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Assessing theRole of Gaze Tracking in
Optimizing Humans-In-The-Loop
Telerobotic Operation Using
Multimodal Feedback
Joseph Bolarinwa 1*, Iveta Eimontaite 1, Tom Mitchell 2, Sanja Dogramadzi 1 and

Praminda Caleb-Solly 1

1Bristol Robotics Laboratory, University of the West of England (UWE), Bristol, United Kingdom, 2Creative Technologies Lab,

University of the West of England (UWE), Bristol, United Kingdom

A key challenge in achieving effective robot teleoperation is minimizing teleoperators’

cognitive workload and fatigue. We set out to investigate the extent to which gaze tracking

data can reveal how teleoperators interact with a system. In this study, we present an

analysis of gaze tracking, captured as participants completed a multi-stage task: grasping

and emptying the contents of a jar into a container. The task was repeated with different

combinations of visual, haptic, and verbal feedback. Our aim was to determine if

teleoperation workload can be inferred by combining the gaze duration, fixation count,

task completion time, and complexity of robot motion (measured as the sum of robot joint

steps) at different stages of the task. Visual information of the robot workspace was

captured using four cameras, positioned to capture the robot workspace from different

angles. These camera views (aerial, right, eye-level, and left) were displayed through four

quadrants (top-left, top-right, bottom-left, and bottom-right quadrants) of participants’

video feedback computer screen, respectively. We found that the gaze duration and the

fixation count were highly dependent on the stage of the task and the feedback scenario

utilized. The results revealed that combining feedback modalities reduced the cognitive

workload (inferred by investigating the correlation between gaze duration, fixation count,

task completion time, success or failure of task completion, and robot gripper trajectories),

particularly in the task stages that require more precision. There was a significant positive

correlation between gaze duration and complexity of robot joint movements. Participants’

gaze outside the areas of interest (distractions) was not influenced by feedback scenarios.

A learning effect was observed in the use of the controller for all participants as they

repeated the task with different feedback combination scenarios. To design a system for

teleoperation, applicable in healthcare, we found that the analysis of teleoperators’ gaze

can help understand how teleoperators interact with the system, hence making it possible

to develop the system from the teleoperators’ stand point.
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1 INTRODUCTION

There are still several challenges for effective telerobotic

operation, particularly in tasks that require a high degree of
teleoperator agility for manipulation. Teleoperators are required
to process information relating to the status of the robot and
remote environment which can result in high cognitive load and
fatigue. Different application domains bring specific
requirements which can increase the teleoperator’s cognitive
workload. For example, in our target application domain,
providing remote assistance in a social care context,
teleoperators are required to interact socially with the remote
service user in addition to carrying out the task.

This study reports on the use of gaze data to explore how

participants interacted with a teleoperation system and, in
particular, how gaze data (gaze duration and fixation count)
can be used to understand the effects of different feedback
modalities. Since we are interested in the use of teleoperated
robots in a social care context, we examine the effect of social
interaction between the teleoperator and service user. In the
research work reported in this study, video feedback in
combination with verbal, haptic, and/or peripheral visual
feedback were provided in different feedback combination
scenarios to improve task performance and reduce the
workload. The hypotheses made before the study was

conducted are listed below:
H1: Gaze duration and fixation count toward control

instructions will significantly decrease from Attempt 1 to
Attempt 7 showing learning effects.

H2: Gaze duration and fixation count can be used to measure
the impact of feedback modalities on teleoperator performance
(task completion time and success or failure of the task).

H3: Gaze duration and fixation count can be used to
determine teleoperator distraction caused by different feedback
scenarios.

The study presented here extends the report presented by

Bolarinwa et al. (2019) focusing specifically on the use of gaze
tracking to assess how participants employ a combination of

visual, haptic, and verbal feedback modalities to assist them
during different stages of an object manipulation task, while
also interacting with a remote service user (Figure 1).

