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Patterns and quasipatterns from the superposition of two hexagonal lattices∗1

Gérard Iooss† and Alastair M. Rucklidge‡2

3

Abstract. When two-dimensional pattern-forming problems are posed on a periodic domain, classical techniques4
(Lyapunov–Schmidt, equivariant bifurcation theory) give considerable information about what pe-5
riodic patterns are formed in the transition where the featureless state loses stability. When the6
problem is posed on the whole plane, these periodic patterns are still present. Recent work on the7
Swift–Hohenberg equation (an archetypal pattern-forming partial differential equation) has proved8
the existence of quasipatterns, which are not spatially periodic and yet still have long-range order.9
Quasipatterns may have 8-fold, 10-fold, 12-fold and higher rotational symmetry, which preclude10
periodicity. There are also quasipatterns with 6-fold rotational symmetry made up from the super-11
position of two equal-amplitude hexagonal patterns rotated by almost any angle α with respect to12
each other. Here, we revisit the Swift–Hohenberg equation (with quadratic as well as cubic nonlinear-13
ities) and prove existence of several new quasipatterns. The most surprising are hexa-rolls: periodic14
and quasiperiodic patterns made from the superposition of hexagons and rolls (stripes) oriented in15
almost any direction with respect to each other and with any relative translation; these bifurcate16
directly from the featureless solution. In addition, we find quasipatterns made from the superposi-17
tion of hexagons with unequal amplitude (provided the coefficient of the quadratic nonlinearity is18
small). We consider the periodic case as well, and extend the class of known solutions, including the19
superposition of hexagons and rolls. While we have focused on the Swift–Hohenberg equation, our20
work contributes to the general question of what periodic or quasiperiodic patterns should be found21
generically in pattern-forming problems on the plane.22

Key words. Quasipatterns, superlattice patterns, Swift–Hohenberg equation.23

AMS subject classifications. 35B36, 37L10, 52C2324

1. Introduction. Regular patterns are ubiquitous in nature, and carefully controlled lab-25

oratory experiments are capable of producing patterns, in the form of rolls (stripes), squares26

or hexagons, with an astonishingly high degree of symmetry. One particular example is the27

Faraday wave experiment, in which a layer of viscous fluid is subjected to sinusoidal vertical28

vibrations. Without the forcing, the surface of the fluid is flat and featureless, but as the29

strength of the forcing increases beyond a critical value, the flat surface loses stability to two-30

dimensional patterns of standing waves, which in simple cases take the form of roll, square31

or hexagonal patterns [2]. But, with more elaborate forcing, more complex patterns can be32

found. Figure 1 shows examples of (a,b) superlattice patterns and (c,d) quasipatterns [2, 29].33

The images in (a,c) show the pattern of standing waves on the surface of the fluid, while34

(b,d) show the Fourier power spectra. In both cases, the patterns are dominated by twelve35

waves, indicated by twelve small circles in Figure 1(b) and by twelve blobs lying on a circle36

in Figure 1(d). The distance from the origin to the twelve peaks gives the wavenumber that37
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2 G. IOOSS AND A. M. RUCKLIDGE

(a) (b) (c) (d)

Figure 1. Examples of (a,b) superlattice patterns (reproduced with permission from [29]) and (c,d) quasi-
patterns (reproduced with permission from [2]). (a,c) show images representing the surface height of the fluid
in Faraday wave experiments, with thin layers of viscous liquids subjected to large-amplitude multi-frequency
forcing; (b,d) are Fourier power spectra of the images in (a,c), and indicate the twelve peaks that dominate the
patterns in each case.

dominates the pattern. In the superlattice example, the twelve peaks are unevenly spaced,38

but the basic structure is still hexagonal, and it is spatially periodic with a periodicity equal to39 √
7 times the wavelength of the instability [29]. In the quasipattern example, spatial period-40

icity has been lost. Instead, the quasipattern has (on average) twelve-fold rotation symmetry,41

as seen in the repeating motif of twelve pentagons arranged in a circle and in the twelve evenly42

spaced peaks in the Fourier power spectrum in Figure 1(d). The lack of spatial periodicity is43

apparent in Figure 1(c), while the point nature of the power spectrum in Figure 1(d) indicates44

that the pattern has long-range order. These two features, the lack of periodicity (implicit45

in this case from twelve-fold rotational symmetry) and the presence of long-range order, are46

characteristics of quasicrystals in metallic alloys [44] and soft matter [23], and in quasipatterns47

in fluid dynamics [18], reaction–diffusion systems [12] and optical systems [6].48

The discovery of twelve-fold quasipatterns in the Faraday wave experiment [18] inspired49

a sequence of papers investigating this phenomenon [31, 35, 38, 41, 42, 46, 47, 55]. One of the50

main outcomes of this body of work is an understanding of the mechanism for stabilizing51

quasipatterns in Faraday waves. Twelve-fold quasicrystals have also been found in block52

copolymer and dendrimer systems [23,54], in turn inspiring a considerable volume of work [1,53

4, 8, 27, 48]. It turns out that the same stabilization mechanism operates in the Faraday54

wave and the polymer crystallization systems [30, 39]. In both cases, and indeed in other55

systems [12, 20], a common feature is that a second unstable or weakly damped length scale56

plays a key role in stabilizing the pattern. See [43] for a recent review.57

However, as well the question of how superlattice patterns and quasipatterns are stabi-58

lized, there is the question of their existence as solutions of pattern-forming partial differential59

equations (PDEs) posed on the plane, without lateral boundaries [5, 9, 10, 26]. Superlattice60

patterns, which have spatial periodicity (as in Figure 1a) can be analysed in finite domains61

with periodic boundary conditions. In this case, and near the bifurcation point, spatially62

periodic patterns have Fourier expansions with wave vectors that live on a lattice, and the63

infinite-dimensional PDE can be reduced rigorously to a finite-dimensional set of equations64

for the amplitudes of the primary modes [11, 51]. In the finite dimensional setting, ampli-65
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Figure 2. (a) Two sets of six equally spaced wave vectors (k1, k2, k3 and their opposites, and k4, k5, k6

and their opposites) rotated an angle α with respect to each other so as to produce spatially periodic patterns:
α ≈ 21.79◦, with cosα = 13

14
and

√
3 sinα = 9

14
. The gray dots indicate that the twelve vectors lie on an

underlying hexagonal lattice, generated by the vectors s1 and s2. Compare with Figure 1(b). (b) 12-fold
quasipatterns are generated by twelve equally spaced vectors: α = π

6
= 30◦, with cosα = 1

2

√
3. Compare with

Figure 1(d). (c) 6-fold quasiperiodic case: α ≈ 25.66◦, with cosα = 1

4

√
13 and

√
3 sinα = 3

4
. Quasipatterns

generated by equal combinations of the twelve waves have six-fold rotation symmetry but lack spatial periodicity.

tude equations can be written down, bifurcating equilibrium points found and their stability66

analysed [15]. Equivariant bifurcation theory [21] is a powerful tool that uses symmetry tech-67

niques to prove existence of certain classes of symmetric periodic patterns without recourse68

to amplitude equations.69

But quasipatterns pose a particular challenge for proving existence, in that the formal70

power series that describes small amplitude solutions may diverge [26, 40] owing to the ap-71

pearance of small divisors. Nonetheless, existence of quasipatterns with Q-fold rotation sym-72

metry (Q = 8, 10, 12, . . . ) as solutions of the steady Swift–Hohenberg equation (see below)73

has been proved using methods based on the Nash–Moser theorem [10]. The same approach74

has been applied to other pattern-forming PDEs, such as those for steady Bénard–Rayleigh75

convection [9]. Throughout, the existence proofs show that as the amplitude of the quasi-76

pattern solution goes to zero, the solution from the truncated formal expansion approaches77

a quasipattern solution of the PDE in a union of disjoint parameter intervals, going to full78

measure as the amplitude goes to zero.79

Most previous work on quasipatterns has concentrated on Fourier spectra that exhibit80

“prohibited” symmetries: eight-, ten-, twelve-fold and higher rotation symmetries, as in Fig-81

ure 1(c), or icosahedral symmetry in three dimensions [48]. There is, however, a class of82

quasipatterns with six-fold rotation symmetry, related to the superlattice patterns already83

discussed. These patterns can be described in terms of the superposition of twelve waves with84

twelve wavevectors, grouped into two sets of six as in Figure 2, with the six vectors within85

each set spaced evenly around the circle, and with the two sets rotated by an angle α with86

respect to each other, with 0 < α < π
3 . In the quasiperiodic case, we can choose α to be the87

smallest angle between the vectors, so 0 < α ≤ π
6 .88

The discovery, in the Faraday wave experiment and elsewhere, of these elaborate superlat-89

tice patterns and quasipatterns, with and without spatial periodicity, motivated investigations90

into the bifurcation structure of pattern formation problems posed both in periodic domains91
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4 G. IOOSS AND A. M. RUCKLIDGE

and on the whole plane, without lateral boundaries. We focus on an example of such a92

problem, the steady Swift–Hohenberg equation, which is:93

(1.1) (1 + ∆)2u− µu+ χu2 + u3 = 0,94

where u(x) is a real function of x = (x, y) ∈ R2, ∆ is the Laplace operator, µ is a real95

bifurcation parameter and χ is a real parameter. The time-dependent version of this PDE96

was proposed originally as a model of small-amplitude fluctuations near the onset of convec-97

tion [50], but is now considered an archetypal model of pattern formation [24].98

The trivial state u = 0 is always a solution of (1.1), and as µ increases through zero, many99

branches of small-amplitude solutions of (1.1) are created. These include periodic patterns100

such as rolls, squares, hexagons and superlattice patterns, quasipatterns with the prohibited101

rotation symmetries of eight-, ten-, twelve-fold and higher (proved in [10] with χ = 0), as102

well as (again with χ = 0) two families of six-fold quasipatterns with equal sums of the twelve103

Fourier modes illustrated in Figure 2(c) [19,25]. In this paper, we extend the analysis in [25] by104

allowing χ 6= 0 and including quasipatterns with unequal combinations of the twelve Fourier105

modes, discovering several new classes of solutions.106

We approach this problem by deriving nonlinear amplitude equations for the twelve Fourier107

modes on the unit circle. One important requirement on the twelve selected modes illustrated108

in Figure 2 is therefore that nonlinear combinations of these modes should generate no further109

modes with wavevectors on the unit circle. If they did, additional amplitude equations would110

have to be included, a problem we leave for another day. We call the (full measure, as proved111

in [25] in Lemma 5) set of α that satisfy this condition E0, defined more precisely in [25] and112

in Definition 2.4 below. Throughout, we use the names of the sets of values of α from [25].113

There are three possible situations as α is varied: the (zero measure) periodic case, the114

(full measure) quasiperiodic case where the results of [25] can be used, and other quasiperiodic115

values of α (zero measure). See the definitions below and in Appendix A for more detail.116

1. The lattice is periodic, and α ∈ Ep, as in Figure 2(a) (see Definition 2.1). For these117

angles, restricted to 0 < α < π
3 , both cosα and

√
3 sinα must be rational, and the wave118

vectors generate a lattice (see Definition 2.1 and Lemma 2.2 below). This is the case119

examined by [15], and α ≈ 21.79◦ (cosα = 13
14 and

√
3 sinα = 9

14) is an example. For120

reasons explained below, for some values of α ∈ Ep, is it more convenient to consider121
π
3 − α instead, relabelling the vectors. This set is dense but of measure zero. Not all122

values of α ∈ Ep are also in E0.123

2. The angle α is not in Ep but it satisfies all three of the requirements for the existence124

proofs in [25]. The first requirement is that α ∈ E0 (see Definition 2.4 below): no125

integer combination of the twelve vectors already chosen should lie on the unit circle126

apart from the twelve. The second and third requirements are that the numbers cosα127

and
√
3 sinα should satisfy two “good” Diophantine properties. We define E1 and E2128

to be the set of such angles, restricted to 0 < α ≤ π
6 (see definitions in Appendix A).129

Then, the set E2, which itself requires E0 and E1, is the set of angles that satisfy all130

three requirements. All rational multiples of π (restricted to 0 < α ≤ π
6 ) are in E2, for131

example, α = π
6 = 30◦ as in Figure 2(b). The angle α ≈ 25.66◦ is another example,132

(cosα = 1
4

√
13 and

√
3 sinα = 3

4 , see Figure 2(c) and Appendix B). This set is of full133

measure.134
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SUPERPOSITION OF HEXAGONAL LATTICES 5

3. The angle α, still restricted to 0 < α ≤ π
6 , is not in Ep or E2, and although pat-135

terns made from these modes may be quasiperiodic, the existence proofs based on136

the approach of [25] do not work, at least not without further extension. The angle137

α ≈ 26.44◦ (cosα = 1
12(5 +

√
33) and

√
3 sinα = 1

12(15 −
√
33)) is an example (see138

Appendix B) since it is not in E0. This set is dense but of measure zero.139

For α ∈ Ep ∩ E0, the resulting superlattice patterns are spatially periodic, and their bifur-140

cation structure is determined at finite order when the small amplitude pattern is expressed as141

a formal power series [15]. The wavevectors for these spatially periodic superlattice patterns142

lie on a finer hexagonal lattice (as in Figure 2a).143

We define Eqp to be the complement of Ep restricted to 0 < α ≤ π
6 . For α ∈ Eqp, linear144

combinations of waves are typically quasiperiodic, but only for α ∈ E2 ⊂ Eqp can the techniques145

of [25] be used to prove existence of quasipatterns with these modes as nonlinear solutions146

of the PDE (1.1). For the special case α = π
6 ∈ E2, as in Figure 2(b), the quasipattern has147

twelve-fold rotation symmetry, but more generally, as in Figure 2(c), there can be six-fold148

rotation symmetry, more usually associated with hexagons. The proof in [25] makes use of149

the properties of E2; at this time, no existence result is known about α /∈ E2 ∪ Ep.150

The periodic case has been analysed by [15, 45]. They write the small-amplitude pattern151

u(x) as the sum of six complex amplitudes z1, . . . , z6 times the six waves eik1·x, . . . , eik6·x:152

(1.2) u(x) =

6∑

j=1

zje
ikj ·x + c.c.+ high-order terms,153

where c.c. refers to the complex conjugate, and the six wavevectors k1, . . . , k6 are as illustrated154

in Figure 2(a). They then derive, using symmetry considerations, the amplitude equations:155

0 = z1f1(u1, . . . , u6, q1, q4, q̄4) + z̄2z̄3f2(u1, . . . , u6, q̄1, q4, q̄4) +

+ high-order resonant terms,
(1.3)156

where u1 = |z1|2, . . . , u6 = |z6|2, q1 = z1z2z3, and q4 = z4z5z6. Here, f1 and f2 are157

smooth functions of their nine arguments. Five additional equations can be deduced from158

permutation symmetry. The high-order resonant terms, present only in the periodic case, are159

at least fifth order polynomial functions of the six amplitudes and their complex conjugates,160

and depend on the choice of α ∈ Ep. Even without the amplitude equations (1.3), equivariant161

bifurcation theory can be used [15, 21] to deduce the existence of various hexagonal and162

triangular superlattice patterns, and, within the amplitude equations, the stability of these163

patterns can be computed.164

The approach we take does not use equivariant bifurcation theory. Instead, we derive am-165

plitude equations of the form (1.3) in the quasiperiodic and periodic cases. In the quasiperiodic166

case, the equation is a formal power series, but in both cases, the cubic truncation of the first167

component of amplitude equations is of the form168

(1.4) 0 = µz1 − α0z̄2z̄3 − z1(α1u1 + α2u2 + α2u3 + α4u4 + α5u5 + α6u6),169

where α0, . . . , α6 are coefficients that can be computed from the PDE (1.1). We find small170

amplitude solutions of the cubic truncation (1.4) then verify that these correspond to small171
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6 G. IOOSS AND A. M. RUCKLIDGE

Name
Section
Figure

Periodic
or QP

Example
amplitudes

χ
Earlier
results

QP-super-
hexagons

§4.2.1
Fig. 4

QP z1 = · · · = z6 ∈ R Any [25]

Unequal QP-super-
hexagons

§4.2.1
Fig. 4

QP
z1 = z2 = z3 6=
z4 = z5 = z6 ∈ R

|χ| ≪ 1 New

QP-anti-hexagons,
QP-triangles etc.

