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Magnetic field behaviour in s+ is and s+ id superconductors: twisting of applied and
spontaneous fields.

Martin Speight,1 Thomas Winyard,1 Alex Wormald,1 and Egor Babaev2

1School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
2Department of Physics, KTH-Royal Institute of Technology, Stockholm, SE-10691 Sweden

We consider magnetic field screening and spontaneous magnetic fields in s+ is and s+ id super-
conductors both analytically and numerically. We show that in general, the linearized model couples
the moduli of order parameters to the magnetic modes. This causes magnetic field screening that
does not follow the standard exponential law and hence cannot be characterized by a single length
scale: the London penetration length.

We also demonstrate that the resulting linear mixed modes, correctly predict spontaneous fields
and their orientation. We show that these mixed modes cause external fields to decay non-
monotonically in the bulk. This is observed as the magnetic field twisting direction, up to an
angle of π/2, as it decays in the nonlinear model.

Finally, we demonstrate that there are two non-degenerate domain wall solutions for any given
parameter set. These are distinguished by either clockwise or anti-clockwise interpolation of the
inter-component phase difference, each producing a different solution for the other fields. However,
only domain wall solutions in s+ id systems exhibit magnetic field twisting.

PACS numbers:

I. INTRODUCTION

Recent experiments have reported the discovery of an
s+ is superconducting state in Ba1−xKxFe2As2

1–3. Such
spin-singlet pairing states, that spontaneously break time
reversal symmetry, have long been predicted4–10, along
with the related s+ id states11–13, to form in multi-band
superconductors. In an effective model, these are de-
scribed by at least two complex fields or order parame-
ters.
Such states can host multiple interesting phe-

nomena, such as massless modes5,14, mixed collec-
tive modes5,15–22, new flux flow phenomena23, sta-
ble and metastable Skyrmions24–26, new thermoelectric
effects27,28 and new fluctuation-induced phases3,29–31.
Both s + is and s + id systems are characterized not

only by spontaneous breakdown of time reversal symme-
try (BTRS) but also by the appearance of non-collinear
gradients of the inter-component phase difference and rel-
ative densities around impurities1,32–34.
The nature of spontaneous magnetic fields near im-

purities in these systems is different from that in chiral
systems, such as in p + ip superconductors35–37. Spon-
taneous magnetic fields in s + is superconductors are
more subtle, and their existence has been a subject
of recent debate38,39. It has also recently been sug-
gested that spontaneous fields around impurities exist for
s+ id systems11,28,33,40, due to the non-collinear gradient
terms.
In contrast to the better studied p + ip systems, the

spontaneous fields generated in s + is superconductors
have only recently started to be explored19,27,28,40–42. In
particular in34 a comparative study was presented of the
magnetic fields generated by domain walls in both s+ is
and s+ id superconductors.
Note that, we will also use “spontaneous magnetic

field” to refer to fields generated in response to applied
external field H but in a direction perpendicular to H.
To demonstrate why anisotropic BTRS s-wave systems

have such different properties, consider an ordinary su-
perconductor, with a single order parameter ψ and no
crystal anisotropies. The system is well described by
the London model, exhibiting exponential decay of both
the magnetic field B and the matter field |ψ| (order pa-
rameter magnitude) away from a defect in the supercon-
ducting state. This exponential decay is governed by
the London penetration depth λ and coherence length ξ
respectively,43–45

B = B0e
−r/λ, |ψ|= u− |ψ0|e−r/ξ, (1)

restoring the fields to their ground state value (B, ψ) =
(0, u).
Introducing an additional order parameter to an ordi-

nary superconductor creates a two-component isotropic
system. This system also exhibits exponentially decay-
ing physical quantities. This decay is govern by a London
penetration depth λ and two coherence lengths ξα, one
for the magnitude of each component |ψα|, as well as an
additional Leggett mode for the phase difference between
the two complex order parameters.
Most superconducting materials are anisotropic.

Multiband s+ is and s+ id systems exhibit anisotropy in
each band, which can be calculated from the symmetries
of the associated Fermi surface. If there are non-trivial
inter-component gradient couplings in a time-reversal-
invariant system, then the London and Leggett modes in
general hybridize18. This leads to the magnetic field and
phase difference coupling, such that each of the quanti-
ties decays as two competing exponentials with different
length scales. This can lead to non-trivial vortex states
or Skyrmions26,46. However, if time reversal symmetry
is broken then all modes are generically coupled, includ-

ar
X

iv
:2

10
6.

00
47

5v
3 

 [
co

nd
-m

at
.s

up
r-

co
n]

  2
 N

ov
 2

02
1



2

ing the order parameter magnitudes. For example, in a
p + ip superconductor in an inhomogeneous state, solu-
tions for each physical field in general are described by all
of the anisotropic length scales37. This complexity moti-
vates the systematic investigation of magnetic properties
of s+ is and s+ id superconductors.
In this paper we will study an effective Ginzburg-

Landau (GL) model for s + is and s + id pairing sym-
metries. We will expand previous studies of anisotropy
effects, demonstrating that such systems can only be de-
scribed by anisotropic mixed modes. Using this we will
make two key experimentally verifiable predictions for
s+ is and s+ id systems:

• Magnetic field twisting - the mixed modes predict
that the magnetic field will twist direction when
decaying from a defect.

• Spontaneous magnetic field - fluctuations in the
matter fields, due to coupled linear modes, must
excite fluctuations in the magnetic field.

Hence, excitations that are commonly associated with
purely the matter fields, such as domain walls and de-
fects, in s+is and s+idmodels will exhibit a spontaneous
magnetic response. This confirms previous numerical cal-
culations that have been performed for domain walls34.
It has been suggested that defects do not produce spon-
taneous magnetic field in such models38. However, the
work in this paper supports the authors previous com-
ment on this suggestion39.

We will perform numerical simulations of both the
Meissner state and domain walls, comparing the results
with the predictions of the linear modes. In particular,
we will demonstrate magnetic field twisting and sponta-
neous fields for both.

II. ANISOTROPIC 2-COMPONENT MODEL

We consider a multiband dimensionless anisotropic
Ginzburg-Landau (GL) free energy,

F =

∫

R3

(

1

2
Qαβ

ij (Diψα)
∗Djψβ +

(∇×A)
2

2
+ FP

)

,

(2)

where we have used Greek indices to denote components
of the order parameter ψα and Latin indices for spa-
tial directions. Repeated indices will denote summation
throughout. Such models can be microscopically derived
(e.g. in47). We are interested in 2-component models,
thus the order parameter for the condensate is repre-
sented as two complex fields,

ψα = ραe
iθα (3)

where α ∈ {1, 2}. As GL theory is a U(1) gauge theory,
we include a gauge field Ai and corresponding covariant

derivative Di = ∂i − iAi. The gauge invariant magnetic
field is then Bk = εijk∂iAj . We find the GL field equa-
tions by taking the variation of Eq. 2 with respect to the
fields ψα and Ai,

Qαβ
ij DiDjψβ = 2

∂Fp

∂ψα

(4)

−∂j(∂jAi − ∂iAj) = Im(Qαβ
ij ψαDjψβ), (5)

where Eq. 5 is the anisotropic version of Ampère’s Law
and thus we define the right hand side of this equation
to be the supercurrent Ji.
The gradient term in Eq. 2 is positive definite, hence

the ground state solutions are the constant configurations
that globally minimise Fp. As the potential term must
be gauge invariant, it can only depend on the condensate
magnitudes ρα and the phase difference θ12 := θ1 − θ2.
The phase difference terms will determine the symmetry
of the target space, where BTRS ground states exhibit
spontaneous symmetry breaking to a U(1)× Z2 symme-
try. We choose the simplest BTRS term,

Fp = V (ρ1, ρ2) +
η

8
ρ21ρ

2
2 cos 2θ12, (6)

where η > 0. This choice for the potential leads to a
degenerate ground state, corresponding to two gauge in-
equivalent solutions θ12 = ±π/2. The remaining poten-
tial terms are assumed to be of the traditional form,