The gaze tracking data was captured as participants completed

a multi-stage task: grasping and emptying the contents of a jar
into a container. Our aim was to determine if workload can be
inferred by combining gaze duration, the fixation count, task
completion time, and the complexity of robot motion (measured
as the sum of robot joint steps) and comparing these during the
different stages of the task.

2 RELATED WORK

Teleoperated robots have also made it possible to carry out tasks
in extreme environments that, as a result of logistical or financial
constraints, are otherwise inaccessible (Tsitsimpelis et al., 2019).
The introduction of embodiment within the robot, as well as
immersion in the remote environment, improved teleoperation
experience and success (Pamungkas and Ward, 2015). This
provides an equivalent experience of an actual environment
(Hernandez et al., 2017). An efficient user interface with
dynamic multiple sensory feedback and actuator control is

thus important to facilitate multimodal perception using the
human innate sensory abilities. The need for feedback, as well
as the type of feedback, however, depends on the context in which
the teleoperated robot is applied. This study focuses on assistive
robots.

Assistive Robots
One of the functions of assistive robots is helping the elderly and
people living with disabilities with their activities in daily life
(Begum et al., 2013) (Góngora Alonso et al., 2019). Assistive
robots that are designed to perform more diverse tasks also

encourage greater collaboration with humans, particularly in
terms of social interaction which helps to build trust and
empathy (Langer et al., 2019) (Lv et al., 2020) (Begum et al.,
2015). The need for social interaction and the unpredictable

FIGURE 1 | Experimental setup.

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 5785962

Bolarinwa et al. Gaze metrics in assistive teleoperation



nature of living environments makes a case for the introduction
of teleoperated assistive robots (Bolarinwa et al., 2019). The safety
of service users is very important for human-robot interaction,

especially for uncontrolled environments which may make
teleoperation more difficult. As a result, a wide range of
feedback modalities are employed to convey complex
information about the status of the robot and the remote
environment to teleoperators.

Multimodal Feedback
Multimodal feedback in teleoperation involves the use of more
than one form of feedback during a teleoperation task. Vitense
et al. (2002) investigated how unimodal, bimodal, and trimodal
feedback affect the complex direct manipulation performance of

fully sighted users. Investigations were carried out on auditory
feedback, haptic feedback, and visual feedback. During the task,
workload was measured objectively and subjectively, and results
showed that multimodal feedback improves the performance of
participants that are fully sighted. Results also showed great
potential for participants with visual impairments. Luz et al.
(2018) employed the use of a haptic interface to display the
traction states of a teleoperated unmanned ground vehicle (UGV)
to human operator through different types of tactile stimuli
provided by three haptic devices (E-Vita, traction cylinder,
and vibrotactile glove). A teleoperation interface was used to

display images from the on-board camera to participants and a
3D Connexion Space Navigator 6-DOF joystick was used to
control the UGC. They evaluated the extent to which the
feedback modality improves the user situation awareness in
regard to the traction state of the UGV. Loss of traction was
measured using a laser-based traction detection module. Traction
states were displayed to the human operators via the haptic
devices. Improvements were found in the comprehension of
the UGV’s traction state when a combination of the
vibrotactile glove and the traction cylinder were used.

Cognitive Overload
The use of multiple feedback modalities can improve
teleoperation performance but may also result in an increased
cognitive load (Triantafyllidis et al., 2020). Although the
provision of additional feedback of the robot’s status and its
work environment increases situational awareness (hence making
it easier to carry out tasks), the increase in the amount of feedback
information that the teleoperator has to process may increase the
teleoperator’s cognitive load. Applying the multiple resource

theory (Wickens, 2002) in the context of teleoperated assistive
care, teleoperators will carry out dual tasks by engaging in social
interaction with the service users while also carrying out tasks.

