of such a 

composite to the n-sized crystal in it, and monomers of the O-phase to an i-sized crystal in 

the O-phase (i.e. an i,i-sized cluster) which transform this crystal into a crystal of size 1+i . 

For the simplest version of the composite-cluster model used here, provided all monomers 

arriving at the cluster surface are attached to the cluster, we can approximate the i,n 

dependence of these frequencies by the CNT expressions for 1S nucleation which are 

presented by Eqs. (S10)–(S12) of SM. These expressions correspond to the case of monomer 

attachment to the clusters in the gaseous O-phase by direct impingement onto the cluster 

surface and to monomer attachment to the crystals within the composites by interface-

transfer control. 

 When the O-phase is held at constant monomer concentration C1 and temperature T, 

the supersaturation sco and the equilibrium cluster concentration Ci,n are time-independent. 

Then, as shown in Section S2 of SM, Eqs. (1)–(3) can be amalgamated into a single equation 

of the form ( 1,...,3,2 −= Mi , in ,...,2,1= ) 

 )()()( ,1,,,1,,,,1,

,

ninininininininini

ni
FFcFFbFFa

dx

dF
−+−−−= −+−  

  )()()( 1,1,,,1,1,1,,, ++−−+ −−−+−− iiiiniiiiinininini FFhFFeFFd .  (6) 

Here the dimensionless cluster concentration 0, niF  and time 0x  are given by 

 
1

,

,

)(
)(

,

C

xZe
xF

ni

w

ni

ni

= ,  tfx 0=       (7) 

where the quantity wi,n is defined as 1,1,, www nini − , and the frequency factor 0f  (s−1) is 

specified by Eq. (S13) of SM. Physically, the x-independent coefficients ai,n, ci,n and ei,n in 



 8 

Eq. (6) are the dimensionless, normalized by f0, frequencies of monomer detachment from 

both the M-phase clusters and the composites (coefficient ai,n), from the crystals within the 

composites (coefficient ci,n), and from the crystals in the O-phase (coefficient ei,n). Similarly, 

bi,n, di,n and hi,n, also x-independent, are the dimensionless frequencies of monomer 

attachment to both the M-phase clusters and the composites, to the crystals within the 

composites and to the crystals in the O-phase, respectively. The general expressions for these 

six attachment/detachment frequencies, which are valid for any model of 2S nucleation 

thermodynamics (wi,n) and kinetics (fi,n, gi,n and ki,i), are Eqs. (S19)–(S24) of SM. The 

specific expressions corresponding to our model for wi,n, fi,n, gi,n and ki,i, and used by us, are 

Eqs. (S25)–(S31) of SM. 

 In addition to the master Eq. (6), for F1,1 and FM,n we have the boundary conditions 

1)(1,1 =xF  and 0)(, =xF nM  (for Mn ,...,2,1= ), because 01,1 =w  and 11,1 CZ =  in Eq. (7), 

and because 0)(, =tZ nM  for any size n. As Eq. (6) is a set of 1)1)(2/( −−MM  linear 

ordinary differential equations of first order for the same number of unknowns Fi,n, the 

problem of finding Fi,n becomes mathematically well-posed when the initial concentration of 

the clusters is specified. In the present study, we shall use the initial condition 0)0(, =niF  (for 

Mi ,...,3,2= , in ,...,2,1= ) which corresponds to 2S nucleation commencing in the absence 

of clusters in the system. 

 

3. Numerical solution of the master equation 

 

3.1 Parameter values 

 

 Our task is to numerically solve the master Eq. (6) for Fi,n(x) when this quantity 

satisfies the conditions for F1,1(x), FM,n(x) and Fi,n(0) noted above and when the 

attachment/detachment frequencies from Eqs. (S25)–(S31) of SM are approximately relevant 

to homogeneous nucleation of water droplets (the M-phase) and ice crystals (the C-phase) in 

steam (the O-phase) at temperature 230220−T  K and of ice crystals in liquid water at the 

same temperature. As shown in Section S3 of SM, in this case, we have 5.0=cms , 

8.12=mo , 6.2=cm , 4.15=co , 
5

0 10=f  s−1, cos
eC

21

1 106.1 = m−3, and 200=L . This 
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value of the parameter L in Eqs. (S28) and (S29) of SM means that when sco is sufficiently 

small, monomer attachment to an n-sized ice crystal inside a water composite of ni   

monomers can be much faster than that to the liquid layer of the composite or to an i-sized 

droplet as long as i is not too much greater than n (see Eqs. (S10)–(S12) of SM). As to the 

parameter Q in Eqs. (S25), (S27), (S30) and (S31) of SM, its value is unknown and we 

choose 2/1=Q , the value corresponding to equal frequencies fi,i and ki,i of monomer 

attachment to the ice crystals in the steam (according to Eqs. (S10) and (S12) of SM). By 

using 2/1Q  or 2/1Q , one could account for growth of the i,i-sized crystals to 

1,1 ++ ii -sized ones which is, respectively, impeded or facilitated in comparison with the 

transition of the crystals to ii ,1+ -sized composites. 

 Using the above parameter values and the attachment/detachment frequencies from 

Eqs. (S25)–(S31) of SM, we numerically obtained first Fi,n(x) from Eq. (6) and then, with its 

help, the concentration of i,n-sized clusters as well as the nucleation rates and number 

densities of crystals, composites and droplets at ten values of the supersaturation sco in the 

range from 2 to 6. This range is of interest, because experiments on homogeneous nucleation 

of water droplets in steam at 220 and 230 K have been carried out at smo from about 1.8 to 3.3 

(e.g., Refs. [40–44]; see also Fig. 5 of Ref. [47]), which corresponds to 3.2=cos  to 3.8. 

 

3.2. Numerical method 

 

 To obtain the results reported below, we used 240=M . This M value requires the 

numerical solution of 286791)1)(2/( =−−MM  simultaneous ordinary differential 

equations, and this large number prohibited us from employing a considerably greater M. The 

finite-size effect due to the use of our M value is discussed and illustrated in SM. For the 

numerical solving of our large set of equations we employed the odeint (ordinary differential 

equation integration) open source library [48]. It contains a function that computes the Fi,n(x) 

derivative in accordance with Eq. (6) and the conditions for F1,1(x), FM,n(x) and Fi,n(0) noted 

above, and provides a sequence of x values at which to solve for Fi,n(x). For our calculations 

we used the odeint default parameters, except that for 2.2cos  we had to restrict the 

maximum absolute step size allowed with regard to x. A point to note also is that, as the 
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computation of the nucleation rates requires integer values for the nucleus sizes i*, n* and 

ico*, a non-integer nucleus size was always rounded off to the nearest upper integer size. 