V (ρ1, ρ2) = ααρ
2
α +

βα
2
ρ4α + γρ21ρ

2
2, (7)

where αα < 0, βα > 0 and η/8 − γ < βα so that the
non-zero minimum value of ρα = uα > 0 and both con-
densates are superconducting. A direct consequence of
the Z2 degeneracy in the ground state is the existence of
domain wall solutions. These 1-dimensional defects occur
when the phase difference interpolates between the two
disconnected ground state values, θ12 = ±π/2, forming a
2-dimensional wall in the order parameter.
The difference between this system and a standard

multi-component GL model is the anisotropy matrices
Qαβ . To ensure that the energy is real they must satisfy

Qαβ
ij = (Qβα

ji ).
Note that for an s + is or s + id system, the form of

these matrices can be derived from a microscopic model,
by starting with a clean 3 band model, relevant for iron
based compounds. It has been shown that under certain
conditions a three-band model is described by the above
two component GL model47. The form of the anisotropy
matrices is derived from the symmetries of the Fermi sur-
face (see e.g.33,48) and is given in table I.
The s + is matrices exhibit a continuous SO(2) sym-

metry about the z-axis. They also exhibit an additional
C2 2-fold symmetry about the x, y axes giving a symme-
try of C2 ×C2 ×SO(2). In contrast the s+ id model has
only a 2-fold symmetry in the basal (x, y) plane, leaving
the system with just a C2 × C2 × C2 symmetry.
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s+is s+id

Q11 =





a1 0 0
0 a1 0
0 0 b1



 Q11 =





a1 0 0
0 a1 0
0 0 b1





Q22 =





a2 0 0
0 a2 0
0 0 b2



 Q22 =





a2 0 0
0 a2 0
0 0 b2





Q12 =





a3 0 0
0 a3 0
0 0 b3



 Q12 =





a3 0 0
0 −a3 0
0 0 b3





TABLE I: General form of the anisotropy matrices for
s+ is and s+ id systems, derived from a microscopic

model of a clean 3 band iron based system.47

III. LINEARIZED MODEL

We now consider the spatial dependence of fields de-
caying far from some defect. Generally this is governed
by the nonlinear GL equations Eq. 5, which must be
solved numerically. However, fields are observed to decay
to their ground state values far from a given excitation.
Hence, we can approximate the long range behaviour of
excitations by assuming that the fluctuations of fields
about their ground state values is small, linearizing the
equations of motion.
The standard approach is to consider each field indi-

vidually, expanding the field about its ground state value
while keeping all others constant. In the standard GL
model, this leads to the famous London model for fluc-
tuations in the magnetic field B and a separate matter
equation for perturbations in the single condensate mag-
nitude |ψ|. Whether the superconductor is of type I or
type II can then be determined by which of these has
the longer length scale. However, the correct derivation
of this result should be to linearize all fields together,
showing that in the linear limit the magnetic and matter
equations of motion decouple.
These two approaches ultimately lead to the same re-

sult for a single component superconductor. However, for
a multicomponent anisotropic model it has been shown
that the magnetic and matter equations do not in general
decouple in the linear limit18,37. Hence, we cannot rely
on the London model to describe the magnetic response
of our system and must expand around all quantities si-
multaneously.
We will first write our energy functional in terms of

gauge invariant quantities. To achieve this we introduce

a new gauge invariant vector field,

pi := Ai − ∂iθΣ, θΣ :=
1

2
(θ1 + θ2), (8)

which is well defined wherever ρ1 and ρ2 are both
nonzero. Since the aim is to describe the system in re-
gions where the condensates are close to their (nonzero)
ground state values, this restriction is not problematic.
Note that the magnetic field Bk = εijk∂ipj . This gives us
the minimal set of gauge invariant quantities (ρα, θ∆, pi)
where

θ∆ :=
1

2
(θ1 − θ2). (9)

The condensates may be conveniently expressed

ψα = ραe
i(θΣ+dαθ∆), (10)

at the cost of defining the coefficients dα = (−1)α+1.

Localization of magnetic fields and characteristic
length scales, can typically be assessed by linearizing
the theory around the ground state. To that end, one
assumes that, far from any defect, the gauge invariant
quantities decay to one of the possible ground state val-
ues (ρα, θ∆, pi) → (uα, θ0, 0). Note that θ0 = 0 or π/2
in the phase (anti)locked case and θ0 = ±π/4 for s+ is,
s + id and p + ip materials, which break time reversal
symmetry. This is because we have defined θ∆ to be half
the phase difference θ12. Defining the quantities,

εα := ρα − uα, ϑ := θ∆ − θ0, (11)

the system is close to the chosen ground state precisely
when εα, ϑ and pi are small. As these are small, we
then assume that only linear terms contribute to the field
equations, which we may derive by expanding the free en-
ergy up to quadratic terms in (εα, ϑ, pi) and considering
its variation. It will be convenient to define the matrices,

Q
αβ
ij := Qαβ

ij exp i (dβ − dα) θ0, (12)

which enjoy the same symmetry as the anisotropy ma-

trices: Q
αβ
ij = Q

βα
ji . Note that Q11 = Q11, Q22 = Q22,

Q12 = e−2iθ0Q12 and Q21 = e2iθ0Q21, so passing from
Q to Q amounts to twisting the off-diagonal matrices by
the ground state value of the phase difference. With this
notation, the linearized free energy density is

Elin =
1

2
Q

αβ
ij (∂iεα + iuα(pi − dα∂iϑ))(∂jεβ − iuβ(pi − dβ∂iϑ))

+
1

4
(∂ipj − ∂jpi)(∂ipj − ∂jpi) +

1

2
Hαβεαεβ +Hα3εαϑ+

1

2
H33ϑ

2, (13)
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where Hab is the 3 × 3 Hessian matrix of second partial
derivatives of FP with respect to the variables (ρ1, ρ2, θ∆)
evaluated at the chosen ground state, (u1, u2, θ0). This
leads to the linear equations of motion,

−R
αβ
ij ∂i∂jεβ − I

αβ
ij uβ(∂ipj − dβ∂i∂jϑ)

+Hαβεβ +Hα3ϑ = 0 (14)

−R
αβ
ij uαuβdα(dβ∂i∂jϑ− ∂ipj)

+I
αβ
ij uβdβ∂i∂jεα +H3αεα +H33ϑ = 0 (15)

−∂2j pi + ∂i∂jpj − I
αβ
ij uα∂jεβ

+R
αβ
ij uαuβ(pj − dβ∂jϑ) = 0, (16)

where R and I denote the real and imaginary parts of
Q. From Eq. 16, or by direct calculation, we may de-
duce that the total supercurrent, to linear order in small
quantities, is

Ji = I
αβ
ij uα∂jεβ − R

αβ
ij uαuβ(pj − dβ∂jϑ). (17)

We note that the coupling of the equations depends crit-
ically on whether I is nonzero, and that this may hap-
pen even if the original Q matrices are purely real if
the ground state has complex phase difference (meaning
θ12 6= 0, π).
The linearized field equations are, in general,

anisotropic, so the length scales describing decay from
a localized defect to the ground state depend on the spa-
tial direction along which decay occurs. To analyze this,
we choose and fix a direction n in physical space and then
impose on Eq. 14, Eq. 15, Eq. 16 the ansatz that εα, ϑ
and pi are translation invariant orthogonal to n. In prac-
tice, the most convenient way to implement this ansatz
is to rotate to a new coordinate system (x1, x2, x3), such
that the x1 axis is aligned with our chosen direction n.
We then seek solutions which are independent of (x2, x3).

This amounts to choosing an SO(3) matrix R whose
columns are the chosen orthonormal basis, the first of
which is n and then transforming the Q matrices accord-
ing to the rule

Qαβ 7→ RTQαβR. (18)

Note that the phase-twisted anisotropy matrices Qαβ and
their real and imaginary parts Rαβ , Iαβ also transform in
the same way.
Having rotated our coordinate system and imposed the

ansatz that εα, ϑ and pi depend only on x1, the linearized
field equations Eq. 14, Eq. 15, Eq. 16 reduce to a coupled
linear system of ordinary differential equations for

~w(x1) = (ε1(x1), ε2(x1), ϑ(x1), p1(x1), p2(x1), p3(x1))
(19)

where we have written the gauge invariant vector field
pi in the new basis. The resulting coupled linear system
may be economically written,

Ad
2 ~w

dx21
+ B d~w

dx1
+ C ~w = 0, (20)

where A,B, C are the real 6× 6 matrices.