§4.2.1
Fig. 5

QP Various: see (4.2) χ = 0 New

Super-
hexagons

§4.2.2
Fig. 6

Periodic z1 = · · · = z6 ∈ R Any [15]

Triangular
superlattice

§4.2.2
Fig. 6

Periodic
Equal amplitudes
Phases ≈ π

3 ,
2π
3

Any [45]

Hexa-rolls
(rolls dominant)

§4.3.1
Fig. 7

QP and
periodic

z1 ≈ z2 ≈ z3 ≪ z4,
z5 = z6 = 0

χ neither
too small nor
too large

New

Hexa-rolls
(balanced)

§4.3.2
Fig. 7

QP and
periodic

z1 ≈ z2 ≈ z3 ∼ z4,
z5 = z6 = 0

|χ| ≪ 1 New

Table 1
Summary of the different solutions we consider. “Periodic” and “QP” refer to periodic (α ∈ Ep ∩ E0) and
quasiperiodic (α ∈ E2) respectively. We give examples of the six zj amplitudes as well as restrictions on the
values of χ. The term “super-hexagon” refers to the superposition of two hexagonal patterns, which can be
equal or unequal amplitude. The last column gives references to relevant earlier results or indicates whether the
solutions are new.

amplitude solutions of the untruncated amplitude equations (1.3). One remarkable result is172

that the formal expansion in powers of the amplitude (and parameter χ in the cases when χ is173

close to 0) of the bifurcating patterns is given at leading order by the same formulae in both the174

quasiperiodic and the periodic cases. From solutions of the amplitude equations, the mathe-175

matical proof of existence of the periodic patterns is given by the classical Lyapunov–Schmidt176

method, while for quasipatterns the proof follows the same lines as in [25]. The truncated177

expansion of the formal power series provides the first approximation to the quasipattern178

solution, which is a starting point for the Newton iteration process, using the Nash–Moser179

method for dealing with the small divisor problem [25] (for more details see §4.2.1).180

We find several new types of solution, in the quasiperiodic and in the periodic cases, and181

in the χ 6= 0 and |χ| ≪ 1 cases. These are summarized in Table 1. The most significant182

new class of solutions is the superposition of hexagons and roll patterns (hexa-rolls), with the183

rolls arranged at almost any orientation with respect to the hexagons (α ∈ (Ep ∪E2)∩E0) and184

translated with respect to each other by arbitrary amounts. These bifurcate directly from the185

featureless pattern even when χ is not small (provided χ is not too large, see §4.3.1), in both186

the periodic and the quasiperiodic cases. In the quasiperiodic case, the phason symmetry [17]187

characteristic of quasipatterns leads to the freedom to have arbitrary relative translations of188
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SUPERPOSITION OF HEXAGONAL LATTICES 7

the hexagons and rolls; finding this same freedom in the periodic case was a surprise.189

We also show that the particular example of periodic triangular superlattice patterns190

reported experimentally in [29] (see Figure 1a) and explored theoretically in [45] can also be191

found in a much wider class of periodic lattices. Moreover, for nearby angles α ∈ E2, we find192

that the quasiperiodic super-hexagons can be thought of as long-range modulations between193

the periodic super-hexagons and two types of periodic superlattice triangles (see Figure 6).194

Our work extends the periodic results of [15] to the quasiperiodic case, including quasiperi-195

odic versions of the anti-hexagon, super-triangle and anti-triangle patterns that occur with196

χ = 0. We also extend the previous quasiperiodic work of [19, 25], which took χ = 0: we197

find small-amplitude bifurcating solutions in (1.3) for any χ 6= 0, including new quasiperiodic198

superposed hexagon patterns with unequal amplitudes for 0 < |χ| ≪ 1, and show that there199

are corresponding quasiperiodic (and periodic) solutions of the Swift–Hohenberg equation.200

Amongst the solutions we find in the quasiperiodic case are combinations of two hexagonal201

patterns, as well as the hexa-roll patterns mentioned above. In both the periodic and the202

quasiperiodic cases, the superposed hexagon and roll patterns are new, and would not be203

found using the equivariant bifurcation lemma as they have no symmetries (beyond periodic204

in that case). Also in both cases, we consider the possibility that χ is small, and use the205

method of [25] on power series in two small parameters to find new superposed hexagon206

patterns with unequal amplitudes, again out of range of the equivariant bifurcation lemma.207

We open the paper with a statement of the problem in section 2 and develop the formal208

power series for the amplitude equations in section 3. We solve these equations in section 4,209

focusing on the new solutions, and conclude in section 5. Some details of the definitions,210

examples and proofs are in the six appendices.211

2. Statement of the problem. We begin by explaining how we describe functions on212

lattices and quasilattices, and how the symmetries of the problem act on these functions.213

2.1. Lattices and quasilattices. In the Fourier plane, we have two sets of six basic wave214

vectors as illustrated in Figure 2: {kj ,−kj : j = 1, 2, 3} and {kj ,−kj : j = 4, 5, 6}, both215

equally spaced on the unit circle, with angle 2π
3 between k1, k2 and k3 and between k4, k5216

and k6, such that k1 + k2 + k3 = 0 and k4 + k5 + k6 = 0. The two sets of six vectors are217

rotated by an angle α (0 < α < π
3 ) with respect to each other, so that k1 makes an angle −α/2218

with the x axis, while k4 makes an angle α/2 with the x axis. The case α = π
6 corresponds to219

the situation 12-fold quasipattern treated in [10], though with χ = 0.220

The lattice (in the periodic case) or quasilattice Γ are made up of integer sums of the six221

basic wave vectors:222

(2.1) Γ =



k ∈ R2 : k =

6∑

j=1

mjkj , with mj ∈ Z



 .223

Notice that if k ∈ Γ then −k ∈ Γ. In the periodic case, the lattice is not dense, as in224

Figure 2(a), while in the quasiperiodic case, the points in Γ are dense in the plane.225

The periodic case occurs whenever the two sets of six wave vectors are not rationally226

independent, meaning that, for example, k4, k5 and k6 can all be written as rational sums of227
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8 G. IOOSS AND A. M. RUCKLIDGE

k1 and k2. This happens whenever cosα and cos(α + π
3 ) are both rational, and in this case,228

patterns defined by (1.2) are periodic in space. We define the set Ep to be these angles.229

Definition 2.1. Periodic case: the set Ep of angles is defined as230

Ep :=
{
α ∈

(
0,

π

3

)
: cosα ∈ Q and cos

(
α+

π

3

)
∈ Q

}
.231

In this case, Γ is a lattice with hexagonal symmetry. We can replace cos(α + π
3 ) in this232

definition by
√
3 sinα. The set Ep has the following properties:233

Lemma 2.2. (i) The set Ep is dense and has zero measure in (0, π3 ).234

(ii) If the wave vectors k1, k2, k4 and k5 are not independent on Q, then α ∈ Ep.235

(iii) If α ∈ Ep then there exist co-prime integers a, b such that236

a > b >
a

2
> 0, a ≥ 3, a+ b not a multiple of 3,237

cosα =
a2 + 2ab− 2b2

2(a2 − ab+ b2)
,

√
3 sinα =

3a(2b− a)

2(a2 − ab+ b2)
.(2.2)238

239

Then the wave vectors kj are integer combinations of two smaller vectors s1 and s2, of equal240

length λ = (a2 − ab+ b2)−1/2, making an angle of 2π
3 , with241

k1 = as1 + bs2, k2 = (b− a)s1 − as2, k3 = −bs1 + (a− b)s2,(2.3)242

k4 = as1 + (a− b)s2, k5 = −bs1 − as2, k6 = (b− a)s1 + bs2.243244

Part (ii) of the Lemma is proved in [25], and parts (i) and (iii) are proved in Appendix C.245

The vectors s1 and s2 are illustrated in Figure 2 in the case (a, b) = (3, 2) with λ = 1/
√
7.246

Requiring a + b not to be a multiple of 3 means that we need to allow 0 < α < π
3 in the247

periodic case. In the quasiperiodic case (α ∈ Eqp), we can always take α to be the smallest248

of the angles between the vectors, which is why we define the set Eqp to be the complement249

of Ep within the interval (0, π6 ].250

In (2.1), vectors k ∈ Γ are indexed by six integers m = (m1, . . . ,m6) ∈ Z6. However,251

using the fact that k1 + k2 + k3 = 0 and k4 + k5 + k6 = 0, the set Γ can be indexed by fewer252

than six integers, and any k ∈ Γ may be written, in both the periodic and the quasiperiodic253

cases, as254

(2.4) k(m) = m1k1 +m2k2 +m4k4 +m5k5, (m1,m2,m4,m5) ∈ Z4,255

though in fact Γ is indexed by two integers in the periodic case α ∈ Ep.256

2.2. Functions on the (quasi)lattice. We are now in a position to specify more precisely257

the form of the sum in (1.2). The function u(x) is a real function that we write in the form258

of a Fourier expansion with Fourier coefficients u(k):259

(2.5) u(x) =
∑

k∈Γ

u(k)eik·x, u(k) = ū(−k) ∈ C.260
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With k ∈ Γ written as in (2.4), in the quasiperiodic case (α ∈ Eqp) four indices are needed in261

the sum since the four vectors in (2.4) are rationally independent. In the periodic case, two262

indices are needed. A norm Nk for α ∈ Eqp is defined by263

Nk(m) = |m1|+ |m2|+ |m4|+ |m5| = |m|,264

where the coefficients mj are uniquely defined for a given vector k ∈ Γ. To give a meaning to265

the above Fourier expansion we need to introduce Hilbert spaces Hs, s ≥ 0 :266

Hs =

{
u =

∑

k∈Γ

u(k)eik·x; u(k) = u(−k) ∈ C,
∑

k∈Γ

|u(k)|2(1 +N2
k)

s < ∞
}
,267

It is known that Hs is a Hilbert space with the scalar product268

〈u, v〉s =
∑

k∈Γ

(1 +N2
k)

su(k)v(k),269

and that Hs is an algebra for s > 2 (see [10]), and possesses properties of Sobolev spaces Hs270

in dimension 4, for example u is of class C l for s > l + 2. For α ∈ Eqp, a function in Hs,271

defined by a convergent Fourier series as in (2.5), represents in general a quasipattern, i.e., a272

function that is quasiperiodic in all directions. It is possible of course for such functions still273

to be periodic (e.g., rolls or hexagons) if subsets of the Fourier amplitudes are zero. With this274

definition of the scalar product, the twelve basic modes are orthogonal in Hs and orthonormal275

in H0:276

〈
eikj ·x, eikl·x

〉
0
=

〈
e−ikj ·x, e−ikl·x

〉
0
= δj,l and

〈
e±ikj ·x, e∓ikl·x

〉
0
= 0,277

where δj,l is the Kronecker delta.278

The following useful Lemma is proven in [25]:279

Lemma 2.3. For nearly all α ∈ (0, π6 ], and in particular for α ∈ Qπ ∩ (0, π6 ], the only280

solutions of |k(m)| = 1 are ±kj, j = 1, . . . , 6. These vectors can be expressed with four281

integers as in (2.4):282

m = (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1),±(1, 1, 0, 0),±(0, 0, 1, 1).283

For these values of α, the only vectors in Γ that are on the unit circle are the original twelve284

vectors, defining the set E0:285

Definition 2.4. E0 is the set of α’s such that Lemma 2.3 applies: the set of α ∈ (0, π6 ] such286

that the only solutions of |k(m)| = 1 are ±kj, j = 1, . . . , 6.287

The set E0 is dense and of full measure in (0, π6 ] (see [25], proof of Lemma 5), and contains288

angles α ∈ Ep and α ∈ Eqp. Not every α ∈ Ep is also in E0; for example, if (a, b) = (8, 5),289

we have 3k1 + k2 − 2k4 + k5 = (5b − 4a)s2 = (0, 1), which is a vector on the unit circle but290

not in the original twelve. For α ∈ Eqp, it is possible to show, for example, that α ≈ 25.66◦291

(cosα = 1
4

√
13) is in E0, while α ≈ 26.44◦ (cosα = 1

12(5 +
√
33)) is not (neither of these292

examples is a rational multiple of π). See Appendix B for details of these two examples.293
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10 G. IOOSS AND A. M. RUCKLIDGE

2.3. Symmetries and actions. Our problem possesses important symmetries. First, the294

system (1.1) is invariant under the Euclidean group E(2) of rotations, reflections and trans-295

lations of the plane. We denote by Rθu the pattern u rotated by an angle θ centered at the296

origin, so (Rθu)(x) = u(R−θx), where R−θx is x rotated by an angle −θ. We define similarly297

the reflection τ in the x axis, and the translation Tδ by an amount δ, so (τu)(x, y) = u(x,−y)298

and (Tδu)(x) = u(x − δ). Finally, in the case χ = 0, equation (1.1) is odd in u and so299

commutes with the symmetry S defined by Su = −u. If χ 6= 0, then in addition to the change300

u → −u, we need to change χ → −χ.301

The leading order part v1(x) of our solution will be as in (1.2):302

(2.6) v1(x) =

6∑

j=1

zje
ikj ·x + z̄je

−ikj ·x, with zj ∈ C.303

With Fourier modes restricted to those with wavevectors in Γ, not all symmetries in E(2) are304

possible, in particular, only rotations that preserve the (quasi)lattice Γ are permitted. Those305

that are allowed act on the basic Fourier functions as follows:306

Tδ(e
ikj ·x) = eikj ·(x−δ),307

Rπ
3
(eik1·x, . . . , eik6·x) = (e−ik3·x, e−ik1·x, e−ik2·x, e−ik6·x, e−ik4·x, e−ik5·x),308