For tasks where the teleoperator might be providing remote
assistance to a person, we need to consider even more
carefully the cognitive load that specific type of feedback
might have on a teleoperator, as the teleoperator might also
have to engage socially with the remote person they are assisting
to build trust and empathy (Langer et al., 2019). Triantafyllidis
et al. (2020) assessed how multimodal interfaces (audio, haptic,
and visual feedback) can improve teleoperation by subjectively
measuring the cognitive workload across the different feedback
modalities. Visual feedback incorporating monocular vision with
the display monitor accounted for significantly higher perceived

workload than stereoscopic vision seen through the virtual reality
head-mounted displays. In an attempt to provide detailed frame
of view for precise teleoperation, Mizukoshi et al. (2020)
investigated the use of an automatic zoom method to improve
teleoperation performance. This method ensures that images
were zoomed when a robot arm entered a work area, but as a
result of lack of consideration for the intentions of teleoperators
as well as zoom levels, resultant effects of high cognitive workload
and motion sickness occurred (Mizukoshi et al., 2020). The study
carried out by Wang et al. (2018) highlights the importance of
considering human-centric metrics in the design of teleoperation

strategies. They opined that while additional haptic feedback in
the Cartesian space resulted in improved performance of a
robotic needle steering, it may increase cognitive workload and
cause muscle fatigue. Monitoring cognitive overload is therefore
important owing to the effect it has on teleoperator performance.
To predict and mitigate workload for training simulation, Jones
et al. (2015) employed cognitive workload analysis to identify
factors that cause cognitive overloading. Due to the fact that
existing approaches allow for subjective assessment and may be
susceptible to user physiology and environmental influences;
Kosch et al. (2018) explored the use of gaze data for

monitoring cognitive workload. They found that there were
higher deviations of gaze points at higher cognitive workload
levels during smooth pursuit eye movements for specific
trajectory types (Jones et al., 2015). Jones et al. (2015) were
able to predict cognitive workload through smooth pursuit with
an accuracy of 99.5% between low and high workload using an
SVM classifier. Using gaze data (gaze duration and the fixation
count), we therefore set out to monitor cognitive workload for
different stages of a teleoperation task in this study.

TABLE 1 | Robot gripper orientation scores.

Orientation

position classification

Gripper orientation ranges

(degrees)

Color

representation

Assigned

values

Aligned with the vertical axis of the jar 125–134, 482–492, −221–−231 Green 5

A little tilted to the left 134.5–140 (0.5–5° more than the upper-class boundary of the ‘aligned range’) Light blue 2

Farther to the left from the aligned

position

140.5–482 (0.5–41° more than the upper-class boundary of the ‘slightly tilted to the

left ‘range)

Deep blue 0

A little tilted to the right 119.5–124.5 (0.5–5° less than the lower-class boundary of the ‘aligned’ ‘range) Light red 2

Farther to the right from the vertical

alignment

−221–120 (0.5–341° less than the lower-class boundary of the ‘aligned ‘range) Deep red 0
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Gaze Tracking
There are increasing numbers of applications that use gaze

tracking, such as video games, as well as applications involving
virtual reality (VR). For communication and interaction, humans
exhibit non-verbal cues to signal intent and at the same time
interpret behavioral cues of others to predict their intentions. In
order to establish perceptual common grounds, people often use
gaze cues to draw other people’s attention (Loth and De Ruiter,
2016). The cues are typically included as part of head movements,
facial expressions, gestures, and eye gaze. This is especially
important in collaborative scenarios, enabling humans to
predict each other’s intentions and adjust their own actions
accordingly (Huang et al., 2015). Therefore, understanding

these natural cues may help facilitate better human-robot
interactions when robots are introduced into the loop.

Gaze patterns have been used to predict human intention in
various applications to date, either replacing or accompanying
verbal expressions. In teleoperation, studies are being carried out
to achieve monitoring and control using the operators’ eye gaze.
A common problem that arises in eye tracking is the “Midas
touch” (Jacob, 1990). This arises as a result of the difficulty in
picking out commands from a continuous stream of inputs. One
of the proposed solutions is the introduction of “dwell time” and
additional input devices as triggering mechanisms. Dwell time

constituted keeping the gaze within a particular area to substitute
for the act of clicking (Latif et al., 2009). Eye tracking measures
such as total duration of “dwell time”, number of dwells, number
of options attended to, mean dwells on each option, and total
dwell time on each option have been introduced to analyze gaze
data and understand related cognitive and decision-making
processes Gidlöf et al. (2013).

