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Abstract

This work presents our results on reassembly of broken objects

using a newly developed fragment topology and feature extrac-

tion methodology. The reassembly of broken objects is a com-

mon problem in different domains including computer-aided

bone fracture reduction [1] and reassembly of broken artefacts

[2].

The new fragment topology combines information from in-

tact and fractured region boundaries to reduce possible corre-

spondences between the fragments and optimise our iterative

matching process. Experiments performed on different multi-

fragment objects show that the proposed topology can be ef-

fectively applied, completing the process in a small number of

iterations and with average alignment error 0.12mm.

1 Introduction

The evolution of 3D object modelling and processing methods

has improved the process of matching 3D fragments and re-

assembling broken objects. However, reassembling fractured

objects can not be compared to the general 3D shape match-

ing problem. The main reason is that the correlated fragments

share matchable properties surrounding the fractured area only

in contrast to the full or partial matching problem where the

overlap patterns are usually more notable. Thus the correla-

tions between fractured pieces are weak and hard to define.

Also, erosion and missing parts of fragments can complicate

the problem significantly.

Two approaches have been introduced in the literature to

solve the reassembling problem [2]. The first approach at-

tempts to match the fragments to a template model, while the

second one depends only on the fragments geometries to de-

fine relations between fragments and return the original object.

These approaches focus on different regions of the fragment

model i.e intact regions, the outer surfaces of the fragment, and

fractured regions, the surfaces that are generated when the ob-

ject is broken. Figure 1 shows the intact and fractured regions.

The template approach uses the intact regions of the model to

locate the fragments in a template model. However, the tem-

plate model of the broken object is not always available. Meth-

ods on the second approach usually focus on the fractured sides

of the fragment. Indeed, using the fractured surface to assem-

Figure 1. Examples of intact and fractured facets for different

fragments.

ble the fractured object depends on the existence of salient fea-

tures on the fractured side. These salient properties are difficult

to define and might not be generated when the object is broken

which leads to a large number of possible matching fragments

and increases the complexity of finding the correct correspon-

dence pairs.

We aim to tackle the above problems by introducing a new

representation of fragments. This representation is inspired by

the manual assembly of broken objects. When an expert at-

tempts to reconstruct the original broken object, his main fo-

cus is on the fractured boundary of each fragmented piece.

In addition, the surrounding intact area of fractured boundary

might provide further clues about the corresponding fragment.

From these observations we define a fragment representation

by decomposing the fragment’s surface into intact and frac-

tured facets. Each facet will be represented with a graph node

and two nodes link with edge if they are spatially adjacent. We

refer to this representation as a fragment topology (Figure 2).

This topology simplifies searching for potential matching frag-

ments using both fractured facets and its adjacent intact prop-

erties. In addition, the orientation of matching fragment is easy

to identify using the adjacent intact facets information of node

i.e. matching fractured boundary and intact boundary.

The first step of this method is segmenting each fragment

into intact and fractured facets using a new surface feature

that improve the region merging and classification process.

Each fragment is represented by using the introduced fragment

topology, which describes fragments in terms of the relation-

ship between the fractured and intact surfaces. This is followed

by an iterative matching and representation process to find op-

timal matching pairs and form the original object.



Figure 2. The general workflow of the proposed method. (a) segmentation of fragment surface into intact and fractured facets.(b)

Creation of fragment topology and descriptors. (c) Matching between graphs node to find possible matches (d) Iterative Matching

and representation of fragments.

2 Related Works

The existing method for reassembling fractured objects can

be categorised into three main categories; reassembling based

on fragment regions matching, reassembling using template as

guidance to reconstruct the object and methods that depend on

expert support.

Region-based matching methods - Those methods utilise

the local surface properties to find similarities between adja-

cent fragments. Some approaches rely on the intact regions

only to match fragments. For instance, Sagiroglu et al. [3] in-

troduce the idea of using the predicted region outside the bor-

der of fragments to find a correlation with the right neighbour.