τ(eik1·x, . . . , eik6·x) = (eik4·x, eik6·x, eik5·x, eik1·x, eik3·x, eik2·x).309310

This leads to a representation of the symmetries acting on the six complex amplitudes zj as311

Tδ : (z1, . . . , z6) 7→
(
z1e

−ik1·δ, z2e
−ik2·δ, z3e

−ik3·δ, z4e
−ik4·δ, z5e

−ik5·δ, z6e
−ik6·δ

)
,312

Rπ
3
: (z1, . . . , z6) 7→ (z̄2, z̄3, z̄1, z̄5, z̄6, z̄4) ,(2.7)313

τ : (z1, . . . , z6) 7→ (z4, z6, z5, z1, z3, z2).314315

We will use these symmetries, as well as the “hidden symmetries” in E(2) [13–15], to restrict316

the form of the formal power series for the amplitudes zj .317

3. Formal power series for solutions. In this section, we look for amplitude equations318

for solutions of (1.1), expressed in the form of a formal power series of the following type319

(3.1) u(x) =
∑

n≥1

vn(x), µ =
∑

n≥1

µn,320

where vn and µn are real. As in [25], the leading order part v1 of a solution u satisfies321

L0v1 = 0,322

where the linear operator L0 is defined by323

L0 = (1 +∆)2,324
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so that v1 lies in the kernel of L0. Our twelve chosen wavevectors ±kj all have length 1, so325

L0e
±ikj ·x = 0, and we can write v1 as a linear combination of these waves as in (2.6).326

Higher order terms are written concisely using multi-index notation: let p = (p1, . . . , p6)327

and p′ = (p′1, . . . , p
′
6), where pj and p′j are non-negative integers, and define328

zp = zp11 zp22 zp33 zp44 zp55 zp66 and z̄p
′

= z̄
p′
1

1 z̄
p′
2

2 z̄
p′
3

3 z̄
p′
4

4 z̄
p′
5

5 z̄
p′
6

6 .329

We also take |p| = p1 + · · ·+ p6 and |p′| = p′1 + · · ·+ p′6. Each order n means a corresponding330

degree in monomials zpz̄p
′
with n = |p|+ |p′|, so we look for vn and µn of the form331

(3.2) vn(x) =
∑

|p|+|p′|=n

zpz̄p
′

vp,p′(x) and µn =
∑

|p|+|p′|=n

zpz̄p
′

µp,p′ .332

Here, µp,p′ are constants and vp,p′(x) are functions made up of sums of modes of order333

n = |p|+ |p′|, such that334

〈
vp,p′ , e±ikj ·x

〉
0
= 0, for n > 1 and j = 1, . . . , 6.335

Writing (1.1) as336

(3.3) L0u = µu− χu2 − u3337

and replacing u and µ by their expansions (3.1) and (3.2), we project the PDE (1.1) onto338

the kernel and the range of L0. Solving (3.3) is equivalent to solving the projection of (3.3)339

onto the kernel together with the projection of (3.3) onto the orthogonal complement of the340

kernel. Notice that for the quasipattern case the range is not closed, so that the projection341

on the range is in fact a projection onto the orthogonal complement of the kernel. The342

operator L0 is self adjoint, so the left hand side of (3.3) is orthogonal to the kernel of L0:343

〈L0u, e
±ikj ·x〉0 = 〈u,L0e

±ikj ·x〉0 = 0 for any u. In fact, for any given degree n > 1, the right344

hand side of (3.3) is a finite Fourier series, and eliminating the part lying in the kernel gives345

a remaining series with Fourier modes eik·x, with k ∈ Γ apart from {±kj , j = 1, . . . , 6}. For346

these modes we have |k| 6= 1 since α ∈ E0. Then, the operator L0 has a formal pseudo-inverse347

on its range that is orthogonal to the kernel of L0. This pseudo-inverse is a bounded operator348

in any Hs when α ∈ E0 ∩ Ep, since in the periodic case, nonlinear modes are on a lattice Γ349

and are bounded away from the unit circle. However, the pseudo-inverse is unbounded when350

α ∈ Eqp as a result of the presence of small divisors (see [25]). But, for a formal computation of351

the power series (3.2), we only need at each order to pseudo-invert a finite Fourier series, which352

is always possible provided that α ∈ E0. Solving the range equation allows us to get Q0u,353

which is the part of u orthogonal to the kernel, as functions of (v1, µ), with v1 given by (2.6).354

Taking the series obtained by solving the range equation (formally in the quasipattern case),355

and replacing them in the kernel equation (6 complex components), leads to356

(3.4) 0 = µzj − Pj(χ, µ, z1, . . . , z6, z̄1, . . . , z̄6),357

where j = 1, . . . , 6 and358

Pj(χ, µ, z1, . . . , z6, z̄1, . . . , z̄6) =
〈
χu2 + u3, eikj ·x

〉
0
,359
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12 G. IOOSS AND A. M. RUCKLIDGE

where u here is thought of as a function of z and z̄ through the formal power series (3.1) and360

the expansion (3.2). The dependency in µ of Pj occurs at orders at least µ|zj |3.361

Expanding Pj in powers of (µ, z1, . . . , z6, z̄1, . . . , z̄6) results in a convergent power series in362

the periodic case (the Pj functions are analytic in some ball around the origin), but in general363

these power series are not convergent in the quasiperiodic case. Nonetheless, the formal power364

series are useful in the proof of existence of the corresponding quasipatterns.365

We can now use the symmetries of the problem to investigate the structure of the bifurca-366

tion equation (3.4). The equivariance of (3.3) under the translations Tδ and its propagation367

onto the bifurcation equation, using (2.7), leads to368

(3.5) eik1·δP1(χ, µ, z1e
−ik1·δ, . . . , z̄6e

ik6·δ) = P1(χ, µ, z1, . . . , z̄6).369

A typical monomial in P1 has the form zpz̄p
′
, so let us define370

n1 = p1 − p′1 − 1, n2 = p2 − p′2, n3 = p3 − p′3,371

n4 = p4 − p′4, n5 = p5 − p′5, n6 = p6 − p′6.372373

Then, a monomial appearing in P1 should satisfy (3.5), which leads to374

n1k1 + n2k2 + n3k3 + n4k4 + n5k5 + n6k6 = 0,375

and, since k1 + k2 + k3 = 0 and k4 + k5 + k6 = 0, we obtain376

(3.6) (n1 − n3)k1 + (n2 − n3)k2 + (n4 − n6)k4 + (n5 − n6)k5 = 0,377

which is valid in all cases (periodic or not).378

In the quasilattice case, the wave vectors k1, k2, k4 and k5 are rationally independent, so379

(3.6) implies n1 = n2 = n3 and n4 = n5 = n6, which leads to monomials of the form380

z1u
p′
1

1 u
p′
2

2 u
p′
3

3 u
p′
4

4 u
p′
5

5 u
p′
6

6 qn1

1 qn4

4 for n1 ≥ 0 and n4 ≥ 0,381

z1u
p′
1

1 u
p′
2

2 u
p′
3

3 up44 up55 up66 qn1

1 q̄
|n4|
4 for n1 ≥ 0 and n4 < 0,382

z̄2z̄3u
p1
1 up22 up33 u

p′
4

4 u
p′
5

5 u
p′
6

6 q̄
|n1|−1
1 qn4

4 for n1 < 0 and n4 ≥ 0,383

z̄2z̄3u
p1
1 up22 up33 up44 up55 up66 q̄

|n1|−1
1 q̄

|n4|
4 for n1 < 0 and n4 < 0,384385

where we define386

uj = zj z̄j , q1 = z1z2z3 and q4 = z4z5z6.387

Then, the quasilattice case gives the following structure for P1:388

(3.7) P1(χ, µ, z1, . . . , z̄6) = z1f1(χ, µ, u1, . . . , u6, q1, q4, q̄4) + z̄2z̄3f2(χ, µ, u1, . . . , u6, q̄1, q4, q̄4),389

where f1 and f2 are power series in their arguments. We deduce the five other components of390

the bifurcation equation by using the equivariance under symmetries Rπ
3
, τ , and S (changing391
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χ to −χ), observing that392

Rπ
3
: (u1, u2, u3, u4, u5, u6, q1, q4) 7→ (u2, u3, u1, u5, u6, u4, q̄1, q̄4),393

τ : (u1, u2, u3, u4, u5, u6, q1, q4) 7→ (u4, u6, u5, u1, u3, u2, q4, q1),394

S : (χ, u1, u2, u3, u4, u5, u6, q1, q4) 7→ (−χ, u1, u2, u3, u4, u5, u6,−q1,−q4).395396

Equivariance under symmetry Rπ, which changes zj into z̄j , gives the following property of397

functions fj in (3.7)398

f1(χ, µ, u1, . . . , u6, q̄1, q̄4, q4) = f̄1(χ, µ, u1, . . . , u6, q1, q4, q̄4),399

f2(χ, µ, u1, . . . , u6, q1, q̄4, q4) = f̄2(χ, µ, u1, . . . , u6, q̄1, q4, q̄4).400

It follows that the coefficients in f1 and in f2 are real. Equivariance under symmetry S leads401

to the property that in (3.7) f1 and f2 are respectively even and odd in (χ, q1, q4).402

In the periodic case, when α ∈ Ep, we deduce from Appendix D that P1(χ, z1, . . . , z̄6) may403

be written as404

z1f3(χ, µ, u1, . . . , u6, q1, q4, q̄4, ql,k, q̄l,k) +405

+ z̄2z̄3f4(χ, µ, u1, . . . , u6, q̄1, q4, q̄4, ql,k, q̄l,k) +(3.8)406

+
∑

s,t

q′s,tfs,t(χ, µ, u1, . . . , u6, q1, q̄1, q4, q̄4, ql,k, q̄l,k),407

408

where the monomials ql,k, l = I, II, III, IV, V, V I, V II, V III, IX, and k = 1, 2, 3, are defined409

in Appendix D, the functions fj depend on all arguments ql,k and q̄l,k, and the monomials410

q′s,t, s = IV, V, V I, V II, V III, IX, t = 1, 2, 3, are defined by411

q′s,t =
q̄s,t
z̄1

.412

We observe that the “exotic” terms with lowest degree in (3.8) have degree 2a − 1, which is413

at least of 5th order, since a ≥ 3. Moreover, the symmetries act as indicated in Appendix D.414

4. Solutions of the bifurcation equations. The strategy for proving existence of solutions415

of the PDE (1.1) is first to find solutions of the amplitude equations Pj(χ, z1, . . . , z̄6) = µzj416

truncated at some order, and then to use an appropriate implicit function theorem to show417

that there is a corresponding solution to the PDE, using the results of [25] in the quasiperiodic418

case. We refer the reader to Table 1 for a summary of the solutions we find. The main ones419

are periodic and quasiperiodic versions of equal amplitude superpositions of hexagons (super-420

hexagons, for any χ), unequal amplitude superpositions of hexagons (unequal super-hexagons,421

|χ| ≪ 1 only), and superpositions of hexagons and rolls (hexa-rolls, χ not too large).422

4.1. Truncation to cubic order. Let us first consider the terms up to cubic order for P1.423

In the periodic case, where we notice that a ≥ 3, and in the quasiperiodic case, we find the424

same equation:425

P
(3)
1 = α0z̄2z̄3 + z1

6∑

j=1

αjuj .426
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14 G. IOOSS AND A. M. RUCKLIDGE

We compute coefficients αj , j = 0, . . . , 6 from (see Appendix E)427

µz1 = P
(3)
1 = χ〈v21, eik1·x〉+ 〈v31, eik1·x〉 − 2χ2〈v1L̃0

−1
Q0v

2
1, e

ik1·x〉428

where u = v1 (2.6) at leading order, the scalar product is the one of H0, Q0 is the orthogonal429

projection on the range of L0, L̃0 being the restriction of L0 on its range, the inverse of which430

is the pseudo-inverse of L0, as explained above in section 3, as Q0v
2
1 has a finite Fourier series.431

The higher orders (at increasing orders) are uniquely determined from the infinite dimensional432

part of the problem, provided that α ∈ E0, they start from order at least |v1|4.433

It is straightforward to check that434

α0 = 2χ,435

α1 = 3− χ2c1,436

α2 = α3 = 6− χ2c2,437

α4 = 6− χ2cα,438

α5 = 6− χ2cα+,439

α6 = 6− χ2cα−,440441

where c1, c2 are constants and cα, cα+ and cα− are real functions of α (real because of the442

equivariance under Rπ, see the detailed computation in Appendix E). Hence we have the443

bifurcation system, written up to cubic order in zj444

2χz2z3 = z1[µ− α1u1 − α2(u2 + u3)− α4u4 − α5u5 − α6u6]445

2χz1z3 = z2[µ− α1u2 − α2(u1 + u3)− α4u5 − α5u6 − α6u4]446

2χz1z2 = z3[µ− α1u3 − α2(u1 + u2)− α4u6 − α5u4 − α6u5](4.1)447

2χz5z6 = z4[µ− α1u4 − α2(u5 + u6)− α4u1 − α5u3 − α6u2]448

2χz4z6 = z5[µ− α1u5 − α2(u4 + u6)− α4u2 − α5u1 − α6u3]449

2χz4z5 = z6[µ− α1u6 − α2(u4 + u5)− α4u3 − α5u2 − α6u1].450451

It remains to find all small solutions of these six equations and check whether they are affected452

by including further higher order terms.453

Before proceeding, we note that in the periodic case (α ∈ Ep∩E0), the equivariant branching454

lemma can be used to find some bifurcating branches of patterns [15]. In the case χ 6= 0, where455

there is no S symmetry, these branches are called:456

Super-hexagons: z1 = z2 = z3 = z4 = z5 = z6 ∈ R,457

Simple hexagons: z1 = z2 = z3 ∈ R, z4 = z5 = z6 = 0,458

Rolls (stripes): z1 ∈ R, z2 = z3 = z4 = z5 = z6 = 0,459

Rhombs1,4: z1 = z4 ∈ R, z2 = z3 = z5 = z6 = 0,460

Rhombs1,5: z1 = z5 ∈ R, z2 = z3 = z4 = z6 = 0,461

Rhombs1,6: z1 = z6 ∈ R, z2 = z3 = z4 = z5 = 0,462463
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where the conditions on the zj ’s give examples of each type of solution. When χ = 0 and464