A =

(
a 0
0 a′

)

, (21)

a :=





−R11
11 −R12

11 I
1β
11uβdβ

−R21
11 −R22

11 I
2β
11uβdβ

I
1β
11uβdβ I

2β
11uβdβ −R

αβ
11 uαuβdαdβ



 , (22)

a′ := diag(0,−1,−1,−1), (23)

B =

(
0 b

−bT 0

)

, (24)

b :=





−I
1β
11uβ −I

1β
12uβ −I

1β
13uβ

−I
2β
11uβ −I

2β
12uβ −I

2β
13uβ

R
αβ
11 uαuβdα R

αβ
12 uαuβdα R

αβ
13 uαuβdα



 ,(25)

C =

(
H 0
0 〈R〉

)

(26)

〈R〉ij := uαR
αβ
ij uβ . (27)

Note that A and C are symmetric while B is skew,
and that all the matrices depend implicitly on the chosen
direction n through the transformation Eq. 18.
The linearised system of field equations Eq. 20 de-

scribes how a system recovers from a perturbation in the
n-direction, under the assumption of translation invari-
ance orthogonal to n (for example, how the system be-
haves near the boundary of a superconductor with nor-
mal n, subject to an external magnetic field). We seek
solutions of the form

~w(x1) = ~ve−µx1 (28)

where ~v is a constant vector and Reµ > 0, so that all
fields decay to their ground state values as x1 → ∞. We
interpret ~v as a normal mode of the system about the
chosen ground state, µ as the associated field mass, and
λ = 1/µ as the associated length scale. Given such a
solution, let ~z = −µ~v. Then (~v, ~z) satisfies the linear
system

Ω

(
~v
~z

)

=
1

µ

(
~v
~z

)

(29)

where Ω is the 12× 12 matrix

Ω :=

(
C−1B C−1A
−I6 0

)

. (30)

Hence, λ = 1/µ is an eigenvalue of Ω. Conversely, given
an eigenvector (~v, ~z) of Ω corresponding to a nonzero
eigenvalue 1/µ, ~z = −µ~z and Eq. 28 is a solution of
Eq. 20.
We conclude, therefore, that the length scales associ-

ated with decay to the ground state in the fixed direction
n are those eigenvalues of Ω(n) with positive real part.
Such eigenvalues are solutions of the degree 12 polyno-
mial equation

det
(
A− λB + λ2C

)
= 0. (31)
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It follows from the symmetry properties of A,B, C that
Eq. 31 is actually a real degree 6 polynomial equation in
λ2, so if λ is a solution, so are −λ, λ and −λ. Note that
0 is an eigenvalue of Ω of algebraic multiplicity 2 with
eigenvector (0, . . . , 0, 1, 0, 0). This should be discarded
as it does not correspond to a solution of Eq. 20. Of
the remaining 10 eigenvalues, precisely 5 have positive
real part: these are the 5 length scales we seek. Let us
order them by decreasing real part λ1, λ2, . . . , λ5. We
call ~v1, the mode corresponding to the longest length
scale λ1, the dominant mode since, generically, at large
x1, this will dominate the solution of Eq. 20. Depend-
ing on the details of the defect being studied, it may be,
however, that the dominant mode is unexcited, so sub-
leading modes ~v2, ~v3, . . . may still be phenomenologically
important.
It is important to note that we have not followed the

standard simplified approach to dimensional reduction;
we have retained all three components for pi. The stan-
dard approach, in contrast, assumes that any local mag-
netic field always occurs in a single direction, with a
single attributed length scale, requiring the retention of
only a single component for pi. This is only valid if the
magnetic modes are entirely decoupled from the matter
modes. If they are coupled, spontaneous magnetic field
can be excited in any coupled direction, due to excita-
tions in the matter fields. This can cause the excita-
tion of magnetic where one might not expect it, or a
change in the local field direction. As we see from the
linearized field equations, generically the anisotropy cou-
ples all fields together and we must retain all components
of pi, and hence the magnetic field. If we neglect any of
these components, our ansatz becomes incompatible with
the field equations.
In general, the masses µi = 1/λi associated with the

mixed modes ~vi are complex. This causes the fields at
large x1 to behave differently from the standard mono-
tonic Meissner effect. Instead, the fields will exhibit os-
cillatory behaviour as they decay, with a frequency de-
termined by the imaginary part of µi. For all parame-
ter sets studied in this paper, the imaginary part of µi

gave periods much larger than the length scales of the
modes. Hence, any oscillatory behaviour for s + is or
s+ id states should be heavily damped and unobservable
in experiment for the parameters we considered. How-
ever, note that oscillatory linear modes are observable in
p+ ip systems37.

A. Mixed modes

In an isotropic multi-component superconductor, the
normal modes vi are separated into matter modes: those
associated with the coherence length (linear combina-
tions of the modulus of the order parameters49,50) as
well as the phase difference (Leggett) mode; and mag-
netic modes: those associated with the magnetic pene-
tration depth. Our analysis reproduces these separate

real length scales (coherence length and magnetic pene-

tration depth) in the isotropic limit Qαβ
ij = δαβδij .

Away from the isotropic limit, and in particular for
the case of s+ is and s+ id superconductors, the normal
modes are associated with linear combinations of mag-
netic and matter degrees of freedom. Hence, we should
consider all excitations of our system in terms of these
mixed modes ~vi and their corresponding length scales λi,
as familiar quantities such as the London penetration
length do not exist. This leads to an important physi-
cal consequence; a general excitation decays with coupled
modes, inducing spontaneous magnetic fields.
By spontaneous magnetic fields, we mean emerging lo-

cal non-zero magnetic field, despite no matching applied
external field. Hence, if there is no applied field to the
material, a defect or domain wall will still exhibit local
magnetic field. Alternatively, if we apply an external
field, such as in the Meissner state, the linearisation still
predicts local magnetic field orthogonal to the applied
field direction (which is not excited by the applied field
itself).
In addition to domain walls and defects, if we apply

an external field H, such as for the Meissner state, the
spontaneous fields will cause magnetic field twisting. If
the magnetic component of a coupled mode is not paral-
lel to H, the induced magnetic field will twist the local
magnetic field away from the direction of H. Hence, in
general we would expect the local magnetic field induced
by the Meissner state to twist its direction as it decays
into the bulk of the superconductor.
It is useful to have a measure of how mixed a given

mode is. We can achieve this by considering a general
mode as a vector in a 5-dimensional space. Note that
while the modes are 6-dimensional, v4i is redundant (it
does not contribute to either the magnetic field or the
condensates) and will be excluded for this discussion. We
define the quantity θim as the mixing angle of the ith
mode,

cos θim =
√

|v1i |2+|v2i |2+|v3i |2
︸ ︷︷ ︸

matter modes

, sin θim =
√

|v5i |2+|v6i |2
︸ ︷︷ ︸

magnetic modes

.

(32)
Conceptually, the mixing angle is then the angle that
the 5-dimensional vector makes with the region in this
space representing pure matter modes. This allows us
to classify each mode as either purely matter (θim = 0),
purely magnetic (θim = π/2) or mixed (0 < θim < π/2).
The angle can be used as a numerical measure of the
strength of the mixing. When a mode exhibits a large
density component and small magnetic component, we
call such a model density-dominated or vice versa.

B. Long range dominant modes

To understand a given field at long range, we must
first consider the leading mode ~v1. If this mode is ex-
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cited by the excitation (c1 6= 0), then ~v1 is the dominant
eigenvector for that field and the long-range behaviour
is described by that mode. However, if the mode is not
excited, then we must consider the next mode ~v2 and so
on. Hence the dominant mode at long range will be the
first excited mode.