Other approaches consider the fracture regions to reconstruct

the object. For thin shell objects such as pot or fresco frag-

ments, the fracture region is commonly treated as a boundary

curve of the fragment and the problem is reduced to 2D puzzle

solving [4, 5, 6].

For general 3D fragments reassembly, Papaioannou et al.

[7] extract the fracture regions by segmenting each fragment

surface, then use the depth map for matching. Huang et al.

[8] suggest a 4 steps framework to reassemble broken solid

objects using integral invariants. However, matching small

pieces might not produce an accurate result due to difficulties

in segmenting small fragments into intact and fracture regions.

To overcome this problem, Zhang et al. [9] combine tem-

plate matching and fracture region matching. Yet, the template

model is not available for all fractured objects. Rather than re-

lying on feature computation, the alignment between two frag-

ments is used such as in Mavridis et al. [10]. They define a

matching score between two extracted fracture surfaces using

a three-level coarse-to-fine search strategy that is based on the

residual distance between fragments.

Template-based Models - In this category of methods,

fragments are assembled by finding their best match to a tem-

plate model using the intact surface information such as in skull

reassembly [11, 12]. These methods mainly depend on the

availability of the template model and can not construct a gen-

eral model.

Interactive Expert-based Methods - User involvement

for manual guidance is central to this category of reassembly

methods. Lee et al. [13] developed a semi-automatic tool

for pelvic fracture reduction which integrates expert selection

of matching points and the geometry driven for aligning the

fragments. Another approach, by Mellado et al. [14] pro-

poses a real-time interaction loop system that enables the user

to approximate the initial position and orientations between

two fragments and continuously correct and validate the pose.

Many objects broke into a large number of pieces. Therefore,

the user intervention might be time consuming and error prone.

When reassembling thick-shell fragments, the common

methods use the properties of the fractured region to find the

pairwise matching. This usually results in a large number of

wrong pair matching due to weak discrimination properties in

the fractured facets. However, to the best of our knowledge,

no algorithm represents fragmented object by integrating the

intact facet properties with the fractured boundary curves.

3 Proposed Assembly Approach

In this work, we introduce a novel, fully automatic method

for reassembling fractured objects. We propose the fragment

topology that represents the fragment’s surface based on its part

arrangement. This topology is used to guide the search for pos-

sible matching fragments.

Given a set of fragments Fi, optimal matches are identified

to reconstruct the original shape of the object. The matching

has four main steps (Figure 2): 1- segmentation of fragment

surfaces into intact and fracture facets (Section 3.1). 2- a graph

representation of the fragments as facets and boundary edges is

created (Section 3.2). 3- extraction of boundary curve features

and other properties to measure the pairwise matching between

fragments (Section 3.3). 4- Iterative assembly of the object

by matching the selected corresponding pairs and updating the

representation with the combined fragments (Section 3.4).

3.1 Fragment segmentation

The initial step in matching fragments is analysis of fragments’

surfaces and extraction of regions of interest. When the object

breaks, new surfaces are generated that form a fractured region.

Therefore a fragment’s surface can be categorised as: intact



and fractured. Each of these regions provides different charac-

teristics that can support finding correct matching between the

fragments. The intact regions identify continuity of patterns

and geometries between fragment’s surfaces, especially on the

boundary areas close to fractured regions. On the other hand,

the fractured regions define complementarity mating between

pieces.

The segmentation process is performed to divide each frag-

ment surface into distinct regions to avoid the wrong matches

and reduce the computational effort. The primary goal in this

step is extract segments to design a topology. Each segment

should include either the intact or fractured surface but not

both.

Our proposed workflow starts with an initial segmentation

phase using Region Growing approach [15] with specific cri-

teria. This step is followed by a merging phase that includes

classification of regions into fractured and intact. The follow-

ing sections explain the segmentation process.