there is S symmetry, there are additional branches:465

Anti-hexagons: z1 = z2 = z3 = −z4 = −z5 = −z6 ∈ R,466

Super-triangles: z1 = z2 = z3 = z4 = z5 = z6 ∈ Ri,467

Anti-triangles: z1 = z2 = z3 = −z4 = −z5 = −z6 ∈ Ri,(4.2)468

Simple triangles: z1 = z2 = z3 ∈ Ri, z4 = z5 = z6 = 0,469

Rhombs1,2: z1 = z2 ∈ R, z3 = z4 = z5 = z6 = 0.470471

For (a, b) = (3, 2), it is known that there are additional branches of the form |z1| = · · · = |z6|,472

with arg(z1) = · · · = arg(z6) ≈ ±π
3 and arg(z1) = · · · = arg(z6) ≈ ±2π

3 , where the amplitude473

and phases of the modes are determined at fifth order [45]. We recover all these solutions474

below for all α ∈ Ep ∩ E0, with the addition of a new branch, consisting of a superposition475

of hexagons and rolls, for example with z1, z2, z3, z4 6= 0 and z5 = z6 = 0. This new kind of476

solution exists in both the periodic and quasiperiodic cases, but only exists if α1, α2, α4, α5,477

and α6 satisfy certain inequalities (true if χ is not too large). This new solution cannot be478

found using the equivariant branching lemma since it does not live in a one-dimensional space479

fixed by a symmetry subgroup (though see also [33]).480

We will focus below primarily on the new types of solutions: superposition of two hexagon481

patterns and superposition of hexagons and rolls, but even in the quasiperiodic case, there482

are branches of periodic patterns. These include rolls, simple hexagons, rhombs etc., and can483

be found even with α ∈ Eqp. But, since they involve only a reduced set of wavevectors that484

can be accommodated in periodic domains, there is no need for the quasiperiodic techniques485

of [25] in these cases.486

4.2. Super-hexagons: superposition of two hexagonal patterns. In the case q1q4 6= 0487

(all six amplitudes are non-zero), we multiply each equation in (4.1) by the appropriate z̄j to488

obtain at cubic order489

2χq1 = u1[µ− α1u1 − α2(u2 + u3)− α4u4 − α5u5 − α6u6]490

2χq1 = u2[µ− α1u2 − α2(u1 + u3)− α4u5 − α5u6 − α6u4]491

2χq1 = u3[µ− α1u3 − α2(u1 + u2)− α4u6 − α5u4 − α6u5](4.3)492

2χq4 = u4[µ− α1u4 − α2(u5 + u6)− α4u1 − α5u3 − α6u2]493

2χq4 = u5[µ− α1u5 − α2(u4 + u6)− α4u2 − α5u1 − α6u3]494

2χq4 = u6[µ− α1u6 − α2(u4 + u5)− α4u3 − α5u2 − α6u1].495496

This implies that q1 and q4 are real since the uj ’s and the coefficients are real, and shows that497

u1 = u2 = u3 and u4 = u5 = u6498

is always a possible solution.499

There are other possible solutions, particularly when χ is close to zero. Such solutions are500

difficult to find in general as they involve solving six coupled cubic equations. Furthermore,501
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other solutions at cubic order might not give solutions when we consider higher order terms502

in the bifurcation system (3.4). Considering these further is beyond the scope of this paper.503

To solve (4.3) with u1 = u2 = u3 and u4 = u5 = u6, and with q1 and q4 real, let us set504

zj = εeiθj for j = 1, 2, 3, ε > 0, Θ1 = θ1 + θ2 + θ3 = kπ,505

zj = δeiθj for j = 4, 5, 6, δ > 0, Θ4 = θ4 + θ5 + θ6 = k′π,(4.4)506507

where k and k′ are integers, so u1 = u2 = u3 = ε2, u4 = u5 = u6 = δ2, q1 = ε3e−iΘ1 = ε3(−1)k508

and q4 = δ3e−iΘ4 = δ3(−1)k
′
. Then, for εδ > 0 we have only 2 equations509

2χε(−1)k = µ− (α1 + 2α2)ε
2 − (α4 + α5 + α6)δ

2,510

2χδ(−1)k
′

= µ− (α1 + 2α2)δ
2 − (α4 + α5 + α6)ε

2.511

It follows that512

(4.5) 2χ
(
ε(−1)k − δ(−1)k

′
)
= [(α4 + α5 + α6)− (α1 + 2α2)](ε

2 − δ2).513

Hence
(
ε(−1)k − δ(−1)k

′
)
is a factor in (4.5), and there are two types of solutions, depending514

on whether this factor is zero or not.515

Equal amplitude super-hexagons. We first consider the case where the factor is zero; it516

follows that517

δ = ε > 0 and k = k′ = 0 or 1,518

and519

(4.6) µ = 2χε(−1)k + (α1 + 2α2 + α4 + α5 + α6)ε
2,520

or equivalently,521

µ = 2χε(−1)k + (33− χ2(c0 + 2c1 + cα + cα+ + cα−))ε
2.522

We call these solutions super-hexagons in the periodic case, as in [15], and QP-super-hexagons523

in the quasiperiodic case. Notice that when |χ| is not too large, the coefficient of ε2 is positive,524

and k is set by the relative signs of µ and χ. For |χ| ≪ ε, the bifurcation is supercritical525

(µ > 0).526

Unequal amplitude super-hexagons. If the factor is non-zero, this implies527

ε(−1)k 6= δ(−1)k
′

, i.e., δ 6= ε, or (−1)k 6= (−1)k
′

.528

Dividing (4.5) by the non-zero factor leads to529

2χ = C
(
ε(−1)k + δ(−1)k

′
)
,530

with531

C
def
= (α4 + α5 + α6)− (α1 + 2α2).532
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This leads to the non-degeneracy condition C 6= 0, and to the fact that this unequal amplitude533

solution is valid only for |χ| close to 0. The assumption on C is satisfied for most values of χ534

since535

C = 3− χ2(cα + cα+ + cα− − c1 − 2c2).536

Hence, for |χ| close enough to 0, we find new solutions parameterized by ε > 0 and k:537

(4.7) δ =

[
2χ

3
− ε(−1)k

]
(−1)k

′

+O(χ3).538

Here k may be 0 or 1 and k′ is chosen so that δ > 0. At leading order in (ε, χ), we have539

(4.8) µ = 33ε2 − 22χε(−1)k + 8χ2.540

The solutions are unequal (δ 6= ε, with χ 6= 0) superpositions of hexagons, so we call them541

unequal super-hexagons and unequal QP-super-hexagons in the periodic and quasiperiodic542

cases.543

The next step is to show that these solutions to the cubic amplitude equations persist as544

solutions of the bifurcation equations (3.4) once higher order terms are considered. This is545

simpler in the quasiperiodic case as there are no resonant higher order terms to consider.546

4.2.1. Quasipattern cases – higher orders. In this case wave vectors k1, k2, k4 and k5547

are rationally independent. Using the symmetries, the general form of the six-dimensional bi-548

furcation equation is deduced from (3.7) and (4.4), which gives two real bifurcation equations,549

where functions fj are formal power series in their arguments:550

µ = f1(χ, µ, ε
2, ε2, ε2, δ2, δ2, δ2, ε3(−1)k, δ3(−1)k

′

) +551

+ ε(−1)kf2(χ, µ, ε
2, ε2, ε2, δ2, δ2, δ2, ε3(−1)k, δ3(−1)k

′

),(4.9)552

µ = f1(χ, µ, δ
2, δ2, δ2, ε2, ε2, ε2, δ3(−1)k

′

, ε3(−1)k) +553

+ δ(−1)k
′

f2(χ, µ, δ
2, δ2, δ2, ε2, ε2, ε2, δ3(−1)k

′

, ε3(−1)k).554555

Equal amplitude QP-super-hexagons. It is clear that we still have solutions with556

ε(−1)k = δ(−1)k
′

, i.e., ε = δ > 0, k = k′,557

which leads to a single equation558

µ = f1(χ, µ, ε
2, ε2, ε2, ε2, ε2, ε2, ε3(−1)k, ε3(−1)k) +559

+ ε(−1)kf2(χ, µ, ε
2, ε2, ε2, ε2, ε2, ε2, ε3(−1)k, ε3(−1)k),(4.10)560561

which may be solved with respect to µ by the implicit function theorem adapted for use with562

formal power series: we use the implicit function theorem for analytic functions, suppressing563

the proof of convergence for the series. This gives a formal power series in ε, the leading order564

terms being (4.6).565
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18 G. IOOSS AND A. M. RUCKLIDGE

Following the process used in section 3 of [25] for solving the range equation (the projection566

of (1.1) on the orthogonal complement of kerL0, with zj = εeiθj , Θ1 = Θ4 = 0), we need567

typically to take (ε, µ, χ) in a “good set” of parameters, where the Diophantine conditions568

of Appendix A are useful. Then the bifurcation equation (4.10) may be solved by the usual569

implicit function theorem. Checking that at the end the parameters lie in the “good set”570

needs a “transversality condition,” which is the same as in [25]. The solution finally is proved571

to exist in a union of disjoint intervals for ε, going to full measure as ε goes to 0.572

Remark 4.1. In the case of a quasiperiodic lattice, for all formal solutions found below in573

the form of a power series of some amplitudes, the proof of existence of a true solution follows574

the same lines as above. So we shall not repeat the argument.575

Unequal amplitude QP-super-hexagons. Now, assuming that ε(−1)k 6= δ(−1)k
′
, and taking576

the difference between the two equations in (4.9), we find (simplifying the notation):577

0 = f1(χ, µ, ε
2, δ2, ε3(−1)k, δ3(−1)k

′

)− f1(χ, µ, δ
2, ε2, δ3(−1)k

′

, ε3(−1)k) +578

+ ε(−1)kf2(χ, µ, ε
2, δ2, ε3(−1)k, δ3(−1)k

′

)− δ(−1)k
′

f2(χ, µ, δ
2, ε2, δ3(−1)k

′

, ε3(−1)k)579

where we can simplify by the factor ε(−1)k − δ(−1)k
′
. The leading terms are580

0 = 2χ− C(ε(−1)k + δ(−1)k
′

),581

as in the cubic truncation, showing again that these solutions are only valid for χ close to 0. It582

is then clear that provided that C 6= 0, which holds for χ close to zero, the system formed by583

this last equation, with the first one of (4.9), may be solved with respect to δ and µ using the584

formal implicit function theorem (as above, since the solution given by the principal part is585

not degenerate) to obtain a formal power series in (ε, χ), their leading order terms being given586

in (4.7), (4.8). We notice that there are four degrees of freedom, with the values of θ1, θ2, θ4587

and θ5 being arbitrary. We also notice that we have two possible amplitudes depending on588

the parity of k. All these bifurcating solutions correspond to the superposition of hexagonal589

patterns of unequal amplitude, where the change in θj , j = 1, 2, 4, 5 correspond to a shift of590

each pattern in the plane.591

For both types of solution, we have thus proved that there are formal power series solutions592

of (3.3), unique up to the allowed indeterminacy on the θj , of the form (4.4). This does not593

prove that all solutions take the form (4.4). We can state594

Theorem 4.2 (Quasiperiodic superposed hexagons). Assume α ∈ E0 ∩ Eqp, then for ε, χ595
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μ

χ

0

(−1) χ > 0k

(−1) χ /3k

ε

8χ13/2 χ2 2
μ μ

ε

0
0

8χ2

(−1) χ < 0k

Figure 3. Domain of existence (shaded) of bifurcating unequal amplitude QP-super-hexagons, for small |χ|.
These solutions only bifurcate from µ = 0 when χ = 0.

Figure 4. Examples of quasipatterns: superposition of hexagons. Top row: α = π
12

= 15◦; bottom row:

α = 25.66◦ (cosα = 1

4

√
13). Left: equal amplitude QP-super-hexagons; center and right: unequal amplitude

QP-super-hexagons, with k = k′ (center) and k = k′ + 1 (right).

fixed, we can build a four-parameter formal power series solution of (3.3) of the form596

u(ε, χ, k,Θ) = εu1 +
∑

n≥2

εnun(χ, k,Θ), ε > 0, un⊥eikj ·x, j = 1, . . . , 6,(4.11)597

µ(ε, χ, k) = (−1)k2χε+ µ2(χ)ε
2 +

∑

n≥3

εnµn(χ, k), k = 0, 1,598

with u1 =
∑

j=1,...,6

ei(kj ·x+θj) + c.c., Θ = (θ1, . . . , θ6),599

µ2(χ) = 33− χ2(c1 + 2c2 + cα + cα+ + cα−)600

θ1 + θ2 + θ3 = kπ, θ4 + θ5 + θ6 = k′π, k = k′ = 0, 1601

un(−χ, k,Θ) = (−1)n+1un(χ, k,Θ), µn(−χ, k) = (−1)nµn(χ, k).602603
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These are the equal amplitude QP-super-hexagons. Moreover, for a range of (µ, χ) close to 0604

(see Figure 3), there are in addition two unequal amplitude QP-super-hexagon solutions (for605

k = 0, 1), given by606

u(ε, χ, k,Θ) = εu10 + δu11 +
∑

m+p≥2

εmχpump(k,Θ), ε > 0, δ > 0,607

ump⊥eikj ·x, j = 1, . . . , 6, u odd in (ε, χ),608

u10 =
∑

j=1,2,3

ei(kj ·x+θj) + c.c., u11 =
∑

j=4,5,6

ei(kj ·x+θj) + c.c.,(4.12)609

θ1 + θ2 + θ3 = kπ, k = 0, 1, θ4 + θ5 + θ6 = k′π, k′ = 0, 1 determined below,610

δ(ε, χ, k) = (−1)k
′




2χ

3
− (−1)kε+

∑

m+p≥2

εmχpδmp(k)



 , (−1)k

′

δ odd in ((−1)kε, χ),611

µ(ε, χ, k) = 33ε2 − 22(−1)kεχ+ 8χ2 +
∑

m+p≥3

εmχpµmp(k), µ even in ((−1)kε, χ).612

613

In the expression for δ, k′ is chosen so that δ > 0. For either type of solution, changing614

θ1, θ2, θ4, θ5 corresponds to translating each hexagonal pattern arbitrarily. Figure 4 shows615

examples of u1 for the two types of superposed hexagon quasipatterns, for two values of α.616

Then, for α ∈ E2, which is included in E0 ∩ Eqp, and using the same proof as in [25], both617

types of bifurcating quasipattern solutions of (1.1) are proved to exist. The equal amplitude618

QP-super-hexagons have asymptotic expansion (4.11), provided that ε is small enough, and619

the unequal amplitude QP-super-hexagons have asymptotic expansion (4.12), provided that ε, χ620

are small enough.621

Remark 4.3. Symmetries of quasipatterns are hard to write down precisely [7] since the622

arbitrary relative position of the two hexagonal patterns may mean that there is no point of623

rotation symmetry or line of reflection symmetry. Nonetheless, with ε = δ, the first type of624

solution is symmetric ‘on average’ under rotations by π
3 and reflections conjugate to τ . In625

fact the 4 parameter family of solutions is globally invariant under symmetries Rπ/3 and τ .626

Notice that, for the unequal amplitude QP-super-hexagon solutions, the reflection symmetry627

τ exchanges (k, ε) with (k′, δ).628

Remark 4.4. Let us observe that equal amplitude QP-super-hexagons for θj = 0, j =629

1, . . . , 6 were already obtained for χ = 0 in [25].630

In the case χ = 0, the unequal amplitude solutions do not exist. The original system (1.1)631

is equivariant under the symmetry S, which implies that in (3.7), f1 and f2 are respectively632

even and odd in (q1, q4). For ε = δ the bifurcation system reduces to two equations of the633

form634

µ = f1(µ, ε
2, q1, q4) + εe−iΘ1f2(µ, ε

2, q1, q4)635

µ = f1(µ, ε
2, q4, q1) + εe−iΘ4f2(µ, ε

2, q4, q1),636

and we may observe new quasipattern solutions, illustrated in Figure 5. The names here are637

analagous to the related periodic patterns [15].638
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Figure 5. Examples of quasipatterns: superposition of hexagons with χ = 0. Top row: α = π
12

= 15◦;

bottom row: α = 25.66◦ (cosα = 1

4

√
13). Left: QP-anti-hexagons; center: QP-super-triangles; right: QP-anti-

triangles.