 

4. Results and discussion 

 

4.1. Energy landscape 

 

 The cluster formation work wi,n determines the energy landscape of the 2S nucleation 

process. According to Eq. (5), wi,n has a maximum at point i*,n* in the i,n cluster-size space. 

The i*,n*-sized cluster is the composite nucleus, and i* and n* are given by the Gibbs-

Thomson equations [38] 3)](3/2[* cmcomo ssi −=   and 
3)3/2(* cmcm sn =  in which 

0 cmco ss . These equations show that while i* decreases strongly with increasing sco, n* is 

sco-independent (for our parameter values, 185*=i  to 4 for sco from 2 to 6, and 42*=n ). 

Importantly, as in our study the interaction between the crystal/M-phase and M-phase/O-

phase interfaces of the composite is neglected, i* is also the size of the M-phase nucleus, and 

n* is also the size of the crystal nucleus in the bulk M-phase. 

 The three-dimensional wi,n function from Eq. (5) is dome-shaped. In two dimensions, 

the set of borderlines between the concentric ellipsoidal strips in Fig. 2 represents the 2S 

nucleation energy landscape (the constant, =niw  contour plot) when wi,n is specified by our 

parameter values. The stars mark the position of the (i*,n*)-sized composite nucleus in the 

cluster size space and designate the peak of wi,n at 5.2=cos  (Fig. 2a), 3=cos  (Fig. 2b), and 

5=cos  (Fig. 2c). The concentric contour-plot lines connect the i,n values at which wi,n has a 

given value smaller than its maximum value **,* niww   (the farther a line from the center, 

the smaller the wi,n value corresponding to it). The two *ii =  and *nn =  ridges of the wi,n 

energy hill, which have to be surmounted by the subnucleus clusters when they grow parallel 

to the n- or i-axis, are visualized by the vertical and the horizontal straight lines, respectively. 

The upper triangular part of the contour plot in each panel of Fig. 2 is obscure, because it is 

in the physically inaccessible i,n cluster size space. 
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Fig. 2. Contour plot (the borderlines between the ellipsoidal strips) of the cluster formation 

work wi,n from Eq. (5) with superimposed front of the cluster concentration Zi,n from Eq. (8) 

at successive times (indicated in s) of 2S nucleation when (a) 5.2=cos  (then ** ni  ), (b) 

3=cos  (then ** ni  ), and (c) 5=cos  (then ** ni  ). The concentration of i,n-sized clusters 

on a front line at any time t is 1)(, =tZ ni  km−3 in panel (a), 1 m−3 in panel (b) and 1 mm−3 in 

panel (c). In each panel, the star visualizes the position i*,n* of the wi,n maximum, the square 

on the in =  line indicates the size ico* of the ice crystal nucleus in the steam, and the vertical 

and horizontal lines represent the i* and n* ridges of the wi,n surface, respectively. The wi,n 

scale is on the right of the panels. 
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 Regardless of whether the crystals in the supersaturated O-phase come into being by 

1S or 2S nucleation, they are viable only after surpassing the nucleus size ico* indicated by 

the square on the in =  diagonals in Fig. 2. This size is determined by the Gibbs-Thomson 

equation [38] 3)3/2(* cococo si =  according to which, for our co value, 136* =coi  to 5 for sco 

from 2 to 6. Thus, while at low supersaturation the ice crystal nucleus in steam is smaller 

than the composite (or the droplet) nucleus, at high supersaturation it is larger. We note as 

well that the energy landscape in Fig. 2 is so simple, because Eq. (5) describes wi,n in perhaps 

the simplest possible way. When composite-cluster surface interaction or specific molecular 

interactions are taken into account, this landscape can be quite complicated, because then the 

wi,n surface can have saddle point(s) and more than one maximum in the physically 

accessible cluster size space (e.g., Refs. [17,18,32–35]). In our case, due to the absence of 

surface-interaction term in Eq. (5), the saddle points that characterize wi,n when this term is 

present [33,35] appear on the boundaries of the cluster size space (the in =  and 1=n  lines 

in Fig. 2). 

 

4.2. Cluster size distribution 

 

 When Fi,n is known, according to Eq. (7), the cluster concentration Zi,n can be 

obtained from 

 )()( ,1,
, xFeCxZ ni

w

ni
ni−= .       (8) 

  In the triangular cluster-size space of 2S nucleation, the curved lines in Figs. 2a–2c 

illustrate the spreading of the front of the cluster concentration from Eq. (8) for 

supersaturations 5.2=cos , 3 and 5 at which ** ni  , ** ni   and ** ni  , respectively. This 

front is defined as the line connecting those i,n points that at a given time t represent the sizes 

of the clusters with concentration 1)(, =tZ ni  km−3 (for Fig. 2a), 1 m−3 (for Fig. 2b), and 1 

mm−3 (for Fig. 2c). In each panel, the rightmost line visualizes the static front when the 2S 

nucleation is stationary, and the lines on the left of it show the front at previous times at 

which the process is still transient. The leftmost lines in the panels correspond to the earliest 

times, and while in panels (a) and (b) the successive times (in s) are listed in a column, in 

panel (c) they are indicated by numbers at the lines. 
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  As seen in Fig. 2, the stationary cluster concentration fronts are distinctly different 

when the starred peak of the energy hill is inside or outside the physically accessible cluster-

size triangle. In the former case (Fig. 2a, ** ni  ), the front circumvents the energy peak, 

because the clusters grow predominantly parallel either to the in =  diagonal or to the 1=n  

line. These two roundabout pathways correspond to 1S nucleation of ice crystals and of water 

droplets, respectively. In the latter case (Fig. 2c, ** ni  ), the absence of the energy peak 

allows almost unhindered cluster growth parallel to the 1=n  line. This means prevailing 

nucleation of droplets and composites whose subsequent crystallization yields 2S-nucleated 

ice crystals in the steam. In the demarcating ** ni   case (Fig. 2b, energy peak practically on 

the in =  diagonal), the stationary front is like that in the ** ni   case (Fig. 2a), but 

considerably more extended toward the larger droplets and composites. 