Teleoperation using gaze tracking can be accompanied by another
mean of body tracking to achieve certain teleoperation modes. Chen
et al. (2019) proposed a teleoperation method by combining gaze
tracking and movements to teleoperate a KUKA youBot. By

combining instantaneous states of the tracked gaze and hand
motion, they were able to adapt the speed of the robot using eye-
hand coordination. For applications that require minimal manual
input, or in cases where users have motor disabilities, an eye gaze-
tracking system to teleoperate a mobile robot (Carreto et al., 2018)
proved to be a successful alternative to keyboard andmouse.However,
a review of the system usability scale scores showed that more
development on this kind of interface is needed (Carreto et al., 2018).

This study reports on utilizing gaze data to analyze
participants’ interaction with a teleoperation system during a

simple task. The teleoperation system employs a range of
different feedback modalities (scenarios) including verbal
collaboration, haptic feedback, video feedback, and peripheral
vision to support teleoperation performance. With the provided

video feedback, we explored the effect of different feedback
combinations on teleoperator’s gaze. This further helped us to
analyze how each participant used the available feedback which
may also be used to infer the workload at different stages of the
task. Gaze data gathered is defined by the areas of interest on the
different camera views displayed to teleoperators as they carry out
the task.

For all the scenarios employed in the study, video feedback was
always provided to the participants.

3 MATERIALS AND METHODS

This study builds on the research work presented in Bolarinwa
et al. (2019), and the key elements of the method have been
included here for clarity. Ethics approval for the study was
obtained from the ethics committee of the University of the
West of England, Bristol (UWE REC REF NO: FET.17.12.015).

3.1 Design
The study used a repeated measures design with seven scenarios
(scenarios: S1 (video feedback only), S2 (video feedback and
verbal collaboration), S3 (video feedback and peripheral vision),
S4 (video feedback, peripheral vision, and verbal collaboration),
S5 (video feedback and haptic feedback), S6 (video feedback,
haptic feedback, and verbal collaboration), and S7 (video
feedback, haptic feedback, peripheral vision, and verbal
collaboration)). The scenarios were presented in the
counterbalanced order between participants. As the study’s
main aim was to investigate the role of gaze data in

understanding how teleoperators interacted with the system,
the independent variables were scenario, camera view, and the
attempt number. The dependent variables were eye tracker data
(gaze duration and the fixation count), and the results were
controlled for participants’ gaming experience. Since the robot
was controlled using a joystick, participants’ prior gaming and
robot control experience was considered as an important factor
that could give them advantage (lower task completion time or
smoothness of gripper control) over those without prior gaming
experience. Gaming experience was introduced to understand if
participants with prior gaming experience would interact with the
system differently relative to participants without prior gaming

experience.

3.2 Study Setup
The study was conducted in the Assisted Living Studio in the
Bristol Robotics Laboratory, at the University of the West of
England, Bristol, United Kingdom. The study setup is shown in
Figure 1. A 6-degrees-of-freedom JACO2 robot arm from Kinova
(2019) was used in the study to carry out an assistive task that
might be performed for a service user with mobility issues.
Participants (teleoperators) controlled the arm using the
robot’s joystick controller. Communication between the robot

TABLE 2 | Feedback scenarios.

Scenarios Feedback and collaboration

scenarios

1 Video feedback only

2 Video feedback and verbal collaboration

3 Video feedback and peripheral vision

4 Video feedback, peripheral vision, and verbal collaboration

5 Video feedback and Haptic feedback

6 Video feedback, haptic feedback, and verbal collaboration

7 Video feedback, haptic feedback, peripheral vision, and verbal

collaboration
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and the joystick is via a one Mbps CAN bus. Two levels of control
system frequency are available: a high level (100Hz) and a low level
(up to 500Hz) via APIs. The gripper orientation and robot arm joint
movements were polled every 10 milliseconds. Figure 1 shows a
participant controlling the JACO2 robot with a joystick. Camera views
of the remote robot end were displayed on the screen (using 4
quadrants) directly in front of the participants. The chosen camera
views show the same robotworkspace views participantswould have if
each participant were to be present locally in the same physical
location as the robot. The adjustments of the camera positions and
the decision regarding the number of cameras used were made after