QP-anti-hexagons are obtained for (also obtained in [25])639

θj = 0, j = 1, 2, 3,640

θj = π, j = 4, 5, 6,641

which leads to642

e−iΘ1 = 1, e−iΘ4 = −1,643

q1 = ε3 = −q4,644

and the parity properties of fj give only one bifurcation equation645

µ = f1(µ, ε
2, ε3,−ε3) + εf2(µ, ε

2, ε3,−ε3).646

QP-super-triangles are obtained for647

θj = π/2, j = 1, . . . , 6,648

which leads to649

e−iΘ1 = e−iΘ4 = i,650

q1 = −iε3 = q4,651

and it is clear that we have only one real bifurcation equation, with evenness (resp. oddness)652

with respect to the two last arguments of f1 (resp. f2) leading to653

µ = f1(µ, ε
2,−iε3,−iε3) + iεf2(µ, ε

2,−iε3,−iε3).654
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QP-anti-triangles are obtained for655

θj = π/2 j = 1, 2, 3,656

θj = −π/2, j = 4, 5, 6,657

which leads to658

e−iΘ1 = i, e−iΘ4 = −i,659

q1 = −iε3 = −q4,660

and the parity properties of fj give only one real bifurcation equation661

µ = f1(µ, ε
2,−iε3, iε3) + iεf2(µ, ε

2,−iε3, iε3).662

All these cases lead to series for u and µ, respectively odd and even in ε, and hence quasiperi-663

odic anti-hexagons, super-triangles and anti-triangles in (1.1) for α ∈ E2 and for χ = 0. Using664

the same arguments as above, we can say that these QP-anti-hexagons etc. are solutions of665

the PDE with χ = 0.666

4.2.2. Periodic case – higher orders. In this case we have more resonant terms in the667

bifurcation equation, as seen in (3.8). These resonant terms introduce relations between668

the phases of the complex amplitudes, so the periodic superposed hexagon solutions come669

in two-parameter, rather than four-parameter, families. We consider here only the equal670

amplitude solutions, with ε = δ, but even in this case there are two sub-types of solutions:671

super-hexagon solutions, and triangular superlattice solutions, where the phase relationships672

depend on amplitude. The triangular superlattice solutions we find are generalizations of those673

found by [45]; the name comes from the triagular appearance of the (a, b) = (3, 2) version of674

this periodic pattern (see Figure 1a and [29]).675

Super-hexagons. We notice that, in setting676

zj = εeiθj , ε > 0, j = 1, . . . , 6677

and taking678

(4.13) θ1 = θ2 = θ3 = −θ4 = −θ5 = −θ6 = k
π

3
679

we have q1 = q4 = (−1)kε3 and we can check that the nine sets Gj of invariant monomials680

satisfy (see Appendix D)681

G1 = ε2a, G2 = G′
2 = ε3a−bei(a+b)kπ, G3 = G′

3 = ε2a+beibkπ,682

G4 = ε4a−2b, G5 = G′
5 = ε3aeiakπ, G6 = ε2a+2b,683684

all these monomials being real. In Appendix D we show that each group on the same line above685

is invariant under the actions of Rπ/3 and τ . It then follows that the system of bifurcation686
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equations reduces to only one equation with real coefficients, as in the quasiperiodic case for687

the first solutions. We have now a solution of the form688

z1 = z2 = z3 = εeiθ,689

z4 = z5 = z6 = εe−iθ, θ = k
π

3
, k = 0, . . . , 5.690

The conclusion is that the power series starting as in (4.6) for µ in terms of ε is still valid for691

the periodic case (the modifications occuring at high order), provided we restrict the choice692

of arguments θj as (4.13). We show in Appendix F that solutions with k = 0, 2, 4 or with693

k = 1, 3, 5 may be obtained from one of them, in acting a suitable translation Tδ. It follows694

that we only find two different bifurcating patterns, corresponding to opposite signs of µ.695

Moreover, we notice that the solution obtained for k = 0 is changed into the solution obtained696

for k = 3 by acting the symmetry S on it, and changing χ into −χ. Finally, notice that since697

the Lyapunov–Schmidt method applies in this case, the series converges, for ε small enough.698

The above solutions have arguments θj = 0 or π that do not depend on parameters (µ, χ);699

these solutions correspond to super-hexagons.700

Triangular superlattice solutions. Now, in [45] other solutions were found for (a, b) = (3, 2),701

just taking into account of terms of order five in the bifurcation system. Let us show that702

these solutions exist indeed for any (a, b) and taking into account of all resonant terms.703

Let us consider the particular cases with704

zj = εeiθ,705

then the nine sets Gj of monomials defined in Appendix D satisfy706

G1 = ε2aei(4b−2a)θ, Rπ/3G1 = G1, τG1 = G1,707

G2 = G′
2 = ε3a−bei(a+b)θ, Rπ/3G2 = G2, τG2 = G2,708

G3 = G′
3 = ε2a+bei(2a−b)θ, Rπ/3G3 = G3, τG3 = G3,709

G4 = ε4a−2bei(4a−2b)θ, Rπ/3G4 = G4, τG4 = G4,710

G5 = G′
5 = ε3aei(2b−a)θ, Rπ/3G5 = G5, τG5 = G5,711

G6 = ε2a+2bei(2a+2b)θ, Rπ/3G6 = G6, τG6 = G6.712

Then the first bifurcation equation becomes713

(4.14) µ = f3 + εe−3iθf4 +
G1

ε2
fG1

+
G2

ε2
fG2

+
G4

ε2
fG4

+
G5

ε2
fG5

+
G6

ε2
fG6

,714

with all fj functions of (χ, µ, ε
2, ε3e3iθ, ε3e−3iθ, G1, G1, G2, G2, G3, G3, G4, G4, G5, G5, G6, G6).715

They have real coefficients, and are invariant under symmetry τ , while the arguments are716

changed into their complex conjugate by symmetry Rπ/3. It follows that the bifurcation717

system reduces to only one complex (because of the occurrence of θ) equation, where we can718

express the unknowns (µ, θ) as functions of ε. Then truncated at cubic order in (µ, ε) this719

equation reads720

µ = f
(0)
3 (χ, ε2, ε3e3iθ, ε3e−3iθ) + εe−3iθf

(0)
4 (χ, ε2),721

This manuscript is for review purposes only.



24 G. IOOSS AND A. M. RUCKLIDGE

which is a nice perturbation at order ε3 of the known equation722

µ = (α1 + 2α2 + α4 + α5 + α6)ε
2 + 2χεe−3iθ.723

This leads to the two types of solutions:724

e3iθ = ±1,725

µ = f
(0)
3 (χ, ε2,±ε3,±ε3)± εf

(0)
4 (χ, ε2).726

These solutions are not degenerate, so that, if we consider the complex equation (4.14), the727

implicit function theorem applies for solving with respect to (µ, θ) in convergent powers series728

of ε. This gives solutions of the form729

θl(ε) = l
π

3
+O(ε), l = 0, 1, 2, 3, 4, 5730

µ = f
(0)
3 (χ, ε2, (−1)lε3, (−1)lε3) + (−1)lεf

(0)
4 (χ, ε2) +O(ε4).731

Now, we observe that the cases l = 0, 3 lead to a real bifurcation equation, which fixes the732

argument θ = 0 or π. This recovers the super-hexagon solutions, already found. The remaining733

cases are the solutions suggested by [45] (for (a, b) = (3, 2), not including all resonant terms).734

Let us sum up the results in the following735

Theorem 4.5 (Periodic equal amplitude superposed hexagons). Assume α ∈ E0 ∩ Ep, then736

for ε small enough, and χ fixed, we can build convergent power series solutions of (3.3), of737

the form738

u(ε, χ, k) = εu1 +
∑

n≥2

εnun(χ, k), un⊥eikj ·x, j = 1, . . . , 6, n ≥ 2739

µ(ε, χ, k) = (−1)k2χε+ µ2(χ)ε
2 +

∑

n≥3

εnµn(χ, k),(4.15)740

un(−χ, k) = (−1)nun(χ, k), µn(−χ, k) = (−1)nµn(χ, k);741742

where µ is even in ((−1)kε, χ) and µ2(χ) is defined at Theorem 4.2 and such that, for super-743

hexagon solutions744

u1 =
∑

j=1,...,6

ei(kj ·x+θj) + c.c., θ1 = θ2 = θ3 = −θ4 = −θ5 = −θ6 = kπ, k = 0, or 1.745

For triangular superlattice solutions, we have746

u1 =
∑

j=1,...,6

ei(kj ·x+θ) + c.c., θ(ε, χ, k) = k
π

3
+

∑

n≥1

εnθn(χ, k), , k = 1, 2, 4, 5.747

Remark 4.6. For triangular superlattice solutions, the phases of the amplitudes are not748

independent of the parameters, in contrast to the super-hexagon solutions. These patterns are749

illustrated in Figure 6. The figure includes (middle row) periodic patterns with α = 21.79◦ and750
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Figure 6. Examples of periodic patterns: superposition of hexagons. Top row: α = 13.17◦ (cosα = 37

38
,

(a, b) = (5, 3)); middle row: α = 21.79◦ (cosα = 13

14
, (a, b) = (3, 2) – see also Figure 1a). For these, the

left column (super-hexagons) has θj = 0 for j = 1, . . . , 6. The middle and right (superlattice triangles) have
θj = 2π

3
and θj = 4π

3
respectively. The bottom row shows a related quasiperiodic example with α = 21.00◦, close

to 21.79◦, showing long-range modulation between the three periodic patterns in the middle row.

(bottom row) a quasiperiodic pattern with α = 21◦, showing how, with a slightly different751

value of α, the quasiperiodic pattern modulates between the three periodic solutions with752

l = 0, 2, 4.753

Remark 4.7. In the χ = 0 case, we can recover all the solutions found by [15] using these754

ideas.755

4.3. Hexa-rolls: superposition of hexagons and rolls. As in §4.2, we start with the cubic756

truncation of the quasiperiodic and periodic cases together, then consider the effect of higher757

order terms. Here we consider the case where q1 6= 0 and q4 = 0 in (4.1), so that we assume758

now759

q1 6= 0, z4 6= 0, z5 = z6 = 0.760
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Then the system (4.1) reduces to 4 equations761

2χq1 = u1[µ− α1u1 − α2(u2 + u3)− α4u4],762

2χq1 = u2[µ− α1u2 − α2(u1 + u3)− α6u4],763

2χq1 = u3[µ− α1u3 − α2(u1 + u2)− α5u4],(4.16)764

0 = µ− α1u4 − α4u1 − α5u3 − α6u2,765766

where again this implies that q1 is real. Below, we study solutions of the bifurcation problem,767

built on a lattice spanned by the four wave vectors k1, k2, k3, and k4, and so we find solutions768

composed of a superposition of hexagons and rolls. Unlike in the super-hexagon cases above,769

the three amplitudes (|z1|, |z2| and |z3|) of the hexagonal part of the pattern are of similar770

size but will not be exactly equal. We find two different types of solution distinguished by771

the relative magnitudes of the hexaonal and roll parts of the pattern. The first type occurs772

when |χ| is neither too small nor too large and is such that rolls dominate the hexagons. The773

second type occurs only for small |χ| and is such that rolls and hexagons are more balanced.774

4.3.1. Hexa-rolls: rolls dominate hexagons. A consistent balance of terms in (4.16) is775

to have u1, u2 and u3 be O(µ2), so that q1 is O(µ3), while u4 is O(µ). With this balance, at776

leading order we have the reduced system777

2χq1 = u1[µ− α4u4],778

2χq1 = u2[µ− α6u4],(4.17)779

2χq1 = u3[µ− α5u4],780

0 = µ− α1u4,781782

which leads to783

zj =
√
uje

iθj , j = 1, 2, 3,784

uj = µ2u
(0)
j , u4 =

µ

a1
,785

Θ1 = θ1 + θ2 + θ3 = kπ,786

with787

u
(0)
1 =

(α5 − α1)(α6 − α1)

4χ2a21
,788

u
(0)
2 =

(α5 − α1)(α4 − α1)

4χ2a21
,(4.18)789

u
(0)
3 =

(α4 − α1)(α6 − α1)

4χ2a21
,790

(−1)k = sign[χ(α1 − α4)].791792

The condition for the existence of this solution is that (α4 − α1), (α5 − α1), (α6 − α1) should793

be nonzero and have the same sign. This condition is realized in (1.1) provided that794

3 + χ2(c1 − cα), 3 + χ2(c1 − cα+), 3 + χ2(c1 − cα−),795
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have the same sign, which holds at least for |χ| not too large. For applying later the implicit796

function theorem, we typically need |µ| ≪ min(1, |χ|), so |χ| should also be not too small.797

Here, for |χ| not too large, α1 > 0, so the bifurcation is supercritical in this case.798