Previous work has assumed that B2 = B1 = 0, forcing
any spontaneous magnetic field to be in the x3-direction.
However in our case, we consider the more general situ-
ation, where the magnetic field is everywhere orthogonal
to x1 but is not assumed to lie in a fixed direction in
the (x2, x3) plane. Hence, for a given linear solution,
the magnetic field in our chosen orthonormal basis is
Blin(x1) = (0,−p′3, p′2), so the direction of spontaneous
magnetic field for a given mode can be approximated as,

Blin ‖ Re(0, v6i ,−v5i ). (33)

The dominant eigenvalue with magnetic component
will determine the direction of the magnetic field at long
range. If this does not match the magnetic field direc-
tion for the nonlinear part of the defect (for example the
spontaneous magnetic field for a domain wall, or the di-
rection of external field for a Meissner state), then the
magnetic field will exhibit twisting as the fields decay
spatially from x1 = 0 (nonlinear dominated) to x1 → ∞
(linear dominated). This will be most obvious for the
Meissner state, where the magnetic field direction can be
fixed to be any orthogonal direction on the boundary of
the system, allowing up to π/2 twisting to occur.

C. Summary and results

The solutions to the linear equations above, for the
parameters given in the appendix, are plotted in Fig. 1
for s+id and Fig. 2 for s+is. In both figures we generally
see significant mixing, dependent on the orientation of
n (the direction along which the fields vary). For both
s+is and s+id, we observe that when n corresponds to a
crystal axis (n = x̂, ŷ or ẑ), all mixing disappears. This
suggests that excitations with fields that vary solely in
the direction of a crystal axis, will exhibit no spontaneous
magnetic fields.

If we consider some specific values of n =
(cosω sinϕ, sinω cosϕ, sinϕ) for s+ id superconductors,
we can understand what the linearization predicts in de-
tail. For example, consider ϕ = 0, ω = π/4 leading to

the linear solution,

µ1 = 0.33, v1 = (0, 0, 0.91, 0.27, 0, 0)
T
,

µ2 = 0.39, v2 = (0, 0, 0, 0, 0, 1)
T
,

µ3 = 0.65± i0.084, v3 =










0.343∓ i0.12
−0.044∓ i0.144

0
0

−0.55∓ i0.485
0










,

µ4 = µ3, v4 = v3,

µ5 = 1.63, v5 = (0.0297, 0.509, 0, 0,−0.116, 0)
T
,

where we have used our freedom to set x3 = z. There are
three mixed modes here v3, v4 and v5, which all couple
magnetic field in the x3 = z direction with the mat-
ter fields. Hence, for a linearly dominated system we
would expect spontaneous magnetic field only in the z-
crystalline axis direction. The leading length scale is the
phase difference mode v1 followed by the purely mag-
netic mode v2. This means if the mode v2 is excited, the
magnetic field will twist in the x̂2 = (−1/

√
2, 1/

√
2, 0)

direction.
If we consider the linear solution on any great circle

that connects crystalline axes, e.g. n = (cosω, sinω, 0)
or x̂1 = (cosω, 0, sinω) for ω ∈ [0, 2π], the behaviour
of the linear modes is similar to that discussed above.
Hence, they will all exhibit mixing for a single magnetic
field direction. Note that, due to the SO(2) symmetry of
s+ is superconductors, all orientations can be described
by the second of these families and hence exhibit this
mixing behaviour.
If we consider a direction for s + id that is not on

one of these great circles e.g. ϕ = π/2 and ω = π/2,

or n = (1/2, 1/2, 1/
√
2), we observe mixing in multi-

ple magnetic field directions. The linear solution for
this orientation has modes corresponding to four differ-
ent spontaneous magnetic field directions, leading to a
complicated spontaneous magnetic field response, with
non-trivial magnetic field twisting. However, we can pre-
dict that at long range x1 → ∞, the leading mode µ1 will
dominate and the magnetic field will twist approximately
in the x̂2 = (−1/

√
2, 1/

√
2, 0) direction.

IV. MEISSNER STATE

We now consider the effect of applying an external
magnetic field to a superconducting material, requiring
us to solve the full nonlinear equations of motion in Eq.
5. In particular we model a superconductor/insulator
boundary as a semi-infinite superconductor Ω occupying
the half-space x1 ≥ 0, where x̂1 is the inward pointing
normal. An external magnetic field H = H0x̂3, orthogo-
nal to the boundary normal (x̂1 · x̂3 = 0) is applied. This
excites the superconducting fields, that decay orthogo-
nally from the boundary into the bulk of the system,
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FIG. 1: Plot of the linear mode mixing θm and masses
µ for an s+ id superconductor with parameters given in

the appendix. The direction of the field variation is
x̂1 = (cosω cosϕ, sinω cosϕ, sinϕ), with ϕ = 0 (basal

plane) for the left plot and ϕ = π/4 for the right plot. ω
determines the angle about the z-axis. The top panels
plot the masses (inverse length scales) µi =

1
λi

. Each µi

is a different colour, with the real part plotted as a solid
line and the imaginary part as a dashed line of the same
colour. The bottom panel plots the mixing angle θim of
each mode, where the colours of the modes match the
colours of the corresponding mass above (note θm = 0 is
a pure matter mode and θm = π/2 is a pure magnetic
mode). It can be seen that the linear modes for an
s+ id system decouple when the fields vary in the

direction of a crystalline axis but non-trivially couple
when they do not.

FIG. 2: Plot of the linear mode mixing θm and masses
µ for an s+ is superconductor with parameters given in

the appendix. The direction of the field variation is
x̂1 = (cosϕ, 0, sinϕ), where ϕ = 0 corresponds to the
basal plane. Note that an s+ is superconductor is

SO(2) symmetric about the z-axis. The top panel plots
the masses (inverse length scales) µi =

1
λi

. Each µi is a
different colour, with the real part plotted as a solid line
and the imaginary part as a dashed line of the same

colour. The bottom panel plots the mixing angle θim of
each mode, where the colours of the modes match the
colours of the corresponding mass above (note θm = 0 is
a pure matter mode and θm = π/2 is a pure magnetic

mode).It can be seen that the linear modes for an s+ is
system decouple when the fields vary in the basal plane
or the z-axis direction, but non-trivially couple when

they do not.

dimensionally reducing the problem to a 1-dimensional
variational problem on x1 ∈ [0,∞).
We first perform a transformation of coordinates from

the crystaline basis (x, y, z) to the excitation basis
(x1, x2, x3). Note, our new first coordinate is the inward
pointing normal and the direction of field variation x̂1;
and the third is the external field direction x̂3 = Ĥ. This
coordinate transformation is performed by transforming
the anisotropy matrices according to Eq. 18.
This allows us to dimensionally reduce the nonlinear

field equations to the half-line, by substituting the fol-
lowing ansatz into Eq. 5,

ψα = ψα(x1) (34)

A = A1(x1)x̂1 +A2(x1)x̂2 +A3(x1)x̂3,

As the fields are dependent on x1 only, the magnetic
field has two non-zero components B = (0, B2, B3) =
(0,−∂1A3, ∂1A2), both orthogonal to x1. Due to our
choice of orthonormal basis, B3 measures the strength
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of the local magnetic field in the direction of the applied
external field and B2 the strength orthogonal to this.
We emphasise that the familiar way of considering a

one-dimensional excitation, is to retain only one gauge
field component (A2), effectively fixing the magnetic field
direction in the applied field direction x̂3. It is clear that
this ansatz is not consistent with the field equations Eq. 5
for general choices of anisotropy Q. Hence, numerically
minimizing F with a single gauge field component will
not lead to solutions of the full three-dimensional equa-
tions of motion. While we can assume the fields have
translational symmetry (independent of x2 and x3), we
must retain all three gauge field components and hence
two orthogonal directions of magnetic field B2 and B3.
By retaining all three components of the gauge field,

we open up the possibility of magnetic field twisting. To
measure this, we will consider what we dub the twisting
angle,

cos θt =

(

B3/
√

B2
3 +B2

2

)

(35)

Once translational invariance is applied, we seek global
minimisers of the Gibbs free energy of the system,