 The size distributions of ice crystals (Zi,i) and water droplets (Zi,1) in the steam at 

successive times (as indicated) are depicted in Figs. 3a–3c and Figs. 3d–3f, respectively. 

Similarly, Figs. 3g–3i and Figs. 3j–3l display the evolution of the size distribution Zi,n* of 

those water composites of *ni   monomers that contain an n*-sized ice crystal nucleus, and 

the evolution of the size distribution Zi*,n of ice crystals within those composites that, like the 

droplet nucleus, are constituted of i* monomers. These two size distributions are the Zi,n(t) 

values along the n* and the i* ridges of the wi,n surface, respectively (the horizontal and the 

vertical lines in Figs. 2a–2c). In Fig. 3, the panels on the left, in the middle and on the right 

refer to 5.2=cos , 3 and 5, respectively. 
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Fig. 3. Cluster size distributions from Eq. (8) at 5.2=cos  (left column of panels), 3=cos  

(middle column of panels), and 5=cos  (right column of panels). Zi,i, Zi,1, Zi,n*, and Zi*,n refer, 

respectively, to ice crystals in steam, water droplets, water composites containing the n*-

sized ice crystal nucleus, and ice crystals within those composites that are with the size i* of 

the droplet nucleus. The numbers at the lines indicate the time (in s) elapsed from the onset 

of the 2S nucleation process. The dashed lines represent the corresponding equilibrium 

cluster size distributions Ci,i, Ci,1, Ci,n*, and Ci*,n from Eq. (4). 

 

 

 In Fig. 3, all equilibrium cluster size distributions (dashed lines) are seen to quite 

closely approximate the respective stationary ones for the *coii  -sized ice crystal subnuclei 

in the steam and for the droplet and composite subnuclei of size *ii  , i.e. for the clusters on 

the left of the i* ridge in Fig. 2. In this, these distributions are similar to the CNT equilibrium 

cluster size distribution in 1S nucleation (Ref. [4], Fig. 13.1). Also like in CNT, the above 

three kinds of subnuclei and nuclei are formed almost immediately after the onset of the 2S 

nucleation process. The distributions with respect to the cluster size i (panels (a)–(i) of Fig. 

3) decrease monotonically with this size, except for Zi,n* (the composites on the n* ridge in 
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Fig. 2) which increases at 5=cos  (Fig. 3i), because at high supersaturations the predominant 

spreading of the cluster concentration front parallel to the i axis involves more and more 

composites with *nn  -sized crystal nuclei and supernuclei in them (see line “stationary” in 

Fig. 2c). As to the size distribution Zi*,n of composites on the i* ridge in Fig. 2, Figs. 3j and 

3k show that those composites that contain the n*-sized ice crystal nucleus (i.e. those atop 

the energy peak in Figs. 2a and 2b) are the least populated species. The reason for that is the 

avoidance of the energy peak by the growing clusters which follow the two available 

roundabout pathways near the in =  diagonal and the 1=n  line. 

 

4.3. Net cluster fluxes 

 

 When the solution Fi,n(x) of Eq. (6) is known, according to Eq. (8) and to Eqs. (S1)–

(S3) of SM, the three fluxes Ii,n, Gi,n and Ki,i (in units of m−3 s−1) can be obtained from the 

expressions 
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These fluxes determine the trajectories of cluster growth in the triangular cluster-size space 

of 2S nucleation. The arrowed cluster flow lines seen in Fig. 4 are a revealing visualization of 

these trajectories at 5.2=cos , 3 and 5 (as indicated) and at 60=t  s (Fig. 4a), 30 s (Fig. 

4b) and 3 s (Fig. 4c) when the 2S crystal nucleation is already stationary. The lines are 

plotted with the help of the streamplot function available in the matplotlib library [49], and 

each line is drawn so that its tangent and direction at any point i,n are given by the vector 

sum of the fluxes Ii,n and Gi,n (if in  ) or the fluxes Ii,i and Ki,i (if in = ) considered as 

vectors beginning at this point (see Fig. 1b). 
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Fig. 4. Cluster flow lines dictated by the fluxes from Eqs. (9)–(11) in stationary 2S 

nucleation when: (a) 5.2=cos , (b) 3=cos , and (c) 5=cos  (then ** ni  , ** ni  , and 

** ni  , respectively). The arrow heads indicate the flow direction, and the background is the 

wi,n contour plot from Fig. 2. In each panel, the star visualizes the position i*,n* of the wi,n 

maximum, the square on the in =  line indicates the size ico* of the ice crystal nucleus in the 

steam, the vertical and horizontal lines represent the i* and n* ridges of the wi,n surface, 

respectively, and the upper triangular part of the contour plot is obscure, because it is in the 

physically inaccessible i,n cluster size space. The wi,n scale is on the right of the panels. 
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 The cluster flow lines in Fig. 4a show clearly that when ** ni   so that the energy 

peak (the star) is inside the physically accessible triangular cluster-size space, in trying to 

circumvent the peak during their growth, the *ii  -sized subnucleus composites 

predominantly take the two available roundabout pathways toward the in =  diagonal of the 

ice crystals in steam and toward the 1=n  line of the water droplets. Once overcoming the 

vertical energy ridge in Fig. 4a and thus becoming supernuclei of size *ii  , all composites 

with an *nn  -sized crystal supernucleus in them (they are above the horizontal energy 

ridge in Fig. 4a) begin crystallizing, which is evidenced by the turning of the flow lines 

toward the in =  diagonal and their merging with the flow line on this diagonal. Thus, the 

2S-nucleated ice crystals contribute to the crystals formed by 1S nucleation on the in =  

diagonal. This mixed 1S-2S nucleation takes place even when the energy peak is practically 

on this diagonal (then ** ni  ) despite that then growth parallel to the i axis is the only 

pathway for the composites to avoid the peak: as revealed in Fig. 4b, then the 2S-nucleated 

ice crystals again contribute to the 1S-nucleated ones because of the merging of their flow 

lines with the flow line on the in =  diagonal. The situation is diametrically different, 

however, when ** ni   so that the energy peak is outside the cluster size space of 2S 

nucleation. In Fig. 4c we observe that instead of joining the in =  diagonal, now flow lines 

are leaving it, which means that many 1S-nucleated crystals become composites. Thus, rather 

than a contribution of 2S-nucleated crystals to the 1S-nucleated ones, there is now a loss of 

the latter. This effect is of general character and can manifest itself at high enough 

supersaturations when the droplet crystallization is slower than the crystal transition to 

composites and/or the growth of the composites and the droplets. Even at such 

supersaturations, however, cessation or at least a sufficient retardation of the latter two 

processes would ultimately lead to the droplet crystallization. As shown elsewhere [50], all 

droplets nucleate crystals in the O-phase also in the limiting case of infinitely fast growth of 

the supernucleus crystals inside them. We note as well that, as seen in Fig. S8 of SM, the 

subnucleus composites grow very chaotically before becoming sufficiently large. 