Now let us consider the full bifurcation system. Setting799

(4.19) uj = µ2u
(0)
j (1 + xj), j = 1, 2, 3, u4 =

µ

a1
(1 + x4),800

we replace these expressions in (4.16) plus higher order terms appearing in (3.7) or (3.8), and801

noticing that we obtain a real system of four equations in all periodic and quasiperiodic cases802

except in the periodic case when a− b = 1, as defined in Lemma 2.2.803

Remark 4.8. In the case α = π
6 , this combination of hexagons and rolls was reported804

by [28,32,49].805

Remark 4.9. In the periodic case when a − b = 1, a careful examination of high order806

resonant terms (as defined in Appendix D) shows that there remains six equations, instead807

of four. We might compute some new solution looking like the superposed hexagons and808

rolls (but with small |z5| and |z6|), however there are not strictly of the required form since809

q1q4 6= 0. We do not pursue these solutions further here.810

Then, dividing the first three equations in (4.17) (with (4.19)) by µ3, dividing the fourth one811

by µ, and computing the linear part in xj , we obtain812

a(x1 + x2 + x3)− u
(0)
1 ((1− α4

α1
)x1 −

α4

α1
x4) = h1,813

a(x1 + x2 + x3)− u
(0)
2 ((1− α6

α1
)x2 −

α6

α1
x4) = h2,(4.20)814

a(x1 + x2 + x3)− u
(0)
3 ((1− α5

α1
)x3 −

α5

α1
x4) = h3,815

x4 = h4,816817

with818

a = (−1)kχ

√
u
(0)
1 u

(0)
2 u

(0)
3 ,819

and all hj have µ in factor. The left hand side of the system (4.20) represents the differential820

at the origin with respect to (x1, x2, x3, x4), defining a matrix M ′ that needs to be inverted in821

order to use the implicit function theorem. The determinant of matrix M ′ can be computed822

and it is823

[3(−1)ksign(χ)− 2]

128χ6α9
1

[(α1 − α4)(α1 − α5)(α1 − α6)]
3,824

which is not zero. Therefore the implicit function theorem applies, so we can find series in825

powers of µ for (x1, x2, x3, x4) solving the full bifurcation system in both the quasiperiodic826

case (3.7) and the periodic case (3.8). We can state the following827
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Theorem 4.10 (Hexa-rolls: superposed hexagons and rolls with rolls dominant). Assume that828

α ∈ E0, and in case of a periodic lattice assume a − b > 1. Then for fixed values of χ such829

that830

(α4 − α1), (α5 − α1), (α6 − α1)831

are nonzero and have the same sign, and for µ close enough to 0, we can build a three-832

parameter formal power series in ε solution of (1.1) of the form833

u(ε,Θ, χ, j) = u1(ε,Θ, χ, j) +
∑

n≥3

εnun(χ,Θ, j), u2p+1⊥eikj ·x, j = 4, or 5 or 6,834

u1(ε,Θ, χ, j) = εei(kj ·x+θj) + α1ε
2

∑

m=1,2,3

√
u
(0)
m ei(km·x+θm) + c.c.835

Θ = (θ1, θ2, θ3, θj), θ1 + θ2 + θ3 = kπ, k = 0 or 1,836

µ(ε, χ, j) = α1ε
2 +

∑

n≥2

µ2n(χ, j)ε
2n, even in ε,837

where u
(0)
m and k are determined in (4.18). For α1 > 0 the bifurcation is supercritical with838

µ > 0. In the case α1 < 0, subcritical patterns can be found with µ < 0. In the quasiperiodic839

case (α ∈ E2), these solutions give quasipatterns using the techniques of [25]. In the periodic840

case (α ∈ Ep ∩ E0), the classical Lyapunov–Schmidt method give periodic pattern solutions of841

the PDE (1.1). In both cases, the freedom left for Θ corresponds to an arbitrary choice for842

translations Tδ of the hexagons, and the arbitrary choice of θj (j = 4, 5, 6) allows an arbitrary843

relative translation of the rolls. Figure 7 shows quasiperiodic examples of u1 (QP-hexa-rolls).844

Remark 4.11. These hexa-roll solutions are new, even in the case of a periodic lattice.845

They have the surprising feature in the periodic case of allowing arbitrary relative translations846

between the hexagons and rolls. Unlike the super-hexagon solutions, these solutions require847

a condition on the cubic coefficients to be satisfied in order to exist. They were not found848

by [15] since there the equivariant branching lemma was used, which finds only solutions849

that are characterized by a single amplitude (these solutions have two) and that exist for850

all non-degenerate values of the cubic coefficients (here the cubic coefficients must satisfy an851

inequality).852

4.3.2. Hexa-rolls: rolls and hexagons balance. With small |χ|, solutions can be found853

where the rolls and hexagons are of similar size. Let us consider the system (4.16), without854

the terms with χ2 in coefficients, and set855

z1 = εeiθ1 , z2 = εeiθ2 , z3 = εζ3e
iθ3 , θ1 + θ2 + θ3 = kπ, ε > 0,856

u4 = |z4|2 = ε2u
(0)
4 , z5 = z6 = 0, µ = ε2µ(0), χ = εκ,857858

then, after division by ε4 the first equations, and by ε2 the fourth one, this gives859

2κ(−1)kζ3 = µ(0) − 9− 6ζ23 − 6u
(0)
4 ,860

2κ(−1)kζ3 = ζ23 [µ
(0) − 3ζ23 − 12− 6u

(0)
4 )],861

0 = µ(0) − 3u
(0)
4 − 12− 6ζ23 .862
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Figure 7. Examples of quasipatterns: superposition of hexagons and rolls. Top row: α = π
12

= 15◦; bottom

row: α = 25.66◦ (cosα = 1

4

√
13). Left: QP-hexa-rolls with rolls dominating hexagons; right: QP-hexa-rolls

with rolls and hexagons in balance.

Eliminating µ(0) and u
(0)
4 leads to863

u
(0)
4 = 1− 2κ

3
ζ3(−1)k,864

and865

(3ζ3 + 2κ(−1)k)(ζ23 − 1) = 0.866

Balanced hexa-rolls type 1. For the solution ζ3 = 1, we obtain867

(4.21) z3 = εeiθ3 , u
(0)
4 = 1 +

2κ

3
(−1)k+1, µ(0) = 21 + 2κ(−1)k+1,868

for which we need to satisfy u
(0)
4 > 0, i.e.,869

(4.22) κ(−1)k <
3

2
,870

and we observe that µ(0) > 0 (supercritical bifurcation). These solutions have the three871

hexagon amplitudes equal at leading order.872

Now, we observe that the solution ζ3 = −1 may be obtained from (4.21) in adding π to873

θ3 and change k into k + 1. It follows that this does not give a new solution.874
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Balanced hexa-rolls type 2. For the solution ζ3 =
2
3κ(−1)k+1, we obtain875

(4.23) z3 =
2

3
κ(−1)k+1ε, u

(0)
4 = 1 +

4

9
κ2, µ(0) = 15 + 4κ2,876

where there is no restriction on κ, and we observe that µ(0) > 0 (supercritical bifurcation).877

These solutions have one of the three hexagon amplitudes different from the other two at878

leading order.879

For proving that these balanced hexa-roll solutions at leading order provide solutions for880

the full system at all orders, let us define881

z1 = εeiθ1(1 + x1), z2 = εeiθ2(1 + x2), z3 = εζ3e
iθ3(1 + x3),(4.24)882

u4 = ε2(u
(0)
4 + v4), µ = ε2(µ(0) + ν), z5 = z6 = 0, θ1 + θ2 + θ3 = kπ,883884

where u
(0)
4 µ(0), and ζ3 are those computed above in (4.21), (4.23). Replacing these expressions885

in (4.16), it is clear that the previously neglected terms play the role of a perturbation of higher886

order. Higher orders of the bifurcation equation are given by (3.7) or (3.8). We notice that887

the system is real because in setting (4.24), the monomials q4, qj,k, q
′
st cancel for all j, k, s, t.888

Hence there are only four remaining equations in the bifurcation system, with the same form889

in the quasiperiodic and in the periodic cases.890

Dividing by the suitable power of ε, the linear terms in (x1, x2, x3, v4, ν) are, at leading891

order (replacing µ(0) and u
(0)
4 by their values)892

ν − 6v4 + 2(3 + 2κζ3(−1)k)x1 − 12(ζ23 − 1)x3 − [2κ(−1)kζ3 + 12](x1 + x2 + x3)893

ν − 6v4 + 2(3 + 2κζ3(−1)k)x2 − 12(ζ23 − 1)x3 − [2κ(−1)kζ3 + 12](x1 + x2 + x3)894

ν − 6v4 + 2(3 + 2κζ3(−1)k)x3 − [2κ(−1)k(ζ3)
−1 + 12](x1 + x2 + x3)895

ν − 3v4 − 12(ζ23 − 1)x3 − 12(x1 + x2 + x3).896

The fact that we have a freedom for the choice of the scale ε allows us to take x1 = 0. So, if897

we are able to invert the matrix M defined above, acting on (x2, x3, v4, ν), i.e., solving898

M(x2, x3, v4, ν)
t = (h1, h2, h3, h4)

t,899

with an inverse with a norm of order 1, then this would mean that we can invert the differential900

at the origin for ε = 0, for the full system in (x2, x3, v4, ν), hence we can use the implicit901

function theorem to solve the full system, including all orders.902

Now, we obtain903

h2 − h1 = 2x2(3 + 2κζ3(−1)k),904

h3 − h1 = 2x3(3 + 2κζ3(−1)k) + 12(ζ23 − 1)x3 + 2κ(−1)k[ζ3 − (ζ3)
−1](x2 + x3),905

which gives x2 and x3 provided that906

(4.25) (3 + 2κζ3(−1)k) 6= 0,907

This manuscript is for review purposes only.



SUPERPOSITION OF HEXAGONAL LATTICES 31

and908

(4.26) − 6 + 6κζ3(−1)k + 12ζ23 − 2κ(ζ3)
−1(−1)k 6= 0.909

It appears that condition (4.26) is the same as (4.25) in the cases when ζ3 = ±1. In the third910

case, when ζ3 =
2
3κ(−1)k+1, both conditions (4.25) and (4.26) give911

(4.27) κ2 6= 9

4
.912

Once these conditions are realized, it is clear that we can invert the matrix M (solving with913

respect to (ν, v4) is straighforward, once x2, x3 is computed). The solution is obtained under914

the form of a power series in ε, with coefficients depending on κ. The series is formal in915

the quasiperiodic case, while it is convergent for ε small enough in the periodic case. In all916

cases, the bifurcation is supercritical (µ > 0). Finally, the solutions (4.21) and (4.23) are the917

principal parts of superposed rolls and hexagons. Notice that we can shift the hexagons in918

the plane using θ1 and θ2, and independently shift the rolls using the phase θ4. Notice that a919

similar result holds by replacing z4 by z5 or z6.920

For understanding in the plane (µ, χ) where the solutions bifurcate, we first look at µ > 0921

and solve at leading order the second degree equation for ε. For the solution (4.21) this gives922

21ε2 + 2χε(−1)k+1 − µ = 0923

i.e., (since ε > 0)924

ε =
(−1)kχ+

√
χ2 + 21µ

21
.925

Hence the conditions (4.22) and (4.25) lead to926

13(−1)kχ <
√

χ2 + 21µ,927

15χ(−1)k+1 6=
√

χ2 + 21µ.928

This gives the conditions (see Figure 8 left side)929

µ > 8χ2, for (−1)kχ > 0, Parabola (P1)930

µ 6= 32

3
χ2 for (−1)kχ < 0, Parabola (P2)931

For the solution (4.23) we have, from the expression of µ and from (4.27), the conditions (see932

Figure 8 right side)933

µ > 4χ2, µ 6= 32

3
χ2, Parabolas (P3) and (P2).934

Finally, we state the following935
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χ(-1)
k

μ0

(P )1

2(P )

Type 1

3(P )χ

μ0

2(P )

Type 2

8χ2 μ0

2(−1)χ/3
k

Type 1 χ>0(-1)
k

|z |1

4|z |

μ0

Type 1 χ<0(-1)
k

|z |1

4|z |

μ4χ20

Type 2

2|χ|/3 |z |1

4|z |

Figure 8. Domain of existence of bifurcating superposition of hexagons and rolls (balanced hexa-rolls types 1
and 2) for small |χ|. Solutions of type 1 (three hexagon amplitudes equal at leading order) are on the left side,
solutions of type 2 (two of the three hexagon amplitudes equal at leading order) are on the right side. The
parabola (P2) (dashed line) is a forbidden place.

Theorem 4.12 (Hexa-rolls: superposed hexagons and rolls in balance). Assume that α ∈ E0.936

Then, for χ = εκ, ε > 0 close enough to 0, we can build a series in powers of ε, solution937

of (3.3), of the form938

u(ε, κ,Θ, k, j) = εu1(Θ) +
∑

n≥1

ε2n+1u2n+1(κ,Θ, k, j), u2n+1⊥eik1·x, n ≥ 1,939

u1(Θ, κ, k, j) =
∑

m=1,2

ei(km·x+θm) + ζ3e
i(k3·x+θ3) +

√
u
(0)
4 ei(kj ·x+θj) + c.c.,940

Θ = (θ1, θ2, θ3, θj), j = 4 or 5 or 6, θ1 + θ2 + θ3 = kπ, k = 0 or 1941

µ(ε, κ, k, j) = ε2µ(0)(κ, k) +
∑

n≥2

ε2nµ2n(κ, k, j),942

Balanced hexa-rolls type 1 (three hexagon amplitudes equal at leading order):943

ζ3 = 1, µ(0)(κ, k) = (−1)k+12κ+ 21, u
(0)
4 = (−1)k+1 2

3
κ+ 1, (−1)kκ < 3/2, (−1)kκ 6= −3/2.944

Balanced hexa-rolls type 2 (two of the three hexagon amplitudes equal at leading order):945

ζ3 =
2

3
κ(−1)k+1, µ(0)(κ) = 15 + 4κ2, u

(0)
4 = 1 +

4

9
κ2, κ 6= ±3/2.946

The freedom left for Θ corresponds to an arbitrary choice for translations Tδ, as well for947

hexagons as for rolls (for θj). In the quasiperiodic case (α ∈ E2), these solutions give quasi-948
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patterns using the methods of [25]. See Figure 8 for understanding the domain of bifurcating949

solutions in the plane (µ, χ). Figure 7 shows quasiperiodic examples of u1.950

Remark 4.13. As for hexa-rolls with rolls dominating, these solutions are new, even in the951

periodic case. Moreover, notice that in this case also we have the surprising freedom on shifts952

for the roll part, even in the periodic case. This follows from the reality of the 4-dimensional953

system.954

5. Conclusion. We have shown the existence of new quasipattern solutions of the Swift–955

Hohenberg equation with quadratic as well as cubic nonlinearity: superposed hexagons with956

unequal amplitudes (valid only for small µ, χ). The existence of superposed hexagons with957

equal amplitudes (ε = ±δ) had already been established in [19, 25]. We have also found958