G =

∫

Ω

F −Hi

∫

Ω

Bi +

∫

∂Ω

Fsurf (36)

subject to natural boundary conditions (detailed in the
appendix), where F is the free energy density. Since we
are interested in the bulk behaviour in this paper, we
neglect surface contributions51 and set Fsurf = 0. The
external field Hi has no effect on the bulk equations of
motion in 5 and leads to purely boundary effects. The
sample is assumed to be infinite in size, with the right
hand numerical boundary deep in the bulk, which can be
fixed without loss of generality to the ground state,

ψ1 = u1, ψ2 = u2e
iπ

2 , Ai = 0 . (37)

We numerically evolved the system in Eq. 36, using
a gradient decent method, where we have discretized the
model on a regular one-dimensional grid of N lattice sites
with spacing h > 0. The plots in this section were simu-
lated with values N = 1001 and h = 0.05. We approxi-
mated the 1st and 2nd order spatial derivatives using cen-
tral 4th order finite difference operators, yielding a dis-
crete approximation Edis to the functional G(φ), where
φ = (ψα, Ai) are the collected fields. Mathematically,
this is a function Edis : C → R, where the discretised
configuration space is C = (C2 × R3)N ≃ R7N . Hence,
we represent the field configuration by a vector φ ∈ R7N .
To find a local minimum of Edis w.r.t. the collected fields
φ, we use an arrested Newton flow algorithm. That is,
we solve for the motion of a notional “particle” in C, with
trajectory φ(t), moving according to Newton’s law in the
potential Edis,

φ̈i = −∂Edis(φ)

∂φi
, (38)

starting from rest (φ̇(0) = 0) at an initial configuration
φ(0) ∈ C. The time evolution is approximated using a
simple Euler method. That is, we evolve the configura-
tion from time t to time t+ δt by the rule

φi(t+ δt) = φi(t) + δt φ̇i(t), (39)

φ̇i(t+ δt) = φ̇i(t)− δt
∂Edis

∂φi

∣
∣
∣
φ(t)

, (40)

where δt > 0 is a fixed small parameter (typically δt =
0.1h). Evolving this algorithm initially causes the con-
figuration φ(t) to roll downhill, that is, to relax towards
a local minimum, where

∂Edis

∂φi
= 0. (41)

If the algorithm is left to run without any damping, φ(t)
will overshoot the minimum and oscillate indefinitely, so
we implement an arresting criterion: as soon as

dEdis(φ)

dt
=

7N∑

i=1

∂Edis(φ)

∂φi
φ̇i > 0 (42)

we set φ̇(t) = 0 and restart the flow (from φ(t)). This con-
dition can be thought of as the force or acceleration being
in the opposite half-plane to the velocity. Another com-
monly used arresting condition is that energy increases
on the current time step:

Edis(φ(t+ δt)) > Edis(φ(t)).

Of course, this condition is equivalent to ours in the con-
tinuous time limit (δt→ 0), and is, perhaps conceptually
simpler, but has the (significant) disadvantage that it re-
quires the computation of Edis at each time step. In
summary, our time stepping algorithm is

φi(t+ δt) = φi(t) + δt φ̇i(t),

φ̇i(t+ δt) =







0 if ∂Edis

∂φ

∣
∣
∣
φ(t)

· φ̇(t) > 0,

φ̇i(t)− δt ∂Edis

∂φi

∣
∣
∣
φ(t)

otherwise.

(43)

We continue this time evolution until the condition in
Eq. 41 is met within a given tolerance,

max
i∈{1,2,...,7N}

∣
∣
∣
∣

∂Edis(φ)

∂φi

∣
∣
∣
∣
< tol. (44)

The results reported below used tol = 10−6.

A. Meissner State results

We simulated the boundary problem described above
for the parameters given in the Appendix. We simulated
multiple orientations of boundary normal x̂1 and applied
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s+ id, x̂1 = (1, 0, 0)

s+ is, x̂1 = (1, 0, 0)

FIG. 3: Meissner state for an s+ id (top) and s+ is (bottom) system with boundary normal x̂1 = (1, 0, 0) and
external magnetic field H = 0.1(0, cosχ, sinχ). The boundary is at x1 = 0 where B3 measures the strength of local
magnetic field in the external magnetic field direction. Comparatively B2 gives the strength of local magnetic field
orthogonal to the external field direction, such that B3(0) = 0.1, B2(0) = 0. The twisting angle is given in Eq. 35
and determines the amount the local magnetic field twists away from the external field direction. We have also

plotted the normalised energy density F̂ = F − F0, the condensate densities ρ1,ρ2 and phase difference
θ12 = θ1 − θ2. We can see that the magnetic field twists direction as it decays for both s+ is and s+ id, when the

applied magnetic field is not in a crystalline-axis direction.

magnetic field x̂3, uniquely defining the orthonormal ba-
sis in Eq. 18, with external field strength H0 = 0.1.
In Fig. 3 the Meissner state with normal x̂1 = (1, 0, 0)

is plotted, where the applied magnetic field direction is
x̂3 = (0, cosχ, sinχ) for χ = 0, π4 ,

π
2 . The linear modes in

this direction for an s + id system, shown in Fig. 1 (at
ω = 0), and s + is, shown in figure Fig. 2 (at ϕ = 0),
predict no mixing of magnetic and matter components.
This suggests there is no spontaneous magnetic field in
the linear theory for this boundary orientation, regard-
less of the direction of applied magnetic field. This is also
what we observe for the full nonlinear solutions in figure
Fig. 3, however for χ = π/4 we still observe some mag-
netic field twisting. This is due to both magnetic modes
being excited for this orientation (as opposed to one for
the other orientations), which decay with different length
scales (or masses).
In Fig. 4 we have plotted the numerical solution with

boundary normal x̂1 = (1/
√
2, 1/

√
2, 0) and applied field

direction x̂3 = (− cosχ/
√
2, cosχ/

√
2, sinχ). The linear

modes for this orientation are given in Eq. 34 and predict
spontaneous magnetic field purely in the ẑ crystalline axis
direction. If this prediction approximates the full nonlin-
ear solutions well, we would expect to observe magnetic
field twisting when the applied external field direction x̂3
is orthogonal to the ẑ-direction but not when it is paral-
lel. This is precisely what we observe, with twisting for
χ = 0 but not for χ = π/2. In addition, as the lead-

ing (purely) magnetic mode is in the (1/
√
2,−1/

√
2, 0)

direction, we expect the magnetic field to twist towards
this direction as x1 → ∞ which is what we observe for
χ = 0, π/4. However, it is expected that this does not
occur for χ = π/2 as this mode is never excited, due to
it being purely magnetic and orthogonal to the applied
external field direction x̂3.

Finally, in Fig. 5 we consider the numerical so-
lution with boundary x̂1 = (1/2, 1/2, 1/

√
2) and ap-

plied field direction x̂3 = cosχ(1/
√
2, 1/

√
2, 0) +

sinχ(1/2, 1/2,−1/
√
2). The linear modes for this orien-
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s+ id, x̂1 = (1/
√

2, 1/
√

2, 0)

s+ is, x̂1 = (1/
√

2, 1/
√

2, 0)

FIG. 4: Meissner state for an s+ id (top) and s+ is (bottom) system with boundary normal x̂1 = (1/
√
2, 1/

√
2, 0)

and external magnetic field H = 0.1(cosχ/
√
2,− cosχ/

√
2, sinχ). The boundary is at x1 = 0 where B3 measures the

strength of local magnetic field in the external magnetic field direction. Comparatively B2 gives the strength of local
magnetic field orthogonal to the external field direction, such that B3(0) = 0.1, B2(0) = 0. The twisting angle is
given in Eq. 35 and determines the amount the local magnetic field twists away from the external field direction.

We have also plotted the normalised energy density F̂ = F −F0, the condensate densities ρ1,ρ2 and phase difference
θ12 = θ1 − θ2. We can see that for s+ is due to symmetry this is equivalent to Fig. 3, where as for s+ id we see

spontaneous magnetic field for multiple directions, causing twisting.

tation were observed to have multiple coupled magnetic
field directions. This means we would expect sponta-
neous magnetic field for all choices of external applied
field direction, which is what we observe. As all modes
are excited, we also expect the magnetic field to twist to-
wards the (−1/

√
2, 1/

√
2, 0) direction (corresponding to

the leading mode), which is what we observe.