the completion of a pilot study. The camera view in each quadrant was
assigned randomly and kept constant for all participants. The gripper
orientation polled from the robot was displayed to participants via the
wrist worn haptic devices and the display screen in the participants’
left peripheral view. Tobii Pro Glasses 2 were worn by participants to
track and record their gaze data as they carried out the task. The study
protocol was clearly explained to participants before they repeatedly
teleoperated the robot to pick up a jar filled with sunflower seeds,
empty the contents of a jar into a container, and return the jar to its
initial position. An instruction sheet that describes how the robot can
be controlled with the joystick was provided for consultation by

participants as they carried out the task. The experiment took 60min
to complete per participant. Scheduled breaks were taken by
participants between each task repetition to eliminate the effects of
fatigue on the performances of participants. Participants rested after
each task, during which changes were made to the feedback scenarios
and the system setup for the task. Additional rest timewas given based
on participants’ requests.

The role of the service-user was performed by the principal
researcher. The principal researcher engaged with the

participants in two ways. First, through social interaction,
providing verbal feedback on how participants were
performing during the task. Second, by signaling the end of
each stage and whether the stage had been completed
successfully or otherwise using a series of buttons designed for
the study. The duration of each stage along with the total number
of robot steps and instantaneous orientation of the robot gripper
were logged by the software. The task was divided into four stages:

Stage 1: Free-space translation and rotation of the gripper
from a defined position to a position and orientation close to the
jar for successful grasp.

Stage 2: Grasping the jar and making free space translation to
a position where its content can be emptied into another
container.

Stage 3: Free space rotation and translation of the jar to empty
its content into a container.

Stage 4: Free space translation and rotation of the emptied jar
to its pick-up position.

The teleoperation task, comprising of all these stages, was
repeated seven times by each of the participants with different
feedback combination scenarios and verbal collaboration
between participants (the teleoperator) and the principal

researcher (service-user), as shown in Table 2. In Figure 2,
each block shows the components of the study setup and the
direction of information flow. The central processing block is a
laptop computer which communicates with the JACO2 robot,
polling the gripper orientation values from it and mapping the
polled data to different feedback modalities.

In aiding a potential frail and vulnerable service-user, it is likely
that the teleoperator and service-user will interact socially to make
the experience pleasant and engaging. Interacting socially will

FIGURE 2 | Setup block diagram.
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require that the teleoperator communicates with the service-user
and responds to non-verbal cues. As a result, feedback modalities
were chosen that would not inhibit social interaction between the
teleoperator and service user. The verbal feedback from the service
user included providing additional information to the teleoperator
that could help with the task and is also intended to make the
service user feel engaged in the task completion. The feedback

modalities employed are explained below.

3.3 Feedback Modalities Used in the
Experiment
Video
Videos of the remote location were captured using four RGB web
cameras and were displayed on four quadrants on a single screen,
as shown in Figure 3. Video feedback was available continuously,
featuring in every combination of feedback (scenarios). The top-
left quadrant of Figure 3 shows the aerial view of the robot’s

workspace, while the quadrant labeled “top-right” provides
participants with the right view of the workspace. The “bottom-
left” quadrant focusses on eye-level view of the workspace to make
it possible to see the distance between the gripper and the table, as
well as the placement of the jar on the table. The bottom-right
quadrant shows the left view of the robot workspace.

Haptic
WiFi-enabled haptic wrist bands were used to provide
information about the gripper orientation to participants. The
wrist bands were custom-made for this study and incorporated 4

vibration motors located inside a soft sport wrist band. The
amplitude of vibration of the motors increases as the gripper
moves away from a set vertical position. In this study, haptic wrist
bands were worn on each hand to signal left and right directions
of movements of the gripper.