3.1.1 Region Growing

Given a 3D mesh of a fragment, it starts by selecting a random

face from the surface as a seed element and grows into a region

by iteratively adding neighbours based on specific conditions.

Let S be the seed element of the current segment and L be all

unassigned neighbouring faces. The compatibility score Dli
is

calculated based on the angle between the average normal of

the seed element and its 1-ring neighbouring face (ns) and the

normal vector of the examined face (nli
):

Dli
= cos−1(ns.nli

) . (1)

The local average normal ns is:

ns =

∑

k∈Sr
nk

∣

∣Sr

∣

∣

. (2)

where nk is the kth face normal within 1-ring neighbouring of

seed element Sr.

The above method works well on a planer surface but re-

sults in multiple segmentation on a fractured surface due to the

presence of highly irregular surfaces (see Figure 3 (a)). There-

fore, a post-processing step is required to improve the segmen-

tation accuracy.

3.1.2 Region Merging

The region growing step provides an initial rough segmentation

of a surface. In this phase, we categorise the segments based

on two criteria: the surface area of the segment and the type of

surface (fractured or intact). Rather than merging the segments

and then classifying as in the existing approaches [8, 10, 16],

we exploit the type of segment to perform the merging.

Based on the first merging criterion, we iteratively combine

all small segments, with the segment area less than a threshold,

to adjacent large segment based on a minimum compatibility

score (Figure 3 (b)). The compatibility score is determined as

follows:

Sli
= min

(

cos−1(nsl
.nss

)
)

. (3)

Figure 3. Segmentation step (a) Region growing (over seg-

mentation problem) (b) Merging criterion (segment area) (d)

Merging criterion (segment type + compatibility score)

where nsl
is the average normal vector for the large adjacent

region and nss
is the average normal vector for the small re-

gion.

The second merging criterion considers merging segments

of the same type and within the compatibility score (Equation

(3)). Broken objects vary in term of the intact surface. Frag-

ments with planar surfaces are easy to classify, as opposed to,

fragments with highly curved intact surfaces or detailed pat-

terns. Therefore, we take the ratio of surface curvature for each

segment and compare to the average curvature of the fragment

surface to define the type of segment. For each fragment, we

compute the average of maximum curvature (ǫ) as:

ǫ =

∑

k∈P Cmaxk
∣

∣p
∣

∣

. (4)

Where Cmaxk
is the maximum curvature for point k in the frag-

ment and
∣

∣p
∣

∣ is the number of points on the fragment. We use

(ǫ) to define the ratio of maximum curvature in each segment

as:

Rs =

∣

∣Csi
≥ ǫ

∣

∣

∣

∣Ps

∣

∣

. (5)

where Csi
is the maximum curvature of points Ps on segment

si. Then, we cluster the resulted segments ratio (Rs) into two

groups using k-mean algorithm. Clusters with a larger centroid

value represent fractured segments.

3.2 Fragment Representation

In this work, we introduce a fragment topology to simplify

fragment surface representation and guide the search for opti-

mal pair matching. The matching fragment will have a similar

topology in terms of intact and fractured facets. We seek to fil-

ter the wrong potential matches by defining simple properties

along the fragment topology and find out how this can reduce

the search for potentially matching fragments.

Given the segmented facets from the previous step, we de-

fine a graph G = (V, E) where each node ni ∈ V is denoting

a segmented facet fi associated with a type of facet (intact or

fractured) and the boundary curve of the fractured facet. The

extraction and description of the boundary curve will be illus-

trated in Section 3.3. The edge ei,j ∈ E between nodes ni and

nj denotes the boundary connecting two facets associated with



attributes such as the arc length of the boundary curve connect-

ing two facets, and the start and end points of the boundary

curve. Figure 2 shows an example of the fragment representa-

tion.