(provided the cubic coefficients satisfy an inequality) a new class of solutions, superposed959

hexagons and rolls: the roll amplitude dominates if the quadratic coefficient χ is not small,960

but for small χ = O(
√

|µ|), the rolls and hexagons can have similar amplitudes. For small χ,961

we have also found superposed symmetry-broken hexagons and rolls. Our approach relies on962

the small-divisor techniques from [25] for solutions of the amplitude equations to be translated963

into quasipattern solutions of the PDE (1.1). The end result is that for a full measure set964

of angles (α ∈ E2), two hexagonal patterns with essentially arbitrary relative orientation965

and position can be superposed to produce quasipattern solutions of the Swift–Hohenberg966

equation. Similarly, superposed hexagons and rolls, again with essentially arbitrary relative967

orientation and position, also give quasipattern solutions.968

In the periodic case we recover the superposed hexagon solutions already known from [15].969

We have shown that the additional triangular superlattice solutions identified by [45] in the970

case (a, b) = (3, 2) also arise for general (a, b). We find a new class of periodic superposed971

hexagon and roll solutions, provided the cubic coefficients satisfy an inequality and a > b+1.972

Surprisingly, even in the periodic case, the hexagons and rolls can be translated arbitrarily973

with respect to each other.974

The approach we have taken differs from that familiar from equivariant bifurcation theory975

(which applies only in the periodic case). When the amplitude equations reduce to a single976

equation, the results are of course the same. The new solutions arise in cases where there977

is more than one equation to solve, and in some cases, these solutions have no symmetry.978

Our approach indicates how a wider class of pattern solutions can be investigated in pattern979

formation problems posed on the whole plane. It is likely that there are many other solutions980

still to be found: hexagons with superposed rhombuses dominating (see [49]), three sets of981

rolls at different angles to each other, superpositions of hexagons and squares, or squares and982

rolls at different angles, . . . . In all of these cases, careful consideration will have to be given983

to the Diophantine condition and to the behavior of high-order nonlinear modes.984

We have not discussed stability of these quasipatterns: that is an important and diffi-985

cult problem. However, the reason for including a quadratic term in the Swift–Hohenberg986

equation (1.1) is that three-wave interactions generated by quadratic terms, particularly in987

problems in which patterns on two length scales are simultaneously unstable, are known to988

play a key role in stabilizing quasipatterns in a variety of contexts [4, 5, 12, 18, 31, 34, 37, 39,989

41, 42, 47, 48, 56]. Despite this, we do not expect any of the new solutions to be stable in the990

Swift–Hohenberg equation, but they (or related solutions) may be stable in other situations.991
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The recently discovered “bronze-mean hexagonal quasicrystals” described in [3, 16, 36]992

fall into the class of superposed hexagons. These quasicrystals are not solutions of a PDE,993

but rather are constructed from assemblies of three tiles: small equilateral triangles, large994

equilateral triangles, and rectangles. The Fourier transform of a six-fold aperiodic tiling made995

from these tiles has prominent peaks arranged as in Figure 2(c), with α = 25.66◦, and the996

ideas presented here may be relevant to existence of this type of quasipattern in a pattern-997

forming PDE.998

Finally, we mention a potential application of this body of work to bi-layer graphene, where999

two layers of hexagonally connected carbon atoms are superposed with a small orientation1000

difference [53]: for α about 1◦, these bi-layer structures can be superconducting [52]. Our1001

work may be relevant for finding quasiperiodic structures in models of this system.1002
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Appendix A. Definitions of all the sets of angles. Here we first recall definitions given1008

in main text, and supplement these with descriptions of E1 and E2.1009

The set Ep (periodic case) is given in Definition 2.1, and has cosα and
√
3 sinα both1010

rational, with α ∈ (0, π3 ). The complement of Ep, restricted to (0, π6 ], is Eqp (quasiperiodic1011

case). The set E0, given in Definition 2.4, is the set of angles α such that the only solutions1012

of |k(m)| = 1 are ±kj , j = 1, . . . , 6.1013

The two sets E1 and E2 are defined in detail in [25] and described below: these are angles1014

α ∈ Eqp where additional Diophantine conditions are satisfied. The final set is E2.1015

Lemma 7 of [25] states that for nearly all α ∈ Eqp ∩ (0, π6 ], and for any ε > 0, there exists1016

c > 0 such that for all m 6= 0 with |k(m)| 6= 1,1017

(|k(m)|2 − 1)2 ≥ c

|Nk|12+ε
1018

holds. The set E1 is the set of all α’s such that this inequality holds, and E1 is of full measure.1019

Let us now choose an integer 1 ≤ d ≤ 4 and consider an expression of the form1020

(A.1) P = a0 +
∑

1≤n≤d

an0 cos
n α+

√
3an−1,1 sinα cosn−1 α,1021

where the coefficients a = (a0, an0, an−1,1, n = 1, . . . , d) are integers: a ∈ Z(2d+1). The1022

following proposition is proved in [25] (see Proposition 21):1023

Proposition A.1. For nearly all α ∈ E0 ∩ E1 ∩ (0, π6 ], there exists c > 0 such that for all1024

a ∈ Z(2d+1)\{0} and for l = 2d(2d+ 1),1025

P ≥ c

|a|l ,1026
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where a = (a0, an0, an−1,1, n = 1, . . . , d), 1 ≤ d ≤ 4, and1027

|a| = |a0|+
∑

1≤n≤d

|an0|+ |an−1,1|.1028

The set E2 is the set of all α ∈ (0, π6 ] such that this inequality holds for any d ≤ 4, provided1029

that |a| 6= 0. The set E2 is a subset of E0 ∩ E1, and E2 is of full measure [25].1030

Appendix B. Proof of the properties of two example angles. While the set E2 is of full1031

measure [25], in practice it can be difficult to determine whether any particular angle is or is1032

not in the set. Here we take two examples and prove that α ≈ 25.66◦ (cosα = 1
4

√
13) is in E2,1033

while α ≈ 26.44◦ (cosα = 1
12(5 +

√
33)) is not.1034

B.1. First example. Let us consider α ∈ Eqp such that1035

cosα =

√
13

4
,

√
3 sinα =

3

4
,1036

with α ≈ 25.66◦. In order to show that α ∈ E2, we must first prove that α ∈ E0, which1037

means that the points of the lattice Γ on the unit circle are only the twelve basic points ±kj ,1038

j = 1, . . . , 6. For1039

k = n1k1 + n2k2 + n4k4 + n5k5, nj ∈ Z,1040

the condition |k|2 = 1 becomes1041

1 = n2
1 + n2

2 + n2
4 + n2

5 − n1n2 − n4n5 +1042

+ cosα(2n1n4 + 2n2n5 − n1n5 − n2n4) +1043

+
√
3 sinα(n2n4 − n1n5),1044

which, separating the rational and irrational parts, and with the given value of α, leads to1045

2n1n4 + 2n2n5 − n1n5 − n2n4 = 0,(B.1)1046

3(n2n4 − n1n5) + 4(n2
1 + n2

2 + n2
4 + n2

5 − n1n2 − n4n5) = 4.10471048

Solving with respect to n5 leads to1049

n5 = n4
n2 − 2n1

2n2 − n1
,1050

provided that n1 6= 2n2,1051

0 = 4n2
4

(
1 + (

n2 − 2n1

2n2 − n1
)2 − n2 − 2n1

2n2 − n1

)
+1052

+ 3n4

(
n2 − n1

n2 − 2n1

2n2 − n1

)
+ 4(n2

1 + n2
2 − n1n2 − 1),1053

i.e.,1054

6n2
4(n

2
1 + n2

2 − n1n2) + 3n4(n
2
1 + n2

2 − n1n2)(2n2 − n1) + 2(n2
1 + n2

2 − n1n2 − 1)(2n2 − n1)
2 = 0.1055
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The discriminant of this quadratic equation for n4 reads1056

∆ = 9(n2
1 + n2

2 − n1n2)
2(2n2 − n1)

2 − 48(n2
1 + n2

2 − n1n2 − 1)(2n2 − n1)
2(n2

1 + n2
2 − n1n2)1057

= 3(n2
1 + n2

2 − n1n2)(2n2 − n1)
2
[
16− 13(n2

1 + n2
2 − n1n2)

]
.1058

We observe that ∆ should be ≥ 0, and since (n2
1 + n2

2 − n1n2)(2n2 − n1)
2 ≥ 0, this implies1059

16 ≥ 13(n2
1 + n2

2 − n1n2).1060

This in turn implies that1061

n2
1 + n2

2 − n1n2 = 1 or 0.1062

The only solutions are1063

(n1, n2) = (0, 0), (0,±1), (±1, 0), (±1,±1),1064

leading to1065

∆ = 9 for (n1, n2) = (±1, 0), (±1,±1),1066

∆ = 36 for (n1, n2) = (0,±1).1067

The case (n1, n2) = (0, 0) in (B.1), leads to n2
4 + n2

5 − n4n5 = 1, which correspond to ±k4,1068

±k5 and ±k6. The case (n1, n2) = (±1, 0), (±1,±1) leads to n4 = 0 or ∓1
2 (which is not1069

acceptable). Finally the case is (n1, n2) = (0,±1) gives1070

n4 = 0 or ∓ 1,1071

and n5 = 0 or ±1
2 , and the only good possibility is n4 = n5 = 0 and this corresponds to1072

±k1,±k2,±k3. It remains to study the case n1 = 2n2, n4 = 0. Replacing this in (B.1), we1073

obtain1074

6n2
2 − 3n2n5 + 2n2

5 − 2 = 01075

and it is easy to conclude that there are no other solutions of (B.1). The conclusion is that1076

α ∈ E0.1077

Let us now prove that α satisfies the two Diophantine conditions required in [25] and1078

described in Appendix A. We observe that1079

4(|k|2 − 1) = q0
√
13 + q1,1080

q0 = 2n1n4 + 2n2n5 − n1n5 − n2n4,1081

q1 = 3(n2n4 − n1n5) + 4(n2
1 + n2

2 + n2
4 + n2

5 − n1n2 − n4n5)− 4.1082

Since
√
13 is a quadratic irrational (the solution of a quadratic equation with integer coeffi-1083

cients), it is known [22] that there exists C > 0 such that1084

|q0
√
13 + q1| ≥

C

|q0|+ |q1|
, (q0, q1) ∈ Z2\{0}.1085
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Since we have1086

|q0| ≤
3

2
(n2

1 + n2
2 + n2

4 + n2
5),1087

|q1| ≤
15

2
(n2

1 + n2
2 + n2

4 + n2
5) + 41088

|q0|+ |q1| ≤ 11(n2
1 + n2

2 + n2
4 + n2

5),1089

hence1090

(|k|2 − 1)2 ≥ C ′

(n2
1 + n2

2 + n2
4 + n2

5)
2
,1091

which means that α ∈ E1 as defined in [25] and described in Appendix A.1092

Now for E2, let us follow the lines of Appendix A. For this choice of α, and for any integer1093

d ≤ 4, the expression (A.1) takes the form1094

P =
b0 + b1

√
13

b2
, b0, b1, b2 ∈ Z,1095

where the integer denominator depends on α and d but not on the integers a in (A.1). Then,1096

as soon as |b0|+ |b1| 6= 0 we again have a Diophantine estimate1097

P >
C ′

|b0|+ |b1|
,1098

where b2 is absorbed into C ′. This is the required property for α ∈ E2 in [25] (see also1099

Appendix A), and so the proof that α ∈ E2 is complete. More generally if cosα is rational1100

and
√
3 sinα is a quadratic irrational, or vice versa, E1 should be satisfied, as should the1101

Diophantine requirement of E2.1102

B.2. Second example. Let us consider α ∈ Eqp such that1103

cosα =
5 +

√
33

12
,

√
3 sinα =

15−
√
33

12
,1104

with α ≈ 26.44◦. We wish to prove that α /∈ E2. We have1105

k = n1k1 + n2k2 + n4k4 + n5k5, nj ∈ Z,1106

and, again separating rational and irrational parts, the condition |k|2 = 1 leads to1107

(B.2) 0 = 3(n2
1 + n2

2 + n2
4 + n2

5 − n1n2 − n4n5 − 1) + 5(n2n4 − n1n5)1108

and1109

(B.3) n1n4 + n2n5 − n2n4 = 0.1110

Then we observe that1111

(n1, n2, n4, n5) = (2, 1,−1, 1)1112
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is solution of (B.2), (B.3). This means that the following wave vectors lie on the unit circle1113

±(k1 − k3 − k4 + k5)1114

±(k2 − k1 − k5 + k6)1115

±(k3 − k2 − k6 + k4)1116

and it is clear that ±kj , j = 1, . . . , 6 are not the only elements of Γ on the unit circle, so1117

α /∈ E0 and α /∈ E2.1118

Appendix C. Proof of Lemma 2.2. Let us show the following1119

Lemma C.1. Let α ∈ Ep ∩ (0, π6 ), with cosα and
√
3 sinα both rational, and define positive1120

integers p, q, p′ such that1121

(C.1) cosα =
p

q
,

√
3 sinα =

p′

q
, 3p2 + p′2 = 3q2,1122

where (p, q, p′) have no common divisor. We define d to be the greatest common divisor of1123

2(p+ q) and (p+ q + p′). Then, (a, b) defined by1124

(C.2) a =
2(p+ q)

d
, b =

p+ q + p′

d
1125

are relatively prime integers that satisfy (2.2) and a > b > 1
2a > 0.1126

Proof. Let us assume that (C.1) holds, and we seek integers (a, b) such that (2.2) holds.1127

If (a, b) are integers given by (C.2), then (using 3p2 + p′2 = 3q2) this leads to1128

a2 + 2ab− 2b2 = p× 12(p+ q)

d2
,1129

3a(2b− a) = p′ × 12(p+ q)

d2
,1130

2(a2 − ab+ b2) = q × 12(p+ q)

d2
.1131

Dividing the first and second lines by the third leads to (2.2). Now since α ∈ (0, π3 ) we have1132

p′ < 3
2q < 3p < 3q,1133

which leads to1134

a > b > 1
2a > 0.1135

It remains to check that we can assume a+ b not multiple of 3. Suppose that this is not1136

the case, then we define1137

a′ = 1
3(a+ b), b′ = 1

3(2a− b),1138

then it is easy to check that1139

cos
(π
3
− α

)
=

a′2 + 2a′b′ − 2b′2

2(a′2 − a′b′ + b′2)
,

√
3 sin

(π
3
− α

)
=

3a′(2b′ − a′)