Peripheral Vision
Peripheral vision refers to the ability to see objects, movements,
and changes in the environment outside of the direct line of vision

(William, 2018). Information about the gripper orientation was
presented as color changes on a second screen positioned in
participants’ left peripheral field of view. Table 1 shows the
gripper orientation values mapped to different orientations of
the gripper and assigned colors for the peripheral vision screen.

Verbal Feedback

We introduced verbal collaboration to represent interactions
between teleoperators and service users. In the study, the
principal researcher (acting as the service user) provided
verbal feedback on teleoperators’ performance as they carried
out the task. This fits into a typical assistive care scenario where a
career provides assistance using a teleoperated robot whilst
socially engaging with the service user.

Feedback Combinations
Table 2 shows different combinations of feedback and
collaboration with the “service user” that were used in the

experiments. To ensure parity, the order of the feedback
combinations was randomized using Latin Square
counterbalancing. The combination of just peripheral feedback
and haptic feedback was not included in the experiment because
the overall time required for the experiment would have been
impractical, given all the separate and paired combinations that
were carried out; however, this has been planned for future
experiments.

3.4 Participants
Invitations were sent out for voluntary participation across the

university. After completing a consent form, 11 people
participated in the study, five were male and six were female.
Participants had a mean age of 29.5 (SD � 7.54), 2.36 mean years
of robot experience (SD � 3.2), and mean years of gaming
experience of 5.6 (SD � 7.63). Participants’ robot experience is
a measure of participants’ familiarity with controlling or working
(research or demonstration) with robots, measured in years.
None of the participants reported color blindness, and of all
participants, 10 participants were right-handed and only one

FIGURE 3 | Screen shot of four different camera views.
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participant was left-handed. Handedness was determined based
on statements made by each participant. The setup was not
affected in anyway by the left-handedness or right-handedness
of the participants. Participants operated the robot controller

with their dominant hands.

3.5 Analysis
We present analysis of participants’ gaze data recorded during the
task. For all data recorded via the Tobii Pro Glasses, the
percentage of fixation was 100. The Tobii Pro software was
used to extract the gaze duration and the fixation count for
defined regions of interest into an Excel spreadsheet. The regions
of interest include a video feedback display screen (with four
quadrants), robot control instruction sheet, robot controller
joystick, and peripheral display screen. As eye gaze was

continuous, data with normal distribution and parametric tests
for inferential statistics were carried out using the IBM SPSS
statistics software. The Shapiro–Wilk test for normality was
carried out on the captured data. The data was normally
distributed, and therefore, our small sample size (up to
samples as small as 5) is appropriate for a parametric test
(Winter 2013). Furthermore, with current sample size (N �

11), we compute the statistical power of 0.80 which is
appropriate for generalization.

Recorded Parameters

The dependent variables measured in the study were the overall
robot steps (calculated as the sum of the number of discrete robot
arm joint movements in x, y, and z planes) taken to complete the
task, gaze data, robot gripper orientation, time needed to
complete the task, and subjective ratings of ease of use and
usability of the system (system usability scale, Brooke (2004)).
The robot arm joint movements and gripper orientation were
polled in software from the robot using the robot’s application
programming interface (API). The independent variables were
feedback combinations S1–S7 (Table 2). During experiments, we
recorded each stage’s completion, success, and the task

completion time, the participants’ region of interest in the
visual field, and the sum of the number of discrete robot arm
joint movements in x, y, and z planes. However, the dependent
variable analyzed in this study is the gaze data (gaze duration and
fixation count).

4 RESULTS

4.1 Learning Effect in the Use of Robot
Controller
We investigated how frequently participants consulted the robot
control instruction sheet as they repeated the task using gaze
duration and the fixation count. Reduction in the frequency with
which participants consulted the robot control instruction sheet
as the task is repeated would imply that participants learned how
to control the robot better with each task repetition.