3.3 Feature Extraction

3.3.1 Boundary curve of fractured facet

As illustrated before, when trying to reassemble the broken ob-

ject, our focus is on the boundary of the broken facet. Accord-

ingly, we seek to define a measure of pairwise similarity based

on these boundaries. We use multi-view of a fragment to ex-

tract 2D boundary curves. As the fractured facet is identified in

the previous steps, we use the centroid point of a fracture facet

as a viewpoint to project the facet boundary into the XY plane.

The number of viewpoints is based on the number of fractured

facets. Figure 4 shows an example of the extracted boundary

curves.

3.3.2 Boundary curve descriptor

The extracted boundary curve is highly affected by noise and

modelling variations. Also, the matching boundaries might be

extracted in different orientations. To mitigate these problems,

we describe boundary curves with a robust descriptor that is

invariant to scale and rotation. Fourier descriptors show effi-

cient descriptions for shapes that include scale, rotational and

translational invariance [17]. The boundary points are first con-

verted into complex numbers to extract the curve signature, as

in the following:

S(k) = X(k) + jY (k) . (6)

where X(k) and Y (k) represent x and y coordinates of the

curve. Fast-Fourier transform of the boundary signature pro-

vides a Fourier descriptor and is defined as:

a(u) =

K−1
∑

k=0

s(k)e−j2πuk/K . (7)

where u = 0, 1, ..k − 1.

In order to achieve translational invariance, the DC compo-

nent of the Fourier descriptors is set to 0. For scale invariance,

all the coefficients of the Fourier descriptor are normalised by

the second coefficient:

a(0) = 0, a(u) =
a(u)

a(1)
. (8)

Both magnitude and phase values are considered however,

phase values are affected by rotations and start points varia-

tions. For this reason, we use the topology representation of

fractured facets to define rotations and starting points of the

boundary curve.

3.4 Matching

The proposed method of reconstructing the final object is to

define the whole to whole matching between the fragments,

Figure 4. Examples of extracted 2D boundary curves.

combine the matching fragments group, recompute the new

representation and iterate the matching until we find the final

assembly of the fragments.

3.4.1 Pairwise Matching

We seek to simplify the process of finding potential match frag-

ments list by integrating simple properties based on the defined

representation. The typical way of searching for the potential

matching fragment is based on finding similarities between ex-

tracted features points, which results in a large set of wrong

potential matching points. This is typically followed with a re-

finement step such as using the RANSAC algorithm [18]. On

the other hand, we propose to search for potential matching

fragments using several factors: The area of the fractured facet.

The topology of the fracture facet, for example, a number of

intact and fractured neighbours and arc length of the bound-

ary curve connecting intact and fractured facets. Boundary of

fractured facets. The above geometrical properties are used to

reduce the potential matching pairs. In order to identify exact

matching pairs, we define a similarity score between possible

pairs as the Euclidean distance of their Fourier descriptors of

the boundary curve.

3.4.2 Multi-piece matching

All fragments are encoded with their extracted potential cor-

respondences in a reassembly graph G = (V, E). Each node

ni ∈ V , denoting a fragment Fi and each edge between the

nodes ni and nj denotes the correspondences between the frag-

ments. Each connected component in the graph will be consid-

ered as a whole fragment. So its new representation is recalcu-

lated and the reassembly graph is updated until all graph nodes

are connected.

4 Experimental results

4.1 Facet extraction

We assess the proposed facet extraction method on different

kind of fractured objects (see Table 1 for an overview). These

objects are made of different materials and broken into various



Figure 5. Result of facet extraction in each step for different

datasets (see Table 1.)

sizes and shapes. Also, some fragments are exposed to weath-

ering and erosion which change surface properties. The input

to our method is a digital model of broken fragments. The

number of vertices for each fragment is between 40k to 151k

and the total number of tested fragments is 36. Figure5 shows

segmentation phases for each of 3 datasets we use.