To summarize, the linearization is surprisingly accu-
rate at describing the spontaneous magnetic field re-
sponse of the full nonlinear Meissner state solutions. The
magnetic field twisting is highly dependent on the form

of Qαβ
ij and is also significant. This may offer an experi-

mentally viable way of determining the symmetries that
a material exhibits when in a superconducting state.

V. DOMAIN WALLS

A direct consequence of the Z2 symmetry of Fp in
Eq. 6 is the existence of domain walls solutions. These
are 1-dimensional excitations that interpolate between
the two distinct, gauge inequivalent ground state values,
limx1→±∞ θ12 = ∓π/2. The field configurations are in-
dependent of all but one spatial coordinate x1. In an
isotropic two-component BTRS model this forms a 2-
dimensional wall in the condensates only, with normal
parallel to x1. However, it has recently been shown that
in s + is and s + id models, domain walls also exhibit
spontaneous magnetic field34. The linearization in sec-
tion III offers a way of both explaining and predicting
the form of these spontaneous fields. It is important to
understand spontaneous fields induced by domain walls
(and other defects), as they are important indicators for
the underlying pairing symmetries of the host materials.

We seek one-dimensional solutions to the full nonlinear
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s+ id, x̂1 = (1/2, 1/2, 1/
√

2)

s+ is, x̂1 = (1/2, 1/2, 1/
√

2)

FIG. 5: Meissner state for an s+ id (top) and s+ is (bottom) system with normal x̂1 = (1/2, 1/2, 1/
√
2) and

external magnetic field H = 0.1 cosχ(1/2, 1/2,−1/
√
2) + 0.1 sinχ(−1/

√
2, 1/

√
2, 0). The boundary is at x1 = 0

where B3 measures the strength of local magnetic field in the external magnetic field direction. Comparatively B2

gives the strength of local magnetic field orthogonal to the external field direction, such that B3(0) = 0.1, B2(0) = 0.
The twisting angle is given in Eq. 35 and determines the amount the local magnetic field twists away from the

external field direction. We have also plotted the normalised energy density F̂ = F − F0, the condensate densities
ρ1,ρ2 and phase difference θ12 = θ1 − θ2. We can see that for s+ is and s+ id all directions of applied field exhibit

spontaneous fields and field twisting.

bulk equations of motion Eq. 4 and Eq. 5, for both
the s + is and s + id models (parameters given in the
appendix). As we are interested in solutions far from
any boundary effects, we can fix the boundary conditions
such that,

(ψ1, ψ2) → (u1,−iu2), x1 → −∞ (45)

(ψ1, ψ2) → (u1, iu2), x1 → +∞
(A1, A2, A3) → (0, 0, 0), x1 → ±∞

where x̂1 is the unit normal of the domain wall. Note,
we have transformed from the crystalline basis (x̂, ŷ, ẑ)
to the excitation basis (x̂1, x̂2, x̂3) by transforming the
anisotropy matrices according to Eq. 18. This leaves all
fields dependent on x1 only. In addition, A1 = A2 =
A3 = 0 on the boundary is a gauge choice, leading to the
finite energy requirement that ∂1ψ1 = ∂1ψ2 = 0 on the
boundary.
For a domain wall solution the phase difference θ12 ∈

S1 interpolates from π/2 to the antipodal point −π/2.

This can be achieved by traversing the target S1 clock-
wise or anticlockwise. For a BTRS model with no
anisotropy, the domain walls corresponding to the dif-
ferent routes are degenerate in energy and have identical
forms for the gauge invariant fields |ψα|. However, con-
sidering these two possible domain wall solutions for a
general anisotropic BTRS model, we find that the do-
main walls are not degenerate in energy. We can see this
by considering a simple approximation to a domain wall,
allowing only θ12 to depend on x1, while all other quan-
tities are fixed to their ground state values: ρα = uα and



12

p = 0. Such a configuration has energy (per unit area),

Freduced =

∫ ∞

−∞

{1

8
(Q11

11u
2
1 +Q22

11u
2
2)(θ

′
12(x1))

2

− 1

4
Q12

11u1u2 cos θ12(x1)(θ
′
12(x1))

2

+
η

8
u21u

2
2 cos 2θ12

}

dx1.

(46)

We note that if Q12
11 = 0 then Freduced is invariant under

the transformation θ12 → π−θ12, which converts between
the two domain wall solutions. In addition, as u1, u2 > 0,
when Q12

11 6= 0 the second term will either be positive def-
inite or negative definite, dependent on the sign of Q12

11

and cos θ12. Hence, if Q
12
11 > 0 then the clockwise domain

wall is lower energy and if Q12
11 < 0 then the anticlockwise

domain wall has lower energy. This suggests that the sign
of Q12

11 can be used to predict which of the two domain
wall solutions is the global minimiser for a given orien-
tation. This approximation is rather crude, as it ignores
couplings between θ12 and the other fields. However it
seems to capture the behaviour of the systems studied
numerically very well.

We study domain walls by solving the equations of mo-
tion in Eq. 4 and Eq. 5 numerically. In particular, we
seek 1-dimensional numerical minimizers of the free en-
ergy functional in Eq. 2. We first choose an orientation
(normal) for the domain wall x̂1, which is also the sole
spatial dependence for the fields. We then transform the
anisotropy matrices according to Eq. 18 and dimension-
ally reduce by assuming that all field derivatives orthog-
onal to x1 are zero (an effective gauge choice). We then
use an arrested Newton flow method (described previ-
ously for the Meissner state simulations in Sec. IV), sub-
ject to the fixed boundary conditions described in Eq. 45.
Of course, we now seek to minimize a discrete approxi-
mant Edis to the Helmholtz free energy F , rather than
the Gibbs free nergy G, as there is no applied magnetic
field. We find numerical minimizers for the parameters
described in the appendix, for typical values of N = 1001
and h = 0.15.

The initial field configuration φ(0) was chosen to in-
terpolate the phase difference either clockwise or anti-
clockwise,

θ012(x) =







−π
2 x < −L

−π
2 ± (x+L)π

2L |x|≤ L
π
2 x > L

(47)

respectively, where x = h(i − (N + 1)/2), i ∈ [1, N ] is
the lattice site and the typical width of the initial con-
dition was 2L = 10. This allows us to consider both
the clockwise and anticlockwise domain wall solutions
discussed above, chosen by interpolating the phase dif-
ference around the target circle in the corresponding di-
rection.

A. Domain Wall Results

We have plotted examples of both domain wall solu-
tions with normal x̂1 = (0.1736, 0, 0.9848) in Fig. 6a and
x̂1 = (0.309,−0.9511, 0) in Fig. 6b. Both the clockwise
and anticlockwise domain wall solutions exhibit sponta-
neous magnetic fields for both orientations; however the
strengths of the spontaneous fields differ for each solu-
tion. This demonstrates that the two domain wall solu-
tions for a given orientation will have distinct experimen-
tal signatures.
We have also plotted the total free energy for all pos-

sible orientations of the normal x̂1 for an s + is model
in Fig. 7a and an s + id model in Fig. 7b. These plots
display the free energy for all possible orientations for the
normal in the crystalline basis, by mapping each orienta-
tion to a point on a unit 2-sphere. Due to the symmetry
of F under the reflexion z 7→ −z, it is sufficient to retain
only the upper hemisphere of the resulting plot. Each
point is then coloured by the total (normalised) free en-
ergy of the numerical solution.
When simulating these sets of solutions, we choose a

set of approximately equidistant points on the sphere for
x̂1 and use the local minimum from the previous simula-
tion as the initial condition for the next. This preserves
whether the domain wall interpolates clockwise or anti-
clockwise.
By considering the free energy plots we can see the

predicted spatial symmetries of the full three dimensional
models: SO(2)×C2 for s+ is and C2×C2×C2 for s+ id.
Note that the clockwise domain wall is the minimal en-
ergy solution for all orientations in s + is, whereas the
minimal energy solution switches between clockwise and
anticlockwise solutions depending on the orientation for
the s + id system. This matches the prediction of the
simple model Eq. 46 well: it is straightforward to see
that Q12