 

4.4. Nonstationary nucleation rates 
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 Knowing the three fluxes Ii,n, Gi,n and Ki,i, we can determine various nucleation rates 

that characterize 2S and 1S nucleations [38]. In Fig. 5 we present only five of them: the rates 

Jc and Jc,1S of 2S and 1S nucleations of *coii  -sized ice crystals in the steam, the rate Jc,d of 

nucleation of *nn  -sized ice crystals in the droplets, the rate Jd of nucleation of *ii  -

sized droplets during 2S crystal nucleation in the steam (called hereafter the rate of 2S 

droplet nucleation), and the rate Jd,1S of 1S droplet nucleation. Other three nucleation rates (of 

composites, of droplets plus composites, and of droplets plus composites plus crystals) are 

presented in Fig. S1 of SM. The rate Jc,1S is obtained from the solution of Eq. (6) at 1=Q  

and ai,n, bi,n, ci,n, and di,n set equal to zero, and corresponds to the CNT 1S process of droplet-

unaffected crystal nucleation in the one-dimensional cluster-size space of the in =  diagonal 

in Fig. 1b. Similarly, the rate Jd,1S is obtained from the solution of Eq. (6) at annulled Q, ci,n, 

di,n, ei,n, and hi,n. This is the rate of the CNT 1S process of crystal-unaffected droplet 

nucleation in the one-dimensional cluster-size space of the i axis in Fig. 1b (then no ice 

crystals nucleate in either the steam or the droplets). The rates displayed in Fig. 5 are 

calculated from the equations [38] 
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and from Eqs. (S35) and (S36) of SM. 
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Fig. 5. Time dependence of the nucleation rates J and the number densities N of supernuclei 

from Eqs. (12)–(14) and from Eqs. (S35), (S36), (S41) and (S42) of SM at 5.2=cos  (left 

column of panels), 3=cos  (middle column of panels), and 5=cos  (right column of panels). 

The dotted lines in the J(t) panels represent the respective stationary nucleation rates, the thin 

dashed lines in the N(t) panels are the long-time N(t) asymptotes, and the arrows in these 

panels indicate the respective delay times of nucleation. 

 

 

 

 We first consider the nonstationary 2S and 1S crystal nucleation rates Jc and Jc,1S 

displayed by the solid lines in Figs. 5a–5c. As expected, the rate Jc,1S has the sigmoidal shape 

known from CNT [4]. As to Jc, as seen, it is a complicated function of time, which passes 
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through a maximum before acquiring its stationary value. This value exceeds that of Jc,1S at 

5.2=cos  and 3 (Figs. 5a and 5b), but at 5=cos  (Fig. 5c) its smallness, 151035.3   m−3 s−1, 

makes it indistinguishable from the zero on the Jc axis. Thus, while at the lower 

supersaturations the stationary 2S nucleation of crystals occurs at a rate which is higher than 

that of 1S crystal nucleation, the opposite is true at higher supersaturations. Looking back at 

Fig. 4 which refers to stationary 2S nucleation, we see that, indeed, whereas at 5.2=cos  and 

3 the ice crystals nucleated in the droplets add to the 1S-nucleated ice crystals in the steam, at 

5=cos , for the already noted kinetic reason of both the crystal-to-composite transition and 

the composite and droplet growth faster than their crystallization, many initially 1S-nucleated 

crystals are lost after becoming composites so that, overall, less ice crystals are nucleated in 

the steam. 

 The nonstationary rate Jc,d of ice crystal nucleation in the droplets (the solid lines in 

Figs. 5g–5i) is also of interest. We observe that the maximum of the )(, tJ dc  dependence at 

small sco disappears when sco is large. The reason is that while at 5.2=cos  some of the 

initially rapidly appearing *ii  -sized subnucleus droplets are of size *ni   and are thus 

able to give birth to *nn  -sized crystal supernuclei in them (the process manifested by the 

Jc,d maximum in Fig. 5g), at 3=cos  and 5 this is impossible, because all these droplets have 

size *ni  , i.e. they are smaller than the crystal supernuclei that are to appear in them. 

Indeed, whereas 78*=i , 40 and 7 at 5.2=cos , 3 and 5, respectively, 42*=n  for all 

supersaturations. 

 Finally, we turn to the Jd and Jd,1S time dependences graphed, respectively, by the 

solid and dashed lines in Figs. 5m–5o. We see that apart from its initial negligible maximum, 

Jd has the Jd,1S sigmoidal shape predicted by CNT [4]. Seen also in these figures is that Jd 

differs slightly from Jd,1S only at the long enough times when nucleation is already stationary. 