2(a′2 − a′b′ + b′2)
,1140
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hence we have for π
3 − α the same formulas as for α in replacing (a, b) by (a′, b′). This means1141

that in such a case we should choose to consider the angle α′ = π
3 − α instead of α, which1142

does not change the fact that α′ ∈ (0, π3 ). If it appears that a′ + b′ is also multiple of 3,1143

then we need to iterate the operation. In fact this operation means that we can choose basis1144

vectors (s1− s2, s1+2s2) instead of (s1, s2), for the periodic lattice: these are
√
3 larger. The1145

property (iii) of Lemma 2.2 is proved.1146

Now, we prove the density of Ep. The continuous monotonous function of x1147

x2 + 2x− 2

2(x2 − x+ 1)
1148

makes a homeomorphism between(1, 2) and (12 , 1), it is clear that the set of values taken by1149

cosα for x = a/b rational is dense on (12 , 1). It follows that the set of angles α ∈ [0, π3 )1150

satisfying (2.2) for a/b rational is dense. Hence the property (i) of Lemma 2.2 (the density1151

of Ep) is proved.1152

Remark C.2. We notice that d divides 2(p + q), and 2p′ and that d2 divides 12(p + q)1153

because p, q and p′ have no common divisor and 12(p+ q)(q − p) = 4p′21154

Appendix D. Proof of (3.8). In this case the wave vectors kj are defined in (2.3), and1155

(3.6) leads to1156

(n1 − n3)a+ (n2 − n3)(b− a) + (n4 − n6)a− (n5 − n6)b = 0,1157

(n1 − n3)b− (n2 − n3)a+ (n4 − n6)(a− b)− (n5 − n6)a = 0.1158

Since a and b have no common factor, it follows that there exist (j, l) ∈ Z2 such that1159

n1 − n2 + n4 − n6 = jb,1160

n2 − n3 − n5 + n6 = −ja,1161

n2 − n3 − n4 + n5 = lb,1162

n1 − n3 − n4 + n6 = la.1163

This system leads to1164

n1 − n3 = jb+
l − j

3
(a+ b),1165

n1 − n2 = la− l − j

3
(a+ b),1166

n4 − n5 = −ja− l − j

3
(a+ b),1167

n4 − n6 = jb− la+
l − j

3
(a+ b).1168

Since a+ b is not a multiple of 3, this implies that there is a k ∈ Z such that1169

l − j = 3k,1170
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and1171

n1 − n3 = (j + k)b+ ka,1172

n1 − n2 = (j + 2k)a− kb,1173

n4 − n5 = −(j + k)a− kb,1174

n4 − n6 = (j + k)b− (j + 2k)a.1175

We notice that the monomials invariant under Tδ, of minimal degree found in [15] correspond1176

to the following choices: (j, k) = (1, 0), (−2, 1), (1,−1), their complex conjugate being given1177

by the opposite values of (j, k). The basic invariant monomials where a and b occur are found1178

by looking for the 27 monomials independent of two of the zj :1179

qI,1 = zb2z̄
a−b
3 z̄a−b

5 zb6, qI,2 = z̄a2 z̄
b
3z

a
5z

a−b
6 , qI,3 = za−b

2 za3 z̄
b
5z̄

a
6 ,1180

1181

qII,1 = zb2z̄
a−b
3 za−b

4 za6 , qII,2 = za−b
2 za3z

b
4z̄

a−b
6 , qII,3 = za2z

b
3z

a
4z

b
6,1182

1183

qIII,1 = za2z
b
3z

a−b
4 z̄b5, qIII,2 = zb2z̄

a−b
3 z̄b4z̄

a
5 , qIII,3 = za−b

2 za3z
a
4z

a−b
5 ,1184

1185

qIV,1 = zb1z
a
3z

a−b
5 z̄b6, qIV,2 = za−b

1 z̄b3z
b
5z

a
6 , qIV,3 = za1z

a−b
3 za5z

a−b
6 ,1186

1187

qV,1 = za−b
1 z̄b3z̄

b
4z

a−b
6 , qV,2 = za1z

a−b
3 z̄a4 z̄

b
6, qV,3 = zb1z

a
3 z̄

a−b
4 z̄a6 ,1188

1189

qV I,1 = za1z
a−b
3 z̄a−b

4 zb5, qV I,2 = za−b
1 z̄b3z̄

a
4 z̄

a−b
5 , qV I,3 = zb1z

a
3z

b
4z

a
5 ,1190

1191

qV II,1 = zb1z̄
a−b
2 za5z

a−b
6 , qV II,2 = za−b

1 za2 z̄
a−b
5 zb6, qV II,3 = za1z

b
2z

b
5z

a
6 ,1192

1193

qV III,1 = zb1z̄
a−b
2 z̄a4 z̄

b
6, qV III,2 = za1z

b
2z̄

b
4z

a−b
6 , qV III,3 = za−b

1 za2z
a−b
4 za6 ,1194

1195

qIX,1 = zb1z̄
a−b
2 z̄a−b

4 zb5, qIX,2 = za1z
b
2z̄

a
4 z̄

a−b
5 , qIX,3 = za−b

1 za2 z̄
b
4z̄

a
5 .1196

Notice that qI,1, qV,1, qIX,1 are mentioned in [15]. We may also notice that these invariants1197

are not independent since there are relationships between them and the uj . We may group1198
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these invariant monomials into nine sets of monomials1199

G1 = {qI,1, qV,1, qIX,1} with degree 2a,1200

G2 = {qII,1, qV I,2, qV II,1} with degree 3a− b,1201

G′
2 = {qII,2, qV I,1, qV II,2}with degree 3a− b,1202

G3 = {qIII,1, qIV,1, qV III,2} with degree 2a+ b,1203

G′
3 = {qIII,2, qIV,2, qV III,1} with degree 2a+ b,1204

G4 = {qIII,3, qIV,3, qV III,3} with degree 4a− 2b,1205

G5 = {qI,2, qV,3, qIX,2} with degree 3a,1206

G′
5 = {qI,3, qV,2, qIX,3}, with degree 3a,1207

G6 = {qII,3, qV I,3, qV II,3} with degree 2a+ 2b,1208

and their complex conjugates.1209

Let us control the action of various symmetries (other than Tδ, which leaves them invari-1210

ant), useful for obtaining the system of 6 complex bifurcation equations. We have1211

Rπ/3{qI,1, qV,1, qIX,1} = {qV,1, qIX,1, qI,1},1212

τ{qI,1, qV,1, qIX,1} = {qI,1, qIX,1, qV,1},1213

S{qI,1, qV,1, qIX,1} = {qI,1, qV,1, qIX,1},1214

1215

Rπ/3{qII,1, qV I,2, qV II,1} = {qV I,2, qV II,1, qII,1},1216

τ{qII,1, qV I,2, qV II,1} = {qV II,2, qV I,1, qII,2},1217

S{qII,1, qV I,2, qV II,1} = (−1)a+b{qII,1, qV I,2, qV II,1},1218

1219

Rπ/3{qII,2, qV I,1, qV II,2} = {qV I,1, qV II,2, qII,2},1220

τ{qII,2, qV I,1, qV II,2} = {qV II,1, qV I,2, qII,1},1221

S{qII,2, qV I,1, qV II,2} = (−1)a+b{qII,2, qV I,1, qV II,2},1222

1223

Rπ/3{qIII,1, qIV,1, qV III,2} = {qIV,1, qV III,2, qIII,1},1224

τ{qIII,1, qIV,1, qV III,2} = {qIV,2, qIII,2, qV III,1},1225

S{qIII,1, qIV,1, qV III,2} = (−1)b{qIII,1, qIV,1, qV III,2},1226

1227

Rπ/3{qIII,2, qIV,2, qV III,1} = {qIV,2, qV III,1, qIII,2},1228

τ{qIII,2, qIV,2, qV III,1} = {qIV,1, qIII,1, qV III,2},1229

S{qIII,2, qIV,2, qV III,1} = (−1)b{qIII,2, qIV,2, qV III,1},1230

1231

Rπ/3{qIII,3, qIV,3, qV III,3} = {qIV,3, qV III,3, qIII,3},1232

τ{qIII,3, qIV,3, qV III,3} = {qIV,3, qIII,3, qV III,3},1233

S{qIII,3, qIV,3, qV III,3} = {qIII,3, qIV,3, qV III,3},1234
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1235

Rπ/3{qI,2, qV,3, qIX,2} = {qV,3, qIX,2, qI,2},1236

τ{qI,2, qV,3, qIX,2} = {qI,3, qIX,3, qV,2},1237

S{qI,2, qV,3, qIX,2} = (−1)a{qI,2, qV,3, qIX,2},1238

1239

Rπ/3{qI,3, qV,2, qIX,3} = {qV,2, qIX,3, qI,3},1240

τ{qI,3, qV,2, qIX,3} = {qI,2, qIX,2, qV,3},1241

S{qI,3, qV,2, qIX,3} = (−1)a{qI,3, qV,2, qIX,3},1242

1243

Rπ/3{qII,3, qV I,3, qV II,3} = {qV I,3, qV II,3, qII,3},1244

τ{qII,3, qV I,3, qV II,3} = {qV II,3, qV I,3, qII,3},1245

S{qII,3, qV I,3, qV II,3} = {qII,3, qV I,3, qV II,3}.1246

All this leads in a straightforward way to (3.8).1247

Appendix E. Form of the cubic part of the bifurcation system. Equation (3.3),1248

projected orthogonally on the complement of kerL0, leads to1249

(E.1) L̃0w = µw − χQ0(v1 + w)2 −Q0(v1 + w)3,1250

where we set1251

u = v1 + w, v1 ∈ kerL0, w ∈ {kerL0}⊥,1252

and Q0 is the orthogonal projection on the complement of kerL0, L̃0 being the restriction1253

of L0 on its range, the inverse of which is the pseudo-inverse of L0 (bounded in the periodic1254

case, unbounded in the quasiperiodic case because of small divisors). Equation (E.1) may be1255

solved formally with respect to w as a power series in v1 and µ. We have at quadratic order1256

w2 = −χL̃0
−1

Q0v
2
1,1257

and at cubic order in v1, µ1258

w3 = −µχL̃0
−2

Q0v
2
1 + 2χ2L̃0

−1
Q0[v1L̃0

−1
Q0v

2
1]− L̃0

−1
Q0v

3
1.1259

Now the bifurcation equation is1260

0 = µv1 − χP0(v1 + w)2 −P0(v1 + w)3,1261

whereP0 is the orthogonal projection on kerL0 and where we replace w by its formal expansion1262

in powers of (µ, v1). This leads to1263

µv1 = χP0v
2
1 +P0v

3
1 − 2χ2P0v1L̃0

−1
Q0v

2
1 +O(v41).1264
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It follows that, up to cubic order in (µ, v1), the bifurcation system reads1265

µv1 = χP0v
2
1 +P0v

3
1 − 2χ2P0v1L̃0

−1
Q0v

2
1.1266

The scalar product with eik1·x gives1267

(E.2) µz1 = χ〈v21, eik1·x〉+ 〈v31, eik1·x〉 − 2χ2〈v1L̃0
−1

Q0v
2
1, e

ik1·x〉.1268

It is straightforward to check that1269

〈v21, eik1·x〉 = 2z2z3,1270

1271

〈v31, eik1·x〉 = 〈3z21z1eik1·x + 6
∑

j=2,...,6

z1zjzje
ik1·x, eik1·x〉1272

= 3z1u1 + 6z1(u2 + u3 + u4 + u5 + u6).1273

The next term is more complicated:1274

〈v1L̃0
−1

Q0v
2
1, e

ik1·x〉 =
∑

j=1,...,6

zj〈L̃0
−1

Q0v
2
1, e

i(k1−kj)·x〉+
∑

j=1,...,6

zj〈L̃0
−1

Q0v
2
1, e

i(k1+kj)·x〉,1275

and the relevant terms in v21 are those with an exponent1276

(k1 ∓ kj) · x, such that k1 ∓ kj 6= ±kl, l = 1, . . . , 6.1277

the operator L̃0
−1

provides a multiplication by1278

(1− |k1 ∓ kj |2)−2.1279

We notice that1280

|k1 − k2| = |k1 − k3|, while |k1 + k2|, |k1 + k3| do not appear,1281

|k1 ± k4|, |k1 ± k5|, |k1 ± k6| all different and functions of α.1282

Hence1283

2χ2〈v1L̃0
−1

Q0v
2
1, e

ik1·x〉 = χ2z1[c1u1 + c2(u2 + u3) + cαu4 + cα+u5 + cα−u6],1284

with1285

c1 = 2(1 + 1/9), since |2k1| = 2,1286

c2 = 2(1 + 1/2), since |k1 − k2| =
√
3,1287

cα = 2[1 + 2(1− |k1 − k4|2)−2 + 2(1− |k1 + k4|2)−2],1288

cα+ = 2[1 + 2(1− |k1 − k5|2)−2 + 2(1− |k1 + k5|2)−2],1289

cα− = 2[1 + 2(1− |k1 − k6|2)−2 + 2(1− |k1 + k6|2)−2].1290
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Appendix F. Looking for translations. Let us consider the cases with α ∈ Ep, then we1291

can choose the translation operator Tδ such that1292

δ · kj =
2π

3
mod 2π, for j = 1, 2, 3,(F.1)1293

= −2π

3
mod 2π, for j = 4, 5, 6.1294

1295

Indeed, we set1296

δ =
2π

3
λ2ms1,1297

where s1 and λ are defined at Lemma 2.2 and m is an integer. Then (F.1) leads to1298

m(2a− b) = 2(1 + 3n1),1299

m(2b− a) = 2(1 + 3n2),1300

m(a+ b) = 2(−1 + 3n4),1301

m(a− 2b) = 2(−1 + 3n5),1302

where n1, n2, n4, n5 are integers. It follows that1303

n2 + n5 = 0,1304

am = 2(n1 + n4),1305

a(2n4 − n1 − 1) = b(n1 + n4),1306

a(n1 + n4 + 3n2 + 1) = 2b(n1 + n4).1307

The last two lines give1308

n2 = n4 − n1 − 1,1309

and so1310

n1 + n4 = la,1311

2n4 − n1 − 1 = lb,1312

where l is an integer, leading to1313

3n4 = 1 + l(a+ b).1314

Since a+ b is not multiple of 3, we have to look at two cases: a+ b = 3j+1 or a+ b = 3j+2.1315

For a+ b = 3j + 1 we choose l = 2, hence1316

n4 = 2j + 1, n1 = 2a− 2j − 1, n2 = 4j − 2a+ 1, n5 = −n2, m = 4.1317

For a+ b = 3j + 2 we choose l = 1, hence1318

n4 = j + 1, n1 = a− j − 1, n2 = 2j − a+ 1, n5 = −n2, m = 2.1319
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It follows that the solutions in Theorem 4.5 obtained for θ1 = θ2 = θ3 = −θ4 = −θ5 =1320

−θ6 = k π
3 , provide only two different patterns, one corresponding to k = 0, 2, 4, the other for1321

k = 1, 3, 5.1322
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