11 > 0 for all orientations for the s + is model,
and the orientations where anticlockwise domain walls
are favoured in the s+ id model match closely the orien-
tations where Q12

11 < 0, see Fig. 8.
In addition, the corresponding maximum magnetic

field strength is plotted for all orientations in Fig. 9a
and Fig. 9b. We have also added arrows showing the di-
rection of the maximal magnetic field (which are always
tangent to the surface of the hemisphere). By this, we
mean the direction of the spontaneous field at any point
x1 where |B(x1)|= Bmax. The spontaneous field B(x1)
is an odd function about the centre of the domain wall
(assumed to be x1 = 0) which is consistent with the topo-
logical requirement that

∫

x1
B(x1)dx1 = 0. This means

there will be two points ±xmax
1 where the spontaneous

field corresponds in magnitude to Bmax with opposite
magnetic field B(±xmax

1 ) = ±Bmax. An example of this
can be seen in Fig. 10, where the different components of
the spontaneous magnetic field are odd functions about
the centre of the domain wall x1 = 0. Hence, all the plot-
ted arrows are double sided, representing this symmetry
of the solutions.
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x̂1 = (0.1736, 0, 0.9848)

(a)

x̂1 = (0.3090,−0.9511, 0)

(b)

FIG. 6: Plots of two domain wall solutions corresponding to the phase difference θ12 = θ1 − θ2 winding either
clockwise (red) or anticlockwise (blue). We have plotted the gauge invariant condensate magnitudes ρ1,ρ2 and the

total magnetic field strength |B|. We can see that the magnetic response of the two different domain walls is
different.
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The plots of maximummagnetic field demonstrate that
there is no spontaneous field generation when the normal
is aligned with any of the crystalline axes, as predicted
by the linearization, which has no mixed modes for such
orientations. In addition, the spontaneous field direc-
tion on great circles (where Bmax 6= 0) connecting crys-
talline axes (e.g. the great circle x̂1 = (cosω, 0, sinω) for
ω ∈ [0, 2π]), matches the prediction from the linearized
theory. In particular, the linearized theory predicts a
single direction of spontaneous magnetic field orthogo-
nal to the great circle, as is seen in the full nonlinear
numerical solutions. Note that the great circle corre-
sponding to the basal plane for s+ is exhibits no sponta-
neous field Bmax = 0 (as predicted), where as for s+ id
there is spontaneous field. Hence, for s + id this cre-
ates a vorticity in the tangent arrows B̂max about each
of the crystalline axes (where Bmax = 0). If we visualise
the spontaneous maximum magnetic field as a continuous
vector field on S2, then we can characterize how the field
circulates a given crystalline axis using a winding num-
ber N . Hence, if Bmax rotates clockwise once (N = 1)
or anticlockwise once (N = −1) as we circle the axis.
The crystalline axes at the north and south pole both
have N = 1 for both domain wall solutions. However,
the clockwise/anticlockwise domain wall solutions have
N = +/− about the ŷ-axis and N = −/+ about the
x̂-axis respectively.
Finally, we consider how the spontaneous magnetic

field locally twists direction as x1 increases. We com-
pare the spontaneous field direction with that of Bmax,
defining the local twisting angle to be,

tan θt(x1) =
|Bmax ×B(x1)|
|Bmax ·B(x1)|

. (48)

Note that while there are two values of x1 that correspond
to |Bmax| with magnetic field ±|Bmax|, the chosen point
has no effect on θt. The spontaneous field and twisting
angle are plotted for two different orientations for a clock-
wise s+id domain wall in Fig. 10. We note that the s+is
solutions exhibits no twisting for all orientations, which
matches the linearization. This is due to all orientations
x̂1 for s+is, having at most a single direction of magnetic
field for any mixed mode. This does not mean that there
is only a single mixed mode for the given orientation, but
that all mixed modes share the same magnetic field di-
rection as given in Eq. 33. Hence, this predicts that all
spontaneous magnetic field will be in the same direction
and exhibit no twisting. The nonlinear solutions for all
orientations match this prediction, exhibiting no twisting
and with all spontaneous fields matching the predicted
linear direction.
s+ id models, in contrast, exhibit significant magnetic

field twisting as can be seen in Fig. 10. This is a result
of a different mixed mode dominating in the nonlinear
region of the domain wall (where |B| is large) and the
linear region (when |B| is small), causing the spontaneous
magnetic field to twist direction as it decays from its
maximum value (θt = 0). Note that as a result of the

topological requirement
∫
Bdx1 = 0, the magnetic field is

an odd function about the centre (x1 = 0) as can be seen
in the plots of the different magnetic field components.
To demonstrate how the amount of twisting for s +

id models changes with orientation, we have plotted
θmax
t := max{θt(x1) : x1 ∈ R} in figure Fig. 11. This
shows that on the great circles that connect crystalline
axes there is no twisting, which matches the lineariza-
tion. Like with s + is models, on these great circles the
linearization predicts a single direction for the magnetic
field for all mixed modes and hence no twisting. How-
ever, away from these great circles the twisting becomes
significant for both the clockwise and anticlockwise do-
main walls. This offers an experimental signature that
can differentiate between s+ is and s+ id systems.
In summary, domain walls produce spontaneous mag-

netic fields due to mode mixing. This is due to the
anisotropy of the model, causing the modes to have
both matter and magnetic components. While the lin-
ear modes are only strictly justified far from the exci-
tation of the domain wall, we have demonstrated that
they are remarkably accurate at predicting the sponta-
neous magnetic fields even when the model is nonlin-
ear dominated. This suggests that spontaneous fields for
anisotropic models can be predicted accurately using the
linearized model alone. This is quite a remarkable feature
of a traditionally highly nonlinear model. In addition, we
have demonstrated that both s + is and s + id models
exhibit two different domain wall solutions (coined clock-
wise and anticlockwise solutions). Finally s+ id models
exhibit significant magnetic field twisting as the sponta-
neous fields decay x1 → ∞.

VI. UPPER CRITICAL FIELD

For mathematical convenience, we have worked
throughout with dimensionless quantities. To get a rough
idea of the size of the spontaneous magnetic fields pre-
dicted in real systems, it is useful to compare Bmax

with the upper critical field Hc2 for the systems studied.
This may be computed numerically using the standard
strategy (reducing the GL equations linearized about the
normal state to a coupled harmonic oscillator problem).
Note that Hc2 is anisotropic, that is, it depends on the
direction of the applied field.
We find that the value of Hc2 for s+ is varies between

1.6468 (H parallel to the basal plane) and 4.2656 (H in
z-direction) and has SO(2) symmetry about the z-axis,
as it must.
For s+ id, we find that Hc2 matches the four fold sym-

metry about the z-axis of the free energy and is maximal
in the z-direction with Hc2 = 2.6596 and minimal in the
basal plane, going as low as Hc2 = 1.0245.
The key takeaway from this calculation is that the

spontaneous fields from the previous section are approx-
imately two orders of magnitude weaker then Hc2 in the
basal plane. This is strong enough to be detected using
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Total normalised free energy (F̂ )

(a) s+is (b) s+id

FIG. 7: Plot of the total normalized free energy F̂ = F −F0 of each domain wall solution for all possible orientations.
We have mapped each possible orientation (normal vector) to a point on the unit two-sphere. The sphere has then
been coloured by the total normalized free energy of the corresponding domain wall solution. Since both s+ is and
s+ id models are symmetric under z 7→ −z we plot only the upper hemisphere. There are two non-degenerate

domain wall solutions depending on the winding of the phase difference (clockwise or anticlockwise). Note that the
minimal energy domain wall is always the clockwise solution for s+ is but is orientation dependent for s+ id.
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Q̃12

11
Free energy difference

FIG. 8: Plots of the value of Q12
11 and the total free energy difference between the clockwise and anticlockwise

domain wall solutions for both s+ is and s+ id for all orientations. We have mapped each possible orientation
(normal vector) to a point on the unit two-sphere. The sphere has then been coloured by the value of Q12

11 after
performing the transformation in Eq. 18 (left panel) and the energy of a clockwise domain wall minus that of an

anticlockwise domain wall (right panel). We observe similar qualitative features to the two plots, for both s+ is and
s+ id, in particular the contours where the functions are 0. This supports the claim that sign of Q12

11 is a good
indicator for which domain wall is lower energy.