Dataset Model name Type # fragments Vertex range

Vienna Brick stone 6 70k - 111k

Cake mortar 11 57k -151k

Sculpture clay 7 95k - 198k

PRESIOUS Nidaros Crypt Tombstone stone 5 110-150

Nidaros Cathedral Column Base stone 5 40k - 70k

Bone Model Femur Foam cortical shell 2 57k - 64k

Table 1. Fractured objects used to evaluate the facet extraction

methodology

As the aim of the facet extraction step is to identify the

fractured facet, the evaluation of this step will examine the per-

formance of segmentation and classification. For the segmen-

tation, we measure the similarity between the manual segmen-

tation of the fragment-surface and the resulted segmentation.

The Dice Coefficient (DC) can be used to measure similarity

by computing the spatial overlap between two sets of segmen-

tation. The DC score ranges between 0 (not similar) and 1

(similar) and defines as follows:

DC(Ri
a, Rit

g ) =
2 ×

∣

∣|Ri
a ∩ Rit

g

∣

∣|
∣

∣|Ri
a

∣

∣| +
∣

∣|Rit

g

∣

∣|
. (9)

Where Ri
a and Rit

g are the automatic and manual segmenta-

tions, respectively, and it is the index of the closest segment

from Sg to Ri
a which defined as:

it = argmaxk(
∣

∣|Ri
a ∩ Ri

g

∣

∣|) . (10)

The DC between two segmentation Sa and Sg is computed as

follow:

DC(Sa, Sg) =

∑k
i=1

DC(Ri
a, Rit

g )

k
. (11)

To evaluate the efficiency of the fractured facet prediction

model, we measure the overall accuracy (OA), the ratio be-

tween correctly predicted facet type and the total number of

Figure 6. The Recall value for Huang et al. [8] (Local Bending

Energy), PRESIOUS project method [10] (Normalized Sphere

Volume) and our method (Ratio of curvature).

facets. The results are further assessed using Recall to mea-

sure the rate of fractured facets that classified correctly and is

defined as:

Recall =

∣

∣|Sf
a ∩ Sf

g

∣

∣|
∣

∣|Sf
g

∣

∣|
. (12)

Where Sf
a represents the facets that classified as fractured and

Sf
g is the ground truth of fractured facets.

Results - Figure 5 shows the results of the facet extrac-

tion phases for different types of fragments. The first row

presents the Region Growing algorithm results with (Dl =
5◦). It works well on the flattened surface, whereas provides

over-segmentation in the curved regions. Using the merging

criteria;- the area and the class, the segmentation is improved

and provides 0.87 DC score (for area threshold < 2% and

Dl = 5◦ ). Choosing a good threshold is a difficult problem,

therefore we attempt to choose it empirically.

In addition, the introduced feature for classifying fractured

facet provides 82% overall accuracy and 97% of the fractured

facets classified correctly. The comparision of our results to ex-

isting techniques [8, 10] using the same dataset is shown in Fig-

ure 6. Both methods require an expert intervention to adjust the

parameters for segmenting and classifying the fractured facet.

On the other hand, our method provides better results without

user intervention. Figure 6 shows the Recall value for extract-

ing fractured facet using Nidaros Cathedral dataset. Also, we

examine our proposed method on several type of dataset, while

Presious method [10] seems to works on type specific fractured

objects.

4.2 Fragments assembly

Evaluating the reassembly of broken object method is restricted

by the lack of the original model. In this work, we validate

our approach using both simulated and real models. For the

simulated models, we create different 3D models and shatter

these models into a different configuration (See Figure 7 (a) as

an example). We also evaluate our approach using real broken

object provided in [8] (see Figure 7 (b)).

To compare the reassembly result to the original model, we

should exclude the fractured regions from each fragment which



Figure 7. (a) Example of the simulated dataset. (b) Brick frac-

tured model [8].

require a precise segmentation that is quite difficult to achieve

and will add errors. Instead, we evaluate our method by com-

paring the original fragments assembly to the resulted assem-

bly. For the simulated dataset, we first break the object and

store the connected fragments as ground truth. Then, perform

random transformations to simulate the shatter effects. Figure

7 shows the stages of generating the simulated dataset. For the

real fractured object, we use the manually aligned fragments as

ground truth.