This insignificant difference is an important finding, because within the caveats of our model 

for cluster formation work and attachment/detachment frequencies, Eq. (5) and Eqs. (S10)–

(S12) of SM, it indicates that the homogeneous nucleation of water droplets in steam in the 

temperature range 230220−T  K considered here is practically unaffected by the 

nucleation of ice crystals in the droplets and the steam. 
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4.5. Stationary nucleation rates 

 

 As known [4], the stationary nucleation rate s
J  is the →t  value of the respective 

time-dependent nucleation rate J (see the dotted lines in Fig. 5) and depends on the 

supersaturation sco. In accordance with this definition, from our numerical J(t) data for the 

longest computation time at each sco value, we obtained the stationary nucleation rates s

cJ , 

s

ScJ 1,
, s

dcJ ,
, s

dJ , and s

SdJ 1,
 which are illustrated in Fig. 6 as functions of sco. Other three 

)( co

s
sJ  dependences (for composites, for droplets plus composites, and for droplets plus 

composites plus crystals) are presented in Fig. S2 of SM. Numerically, the data for all 

stationary nucleation rates are given in Table S1 of SM. 
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Fig. 6. Supersaturation dependence of stationary nucleation rate: (a) s

cJ  (open squares) and 

s

ScJ 1,
 (solid squares), calculated from Eq. (12) and from Eq. (S35) of SM, are the stationary 

rates of 2S and 1S crystal nucleations; (b) s

dcJ ,
 (open diamonds), calculated from Eq. (13), is 

the stationary nucleation rate of crystals in droplets, s

dcJ ,,
 (dotted line) and s

disdcJ ,,
 (solid 

diamonds), calculated from Eqs. (S37) and (S38) of SM, are the CNT stationary nucleation 

rates of crystals in infinitely large droplet and in dispersion of droplets; (c) s

dJ  (open circles) 

and s

SdJ 1,
 (solid circles), calculated from Eqs. (14) and Eq. (S36) of SM, are the stationary 

rates of 2S and 1S droplet nucleations. The solid and dashed lines are drawn to guide the eye. 

 

 

 Looking first at the stationary rates s

cJ  and s

ScJ 1,  of 2S and 1S ice crystal nucleations 

in the steam, the open and the solid squares in Fig. 6a, we observe that whereas 
s

cJ  is up to 

nearly four-fold higher than s

ScJ 1,  for 3cos  (see the inset in the figure), for 3cos  it is 

dramatically, up to 13 orders of magnitude, below s

ScJ 1, . Besides, the increase of sco from 4.5 

to 5.5 brings about a decrease of 
s

cJ , and only for 5.5cos  does 
s

cJ  begin again to increase 

with sco. This is paradoxical from the viewpoint of CNT which, as evidenced by our 

numerical data for s

ScJ 1,  (the solid squares), predicts a monotonic rise of the 1S crystal 

nucleation rate with sco in the whole range from 2 to 6. As illustrated in Fig. S3 of SM, the 

reason for this behavior of 
s

cJ  is in the subtle interplay between the three kinds of cluster 

fluxes that contribute to the 2S crystal nucleation rate from Eq. (12). Jointly, the stationary 

flux s

ii

s

coco
KK **,  of crystals on the in =  diagonal in the cluster size space and the collective 

stationary flux  −

+= −
1

1* 1,
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GG  of crystallizing composites supply the diagonal with 
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crystals that transit into composites by attaching O-phase monomers removes such 

supernuclei from the diagonal (see Fig. 6a in Ref. [38]). When 3cos  (wi,n peak practically 
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inside the triangular cluster size space of 2S nucleation, Figs. 4a and 4b), the positive s
G  

flux prevails over the positive s
I  flux so that the overall ss

IG −  flux is positive and adds to 

the always positive s
K  flux which is a monotonically increasing function of sco. As a result, 

s

Sc

s

c JJ 1,  for 3cos  (Fig. 6a). When 3cos , however, the wi,n peak is outside the 2S 

nucleation cluster-size triangle (Fig. 4c), the overall ss
IG −  flux becomes increasingly more 

negative because of dominance of s
I  over 

s
G , it subtracts from the s

K  flux, and this makes 

s

cJ  drop below s

ScJ 1,
 and pass through a maximum at 5.4=cos . Nonetheless, for 5.5cos , 

though smaller than s

ScJ 1,
, s

cJ  is again an increasing function of the supersaturation, because 

then the increase of the positive s
K  flux outpaces the increase in the absolute value of the 

negative 
ss

IG −  flux (Fig. S3 of SM). We note and emphasize that, especially for 5.3cos , 

this behavior of s

cJ  is influenced by the finite-size effect intrinsic to our results because of 

our use of 240=M  as the maximal cluster size in the numerical solution of Eq. (6) (this 

effect is considered in SM, see Figs. S4a and S4b therein). Yet, although the )( co

s

c sJ  

dependence in Fig. 6a is specific for the attachment/detachment frequencies and the values of 

the physical parameters used by us in solving Eq. (6), the general conclusion is that s

Sc

s

c JJ 1,  

for supersaturations at which the overall stationary 
ss

IG −  flux is negative. In our case this 

is so for 5.3cos , i.e. in the sco range in which, according to the ** ni   criterion [38], the 

2S nucleation of ice crystals prevails over their 1S nucleation (see Fig. 4c). This finding is 

important, because it demonstrates that occurrence of 2S nucleation does not necessarily 

imply that 
s

cJ  is greater than s

ScJ 1, . 

 The second to consider is the stationary nucleation rate s

dcJ ,  of ice crystals in the 

water droplets. It is seen in Fig. 6b that, like s

ScJ 1, , this rate (the open diamonds) is a 

monotonically increasing function of the supersaturation. For comparison, as illustrated by 

the solid diamonds in this figure, the stationary rate s

disdcJ ,,  of crystal nucleation in dispersed 

s

iZ 1,  droplets of sufficiently large supernucleus size i also increases monotonically for all 

supersaturations. The rate s

disdcJ ,,  is given by Eq. (S38) of SM, and the inset in Fig. 6b shows 
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that this equation describes the numerically obtained )(, co

s

dc sJ  dependence (the open 

diamonds) with an error of less than one order of magnitude for sco between 2.2 and 5. The 

dotted line in Fig. 6b represents the sco-independent value of the stationary rate s

dcJ ,,
 of 

homogeneous nucleation of crystals in the bulk M-phase (in our case, a macroscopically 

large droplet). This value is calculated from Eq. (S37) of SM. 

 Last, we consider the stationary rates s

dJ  and s

SdJ 1,
 of 2S and 1S droplet nucleations 

(whereas in the former process the droplets are involved in 2S crystal nucleation, in the latter 

process they are not). In Fig. 6c and its inset we see that s

dJ  (the open circles) is practically 

equal to s

SdJ 1,
 (the solid circles) for all supersaturations, especially for 5cos . Thus, in the 

scope of our model for nucleation work and attachment/detachment frequencies, the effect of 

2S nucleation of ice crystals on the homogeneous nucleation of water droplets in steam at 

230220−T  K is insignificant. As already noted, this is an important indication that the 

failure of CNT to describe experimental data for the nucleation rate of these droplets in this 

temperature range [40–43,47] is hardly attributable to undetected formation of ice crystals in 

the droplets and/or the steam. Both these experimental data and our 
s

dJ  data from Fig. 6c are 

shown in Fig. S5 of SM, and the issue is further discussed in Section S8 of SM. 