17

Maximum magnetic field

(a) s+ is (b) s+ id

FIG. 9: Plot of the spontaneous field strength of each domain wall solution for all possible orientations. We have
mapped each possible orientation (normal vector) to a point on the unit two-sphere. The sphere has then been

coloured by the maximum magnetic field strength of the corresponding domain wall solution. In addition, we have
plotted the direction of the local spontaneous field, where its strength is a maximum, as an arrow tangent to the
2-sphere. There are two non-degenerate domain wall solutions depending on the winding of the phase difference
(clockwise and anticlockwise). This plot matches the prediction made in the linearization section and offers an

experimentally verifiable signature. The spontaneous field strengths are 2 orders of magnitude lower than Hc2 in the
basal plane.
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FIG. 10: Plots of the twisting angle θt(x1), for a clockwise s+ id domain wall. This shows how the direction of the
spontaneous magnetic field changes as it decays from the point where the spontaneous field is strongest. The top
row corresponds to the orientation that exhibits the most twisting x̂1 = (−0.5878,−0.8090, 0). The bottom row
corresponds to one of many orientations with no twisting x̂1 = (0.1736, 0, 0.9848), such that the spontaneous

magnetic field is in the same direction at all points in space. Note that for s+ is no orientations exhibit spontaneous
magnetic field twisting for domain walls.

multiple experimental techniques.

VII. CONCLUSION

In conclusion, we have demonstrated that the familiar
London model is, in general, not accurate in describing
the magnetic field behaviour of s+ is and s+ id systems.
This is a consequence of the normal modes not separat-
ing into purely magnetic and matter modes, but being
mixed. This means even a small pertubation of the su-
perconducting gap induces magnetic field and vice versa.
This mixing of both magnetic and matter components
was shown to be a generic feature of anisotropic models
with mixed gradient terms.

The key observable consequence of mixed modes is
their contribution to spontaneous magnetic fields. The
orientation dependence of these spontaneous fields gives
an experimentally verifiable signature for the pairing
symmetries of the system. This also explains the previ-
ous results in34, and allows spontaneous field directions
to be predicted using linear algebra.

In addition, we have extended the previous approach
to linearizing anisotropic models37. We demonstrated

that the familiar symmetry reductions used to study 1-
dimensional excitations are not always valid in these sys-
tems. In particular, due to the anisotropy one must in-
clude all components of the vector gauge field Ai, else the
symmetry reduction will not, in general, be a solution of
the full 3-dimensional equations of motion. It is this ap-
proach that allows the magnetic field to twist direction
as it decays.
We also demonstrate that, in general, the behaviour

of the magnetic field cannot be characterized by a sin-
gle length scale: the London magnetic field penetration
length.
For s + is models the decaying field in the Meiss-

ner state, exhibits magnetic field twisting, due to modes
that spontaneously generate magnetic field, orthogonal
to the applied field direction. Instead, various compo-
nents of the magnetic field decay with different length
scales. Hence, as the fields decay, the magnetic field
twists towards the mode with the longest length scale.
However, for s+ is excitations that exhibit purely spon-
taneous magnetic fields, there is no field twisting, due to
all mixed modes having equivalent magnetic components.
s+ id models, in contrast, exhibit twisting due to both

disparate length scales and purely spontaneous fields.
This is due to the s + id mixed modes having multi-
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Maximum Twisting Angle (θmax

t
)

FIG. 11: Plots of the maximum twisting angle of the magnetic field of domain wall in an s+ id superconductor:
clockwise phase difference winding (left) and anticlockwise phase difference winding (right). We have mapped each
possible orientation (normal vector) to a point on the unit two-sphere. The sphere has then been coloured by the

value of θmax
t for that orientation. The twisting ( θmax

t ) is the same for the two domain wall types.

ple magnetic field directions, such that the spontaneous
fields twist as they decay. This has been shown to result
in significant magnetic field twisting for domain walls,
and it is likewise expected to occur for defects.

The spontaneous magnetic fields for domain walls in
both s+is and s+id were studied in detail. These sponta-
neous fields offer one of the best experimental signatures
to differentiate between various pairing symmetries. This
can be achieved using scanning probes of magnetic fields
of domain walls, pinned in various orientations relative
to crystal axes.
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Appendices
A. PARAMETERS USED

All simulations make use of the following potential,

FP = −1

2
|ψ1|2−

1

2
|ψ2|2+2|ψ1|4+3|ψ2|4+

3

2
|ψ1|2|ψ2|2

+
1

8
|ψ1|2|ψ2|2cos 2θ12, (49)

where we have set αα = −1/2, β1 = 4, β2 = 6, γ = 3/2
and η = 1. In addition, the anisotropy matrices Qαβ

are set as given in table II, where we have set a1 = 4,
a2 = 1/2, a3 = 1, b1 = 0.3, b2 = 2 and b3 = 0.2 for both
s+ is and s+ id models.
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s+is s+id

Q11 =





4 0 0
0 4 0
0 0 0.3



 Q11 =





4 0 0
0 4 0
0 0 0.3





Q22 =





0.5 0 0
0 0.5 0
0 0 2



 Q22 =





0.5 0 0
0 0.5 0
0 0 2





Q12 =





1 0 0
0 1 0
0 0 0.2



 Q12 =





1 0 0
0 −1 0
0 0 0.2





TABLE II: Form of the anisotropy matrices for the sim-
ulated s+ is and s+ id systems.

B. NATURAL BOUNDARY CONDITIONS

To find numerical solutions of the Meissner state in the
region Ω we must minimize the Gibbs free energy in Eq.
36 among all fields φa, a ∈ [1, 6] defined on Ω. This leads
to the following variation for G,

δG =

∫

Ω

{
∂G
∂φa

− ∂i

(
∂G

∂(∂iφa)

))

δφa (50)

+

∫

∂Ω

(
∂Fsurf

∂φa
− ni

∂G
∂(∂iφa)

)

δφa, (51)

where we have used the divergence theorem, and recalled
that n is an inward pointing normal to ∂Ω. Demand-
ing that δG = 0 for all variations requires both of these

integrals to vanish identically and hence φa satisfies the
usual Euler-Lagrange equations in Ω together with the
boundary conditions,

niQ
1β
ij Djψβ = 0, (52)

niQ
2β
ij Djψβ = 0, (53)

∂iAi = 0, (54)

B = H. (55)

This can be simplified by first performing a change of
basis from the crystaline basis (x̂, ŷ, ẑ) to the excitation
basis (x̂1, x̂2, x̂3) by performing the transformation in Eq.
18 on the anisotropy matrices. This leads to the following
simpler boundary conditions in the new basis,

Q1β
11D1ψβ = 0, (56)

Q2β
11D1ψβ = 0, (57)

A′
1 = 0, (58)

B = H. (59)

We impose these boundary conditions at x1 = 0, then at
x1 = L, where L is large, we demand that b′ = a′ = 0,
ψ1 = u1 and ψ2 = iu2, such that the fields are in their
ground state.

Note, as we are interested in bulk behaviour, we have
neglected the presence of surface terms51, that lead to
additional magnetic effects42.
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S. Aswartham, B. Büchner, P. Chekhonin, W. Skrotzki,
K. Nenkov, et al., Nature Physics pp. 1–6 (2020).

2 V. Grinenko, P. Materne, R. Sarkar, H. Luetkens, K. Ki-
hou, C. Lee, S. Akhmadaliev, D. Efremov, S.-L. Drechsler,
and H.-H. Klauss, Physical Review B 95, 214511 (2017).

3 V. Grinenko, D. Weston, F. Caglieris, C. Wuttke, C. Hess,
T. Gottschall, J. Wosnitza, A. Rydh, K. Kihou, C.-H. Lee,
et al., Bosonic z2 metal: Spontaneous breaking of time-

reversal symmetry due to cooper pairing in the resistive

state of ba1−xkxfe2as2 (2021), 2103.17190.
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