To measure the accuracy of the reassembly we define the

error measure (Eref ) as the root mean square error between

the reference and reassembled pieces.

Eref =

√

∑N
i=1

(Fri
− Fai

)2

N
. (13)

Where Fri
, Fai

are the ith point on the reference and aligned

model respectively and N is the number of the points.

Results - Our method was ran on desktop with 3.60 GHz

Core i7 CPU and 16 GB RAM. Table 2 shows the run-time of

our method. The total computation requires 14 seconds for 6

fragmented objects and might increase depending on the num-

ber of fragments. In the reassembly process, the most time-

consuming step is the search for potential matching fragments.

The method of Huang et al. method [9] requires 2 seconds to

set the potential matches for the brick fragments. Also, Son

et al. [18] requires about 16 seconds to find potential matches.

Our approach finds matching fragments in a brick model within

0.7 seconds. This is decreased by introducing the topology of

the fragment, which restricts the number of possible matching

combinations.

We first test our method on the simulated data. Figure 8 and

9 show the reconstruction of fragmented object 1 and object 2.

These objects are shattered into a different configuration and

composed of fragments that have a partial relationship to each

other. The algorithm can identify the initial matching pieces

correctly and reconstruct the final shape effectively. We mea-

Model #V #F trep (s) tpm (s) tmm (s)

obj1 80k 3 1.34 0.1055 0.01

obj2 108k 4 2.3 0.32 0.07

brick 534k 6 13 0.7 0.13

Table 2. Performance of the method: (model name, number of

vertices of all fragments, number of fragments and time in sec-

onds for representation process of all fragments (trep), create

potential matching (tpm) and multi-piece matching(tmm))

sure the pairwise alignment between the fragments based on

the matched fractured boundary using the ICP method and pro-

vide efficient and accurate alignment with average error Eref =

0.047 mm. Figure 8 and 9 show examples of the pairwise align-

ment between two fragments. We also examined our method

on a real model (brick model) [8] fractured in six fragments.

The broken brick model is affected by erosion and each frag-

ment can be matched with one or more of the other fragments.

Figure 10 (a) illustrates the multi-piece matching construction

between the brick fragments. The introduced topology repre-

sentation can achieve 0.19 mm matching accuracy after two

iterations (Figure 10 (b)).

The previous reassembly methods, [8, 18], proposed a com-

plex descriptor of fractured facets that requires a large num-

ber of discriminating points in order to accurately describe the

facet. In both these methods, the potential pairwise matching

process resulted in incorrect matches that required further re-

finement steps to reduce the possibility of wrong matches, lead-

ing to increased complexity of the algorithm and the match-

ing time. To overcome this complexity, our work proposes a

new representation that combines the fractured region bound-

ary and its relation to adjacent intact facet to define matching

fragments. Our initial results are obtained using a simple de-

scription of the intact facets.

5 Conclusion

We present a new method that combines intact and fractured re-

gions properties of fragment for efficient reassembly of thick-

shell pieces. The method represents each fragment by its frac-

tured facets and its relation to the intact facets, then uses this in-

formation to define the matching fragments and reconstruct the

final object by iterative merging of pairwise matching pieces.

Future work will include extending the fragment represen-

tation with more properties that can more accurately describe

the intact surface. In addition, the method will be further evalu-

ated on 3D model of fractured bones to test the method on more

complex and noisy fragment shapes and define the limitations.
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Figure 8. Object1 model: (a) Multi-piece reconstruction of the

fragments. (b) iterations to reconstruct object. (c) Pairwise

alignment, the resulted reference error (Eref ) and the align-

ment time (ta).
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