 Finally, we note that, to check our results for s

ScJ 1,  and s

SdJ 1,  obtained from the 

numerical solution of Eq. (6), we calculated these rates with the help of the exact Becker-

Döring formula [4,39] for stationary 1S nucleation. We found that, as it should be, the s

ScJ 1,  

and s

SdJ 1,  values from Eqs. (S35) and (S36) of SM were equal to those from the solution of 

Eq. (6) for all sco. 

 

4.6. Number density of supernuclei 

 

 When the O-phase initially contains no clusters of supernucleus size, the 

experimentally accessible number density N (m-3) of any kind of supernuclei at time t is 

obtainable by integration of the respective nucleation rate J, i.e.  =
t

tdtJtN
0

)()(  [4]. Hence, 

using the nucleation rates from Eqs. (12)–(14) and from Eqs. (S35) and (S36) of SM, we can 
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determine the number densities Nc and Nc,1S of 2S- and 1S-nucleated crystal supernuclei of 

size *coii   in the O-phase, the number density Nc,d of *nn  -sized crystal supernuclei in 

the composites of size 1*+ ni , and the number densities Nd and Nd,1S of *ii  -sized 

supernucleus droplets (which in our case are the M-phase supernuclei) formed, respectively, 

in the course of 2S crystal nucleation and in the 1S process of droplet nucleation described by 

CNT. These N(t) dependences are depicted in Fig. 5 for supersaturations 5.2=cos , 3 and 5 

(left, middle and right column of panels, respectively). In accordance with Eqs. (S41) and 

(S42) of SM, they are obtained by numerical integration of the J(t) functions in the same 

figure. Other three N(t) dependences (for composites, for droplets plus composites, and for 

droplets plus composites plus crystals) are presented in Fig. S1 of SM. 

 In Fig. 5 we see that for all supersaturations, after a certain delay, all N(t) 

dependences (the solid and the thick dashed lines) become linear (the thin dashed lines) with 

slope equal to the stationary nucleation rate represented by dotted line in the corresponding 

J(t) panel. This is so even for the number density Nc of 2S-nucleated ice crystals in steam at 

5=cos , which is seen in Fig. 5f to plateau after 6.0=t  s. In fact, however, then Nc is so 

slightly sloped that it only looks like having a plateau: the slope corresponds to stationary 

nucleation rate 
151035.3 =s

cJ  m−3 s−1 which, when presented in Fig. 5c, virtually coincides 

with the zero on the Jc axis. Thus, while a well-manifested asymptotic linearity of Nc(t) 

allows an easy determination of the stationary rate 
s

cJ  of 2S crystal nucleation when this rate 

is high enough, a plateau of Nc(t) may well conceal a too low rate 
s

cJ . In the same fashion, 

the number density Nc,d of crystals in droplets may have an apparent plateau with a low 

stationary rate s

dcJ ,  hidden by it. Indeed, in Fig. 5j we observe that at 5.2=cos  such Nc,d 

plateau would begin at around 10=t  s if the maximum of Jc,d in Fig. 5g were much higher. 

However, as this maximum is not high enough, Nc,d in Fig. 5j has only an initial plateau-like 

disturbance after which it rises linearly, thus making easy the determination of s

dcJ , . 

 

4.7. Delay time of nucleation 
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 In 1S nucleation, the experimentally accessible delay time  of the process is defined 

as the time intercept of the long-time linear portion of the N(t) dependence [4] (see the 

)(1, tN Sc  and )(1, tN Sd  lines in Fig. 5). Physically,  is a measure of the time needed for 

attaining stationary nucleation when the supersaturation is kept fixed. Mathematically, it is 

given by the expression (Eq. (15.99) of Ref. [4]) 


−=
0

]/)(1[ dtJtJ
s  which, upon recalling 

that  =
t

tdtJtN
0

)()( , can be represented in the form 

 
→





 −=

t

s
J

tN
t

)( .        (15) 

This equation says that  is the difference between any time t and the 
s

JN /  ratio at the same 

t provided t refers to a moment at which nucleation is already stationary (e.g., the final 

moments of the )(1, tN Sc  and )(1, tN Sd  lines in Fig. 5). 

 Using the same definition of nucleation delay time and the ensuing Eq. (15), again 

from the linear portions of the different N(t) dependences given by Eqs. (S41) and (S42) of 

SM (the thin dashed lines in Figs. 5d–5f, 5j–5l and 5p–5r), we can determine  in 2S 

nucleation. Now, however, this definition is of limited use, because in some cases Eq. (15) 

may lead to negative  values which are an indication for the presence of a sufficiently high 

initial peak in the respective nonstationary nucleation rate J(t). For example, in Fig. 5f we 

observe that at 5=cos  the long-time increase of Nc with t is so small that, if extrapolated to 

short times, the linear, almost horizontal portion of Nc would cross the t axis at a negative 

delay time c of 2S crystal nucleation (see also Fig. 5j in which, similarly, the )(, tN dc  

dependence has a negative delay time c,d). At 5.2=cos  and 3, however, the Jc peak is so low 

(Figs. 5a and 5b) that, as seen in Figs. 5d and 5e, c has positive values and is distinctly 

longer than the corresponding delay time c,1S of 1S crystal nucleation. Thus, when the initial 

peak of a nonstationary nucleation rate is absent or is not too high,  can again be positive 

(see also Figs. 5m–5r for the droplet nucleation rates and the droplet number densities). 

 The sco dependences of the various nucleation delay times obtained by means of Eq. 

(15) (with the end t value of computation considered as infinitely long time) are displayed in 

Fig. 7. The open and the solid squares in panel (a) represent, respectively, the delay times c 
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and c,1S in 2S and 1S nucleation of ice crystals in steam, and the diamonds in the same panel 

refer to the nucleation delay time c,d of ice crystals in droplets. Similarly, panel (b) exhibits 

the delay time d (open circles) of the nucleation of droplets involved in 2S crystal nucleation 

and the delay time d,1S (solid circles) of 1S droplet nucleation. Other three 

)( cos dependences (for composites, for droplets plus composites, and for droplets plus 

composites plus crystals) are presented in Fig. S6 of SM. Numerically, the data for all delay 

times are given in Table S2 of SM. The table includes the negative values of c for 5.2cos  

and 5.3cos  as well as of c,d for 3cos , which cannot be shown on the lg  scale in Fig. 

7a. As to the finite-size effect of M on the nucleation delay times, it turns out that in our case 

it is felt only by c and c,d, and Fig. S7 of SM illustrates this. 

 

     

 

Fig. 7. Supersaturation dependence of nucleation delay time. (a) Open and solid squares – 

delay times c and c,1S of 2S and 1S crystal nucleation, respectively; diamonds – delay time 

c,d of nucleation of crystals in droplets. (b) Open and solid circles – delay times d and d,1S 

of 2S and 1S droplet nucleation, respectively. All data are obtained by means of Eq. (15), the 

dashed lines graph c,1S and d,1S from Eqs. (S45) and (S46) of SM, the dotted line visualizes 

the c,d,∞ value from Eq. (S47) of SM, and the solid lines are drawn to guide the eye. 
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 In Fig. 7 we see that all delay times shorten with increasing supersaturation. For sco 

between 2.5 and 3.5, c is about two to three times greater than c,1S. On the other hand, in 

this sco range, c is up to twice smaller than c,d which, in its turn, is almost up to five-fold 

greater than c,1S at 5.3=cos . When the supersaturation is even higher, c,d remains about one 

order of magnitude greater than c,1S. Thus, c and c,d considerably greater than c,1S for 

3cos  is an indication for dominant 2S crystal nucleation in this sco range, because it merely 

reflects the fact that then the droplet nucleation (first step) antecedes the crystal nucleation in 

the droplets (second step). Regarding the delay times d and d,1S of 2S and 1S droplet 

nucleation (Fig. 7b), we note that they are practically equal in the entire supersaturation 

range. 

 It is of interest to verify whether an approximate, but general CNT expression for the 

delay time of 1S nucleation [51] is in concordance with the )(1, coSc s  and )(1, coSd s  data in 

Fig. 7. Owing to Eqs. (5.1), (13.36) and (15.105) of Ref. [4], this expression can be 

represented as */*4 sfm=  where s is the dimensionless supersaturation, and f* is the 

frequency of monomer attachment to nucleus of size m*. As shown in Section S10 of SM, 

this leads to Eqs. (S45) and (S46) for the dependences of c,1S and d,1S on sco which are 

illustrated in Fig. 7 by dashed lines (as indicated). We see that they describe fairly well the 

numerical data (solid squares and circles) over the whole sco range in which c,1S and d,1S 

change about three orders of magnitude. 

 Likewise, it is of interest to see how different the delay time c,d of crystal nucleation 

in the droplets is from the CNT sco-independent delay time c,d,∞ of nucleation of the crystals 

in bulk M-phase (macroscopically large droplet). In this case, the above general expression 

for  leads to Eq. (S47) of SM, which yields 84.0,, =dc  s. This c,d,∞ value is visualized 

by the dotted line in Fig. 7a. We observe that the sco-independent c,d,∞ provides only a 

tentative estimate of c,d which diminishes with sco from 9.1 to 0.34 s for sco from 3 to 6. 

 

5. Conclusion 
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 The composite-cluster model with cluster formation work wi,n from Eq. (5) and 

monomer attachment frequencies fi,n, gi,n and ki,i from Eqs. (S10)–(S12) of SM is perhaps the 

simplest possible model of 2S crystal nucleation. Notwithstanding the simplicity of this 

CNT-inspired model, the present study provides unprecedented mechanistic insight into the 

peculiarities of the kinetics of 2S crystal nucleation. Among the results obtained, several 

seem most important and deserve bringing to the fore. 

 Together with Eqs. (2) and (3), the master equation of 2S nucleation, Eq. (1), is a 

solid basis for analyzing the kinetics of this highly complicated process. With appropriate, 

sufficiently elaborate models for wi,n, fi,n, gi,n and ki,i, this equation can be used for 

determination of the crystal, composite, and droplet size distributions and nucleation rates in 

a wealth of cases of both academic and technological interest. 

 In the scope of the composite-cluster model with wi,n from Eq. (5) and fi,n, gi,n and ki,i 

from Eqs. (S10)–(S12) of SM, in homogeneous 2S ice crystal nucleation in steam below the 

water freezing temperature, the stationary cluster size distributions of the water droplets and 

the ice crystals in the steam resemble those in homogeneous 1S nucleation of the droplets 

and the crystals. Among the water composites with the size i* of the droplet nucleus those 

with n*-sized ice crystal nucleus in them are the least populated species. 

 Again in the scope of the same model, at both low ( 5.2cos ) and high ( 5.3cos ) 

supersaturations, the nonstationary 2S nucleation rate Jc of ice crystals in the steam has a 

high initial peak after which it plateaus at a stationary value 
s

cJ  which can be much smaller 

than the value s

ScJ 1,  of the stationary 1S nucleation rate of the crystals. At intermediate 

supersaturations, Jc is a distorted sigmoidal function of time, more or less different from the 

strictly sigmoidal nonstationary 1S crystal nucleation rate. High initial peak also 

characterizes the nonstationary rate Jc,d of ice crystals in the water droplets, but only when 

3cos ; this rate is virtually perfectly sigmoidal at higher supersaturations. The nonstationary 

nucleation rate Jd of the water droplets is practically indistinguishable from the CNT-

predicted, sigmoidally-shaped nonstationary rate Jd,1S of 1S droplet nucleation. 

 Perhaps surprisingly, our study demonstrates that the stationary 2S crystal nucleation 

rate 
s

cJ  is not necessarily higher than the corresponding stationary rate s

ScJ 1,  of 1S crystal 

nucleation. In our case, s

Sc

s

c JJ 1,  when the supersaturation is so high ( 3cos ) that the 2S 
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nucleation of the ice crystals prevails over their 1S nucleation, because then ** ni  . The 

stationary nucleation rate s

dJ  of the water droplets is practically unaffected by the 2S 

nucleation of the ice crystals, which is an indication that the well-known failure of CNT to 

describe experimental data for water droplet nucleation in steam below the water freezing 

temperature is quite likely not caused by undetected nucleation of ice crystals in the droplets 

and the steam. 

 Whereas the delay time c of 2S crystal nucleation is negative for 5.2cos  and 

5.3cos , the delay time c,d of crystal nucleation in the droplets is negative only for 3cos . 

The reason is the presence of a sufficiently high initial peak in the Jc time dependence for 

these low and high supersaturations and in the Jc,d time dependence for these low 

supersaturations. When Jc and Jc,d are nearly sigmoidally shaped functions of time and, 

accordingly, c and c,d are positive, both cln  and dc,ln  diminish almost linearly with sco. 
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Figure captions 

 

(single-column fitting) 

Fig. 1 (color online only). (a) Schematic of composite cluster of i monomers with n-sized 

M-phase cluster in it (top), of crystal cluster of i monomers (bottom left) in O-phase, and of 

M-phase cluster of i monomers (bottom right) (the arrows illustrate the frequencies fi,n, gi,n, 

fi,i, ki,i and fi,1 of monomer attachment to the respective clusters). (b) The triangular i,n 

cluster-size space with the Ii,n, Gi,n, and Ki,i fluxes (shown by arrows) that control the 

nucleation and growth of M-phase and composite clusters, of crystals in the M-phase, and of 

crystals in the O-phase, respectively. The Ii,i arrow visualizes the flux of i,i-sized crystals in 

the O-phase that transit to ii ,1+ -sized composites, and the circles represent points i,n and i,i 

in the size space. 

 

(single-column fitting) 

Fig. 2 (color online only). Contour plot (the borderlines between the ellipsoidal strips) of the 

cluster formation work wi,n from Eq. (5) with superimposed front of the cluster concentration 

Zi,n from Eq. (8) at successive times (indicated in s) of 2S nucleation when (a) 5.2=cos  

(then ** ni  ), (b) 3=cos  (then ** ni  ), and (c) 5=cos  (then ** ni  ). The concentration 

of i,n-sized clusters on a front line at any time t is 1)(, =tZ ni  km−3 in panel (a), 1 m−3 in panel 

(b) and 1 mm−3 in panel (c). In each panel, the star visualizes the position i*,n* of the wi,n 

maximum, the square on the in =  line indicates the size ico* of the ice crystal nucleus in the 

steam, and the vertical and horizontal lines represent the i* and n* ridges of the wi,n surface, 

respectively. The wi,n scale is on the right of the panels. 

 

(two-column fitting) 

Fig. 3 (color online only). Cluster size distributions from Eq. (8) at 5.2=cos  (left column of 

panels), 3=cos  (middle column of panels), and 5=cos  (right column of panels). Zi,i, Zi,1, 

Zi,n*, and Zi*,n refer, respectively, to ice crystals in steam, water droplets, water composites 

containing the n*-sized ice crystal nucleus, and ice crystals within those composites that are 

with the size i* of the droplet nucleus. The numbers at the lines indicate the time (in s) 

elapsed from the onset of the 2S nucleation process. The dashed lines represent the 

corresponding equilibrium cluster size distributions Ci,i, Ci,1, Ci,n*, and Ci*,n from Eq. (4). 

 

(single-column fitting) 

Fig. 4 (color online only). Cluster flow lines dictated by the fluxes from Eqs. (9)–(11) in 

stationary 2S nucleation when: (a) 5.2=cos , (b) 3=cos , and (c) 5=cos  (then ** ni  , 

** ni  , and ** ni  , respectively). The arrow heads indicate the flow direction, and the 

background is the wi,n contour plot from Fig. 2. In each panel, the star visualizes the position 

i*,n* of the wi,n maximum, the square on the in =  line indicates the size ico* of the ice 

crystal nucleus in the steam, the vertical and horizontal lines represent the i* and n* ridges of 

the wi,n surface, respectively, and the upper triangular part of the contour plot is obscure, 

because it is in the physically inaccessible i,n cluster size space. The wi,n scale is on the right 

of the panels. 
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(two-column fitting) 

Fig. 5 (color online only). Time dependence of the nucleation rates J and the number 

densities N of supernuclei from Eqs. (12)–(14) and from Eqs. (S35), (S36), (S41) and (S42) 

of SM at 5.2=cos  (left column of panels), 3=cos  (middle column of panels), and 5=cos  

(right column of panels). The dotted lines in the J(t) panels represent the respective stationary 

nucleation rates, the thin dashed lines in the N(t) panels are the long-time N(t) asymptotes, 

and the arrows in these panels indicate the respective delay times of nucleation. 

 

(single-column fitting) 

Fig. 6 (color online only). Supersaturation dependence of stationary nucleation rate: (a) s

cJ  

(open squares) and s

ScJ 1,
 (solid squares), calculated from Eq. (12) and from Eq. (S35) of SM, 

are the stationary rates of 2S and 1S crystal nucleations; (b) s

dcJ ,
 (open diamonds), calculated 

from Eq. (13), is the stationary nucleation rate of crystals in droplets, s

dcJ ,,
 (dotted line) and 

s

disdcJ ,,
 (solid diamonds), calculated from Eqs. (S37) and (S38) of SM, are the CNT stationary 

nucleation rates of crystals in infinitely large droplet and in dispersion of droplets; (c) s

dJ  

(open circles) and s

SdJ 1,
 (solid circles), calculated from Eqs. (14) and Eq. (S36) of SM, are 

the stationary rates of 2S and 1S droplet nucleations. The solid and dashed lines are drawn to 

guide the eye. 

 

(single-column fitting) 

Fig. 7 (color online only). Supersaturation dependence of nucleation delay time. (a) Open 

and solid squares – delay times c and c,1S of 2S and 1S crystal nucleation, respectively; 

diamonds – delay time c,d of nucleation of crystals in droplets. (b) Open and solid circles – 

delay times d and d,1S of 2S and 1S droplet nucleation, respectively. All data are obtained 

by means of Eq. (15), the dashed lines graph c,1S and d,1S from Eqs. (S45) and (S46) of SM, 

the dotted line visualizes the c,d,∞ value from Eq. (S47) of SM, and the solid lines are drawn 

to guide the eye. 

 