To investigate whether the gaze duration for which
participants looked at the instruction sheet changed with
increasing familiarity, an ANOVA with a repeated measure of

Attempt (attempt one to attempt seven) was conducted on the eye
gaze duration toward the instruction sheet in stage one of the task.
There was a trend with main effect of the Attempt order (F (2.08,
16.61) � 2.54, p � 0.107, η2 � 0.241; Figure 4). The descriptive

statistics indicate that indeed participants consulted the
instructions less with each attempt they make, compared to
the first attempt. In the follow-up analysis, we included
participants’ gaming experience as a covariate. Gaming/robot
control experience was considered to examine whether
participants with prior experience would interact with the
system different from those without prior gaming/robot
control experience. The result showed a significant main effect
of the Attempt order (F (6,30) � 3.63, p � 0.008, η2 � 0.420), yet
for the interaction Attempt order, gaming experience was not
significant (F (6,30) � 1.29, p � 0.290, η2 � 0.260). Equivalent

analysis on scenarios (S1 to S7) did not show a significant main
effect of feedback scenario without covariate and with covariate of
gaming experience (F (6, 42) ≤ 0.90, p ≥0 .506, η2 � 0.114). The
results indicate that although gaze duration toward the
instructions did not depend on feedback modalities,
participants got more familiar and spent less time looking at
instructions with task repetition. This difference was only at a
trend level. This reached a significant result while considering
participants’ gaming experience.

4.2 Gaze Duration and the Fixation Count
Trend for Different Stages of the Task
We compared how the gaze duration and the fixation count for
different camera quadrants changed for different stages of the
task. Gaze duration and the fixation count were highest in stage
one and were observed to change for different stages of the task
(Figure 5, 6). Neither the gaze duration nor the fixation count for
any of the feedback quadrants yielded zero, implying that for all
scenarios all the camera views were consulted notwithstanding
the duration of consultation. For all the scenarios examined, gaze
duration and the fixation count for the bottom-right quadrant

were highest in the first task stage. The top-right quadrant for all
scenarios had the highest gaze duration and the fixation count in
the stage three of the task.

4.3 Effect of Feedback Modalities on Gaze
View and Time
Next, we decided to investigate the camera quadrants that
participants consulted the most, using the scenario with only
video feedback (S1) as the control scenario. The repeated
measures ANOVA was significant (F (1, 10) � 21.91, p �

0.001, η2 � 0.687). Participants spent more time gazing at the
bottom-right quadrant of the screen significantly more than the
other three quadrants. Furthermore, gaze duration between other
quadrants did not significantly differ (Table 3).

To investigate the most consulted camera quadrant depending
on feedback modality, a 4 (Camera Quadrant: top-left; top-right;
bottom-left; bottom-right) x 7 (Scenarios: S1–S7) ANOVA with a
covariate of gaming experience was conducted on the eye tracker
gaze duration for each scenario. The results showed a significant
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main effect of the Camera Quadrant F (3,21) � 19.48, p ≤ 0.001, η2

� 0.736, andmain effect of Scenario (F (6, 42)� 2.41, p� 0.043, η2�
0.256). The interaction, Scenario x Camera quadrant, and
interactions with the covariate of gaming experience did not
yield a significant result F (6, 42) ≤ 1.85, p ≥ 0.113, η2 � 0.209.
Further investigation of main effect of camera quadrant showed
that participants overall had a significantly longer gaze duration

toward bottom-right quadrant compared to other quadrants
(Table 4). This suggests that participants’ preference toward this
quadrant was not significantly influenced by feedback scenarios.

Although the analysis yields the main effect of scenario to be
significant, post hoc comparisons did not reveal participants
having significantly longer gaze duration in any scenario (p ≥

0.419). As the analysis shows that only the bottom-right quadrant
was the most viewed, we further explored to see if different
scenarios affect the viewing of this quadrant compared to the
video-only scenario (S1). We compared the bottom-right
quadrant of video-only scenario (S1) with other scenarios

(S2–S7). The paired t-test between Scenario 1 (S1) and
Scenario 4 (S4) was significant (t (10) � 2.74, p � 0.021),
indicating that participants had significantly longer gaze
duration toward the bottom-right quadrant in Scenario 4 (S4).
Other comparisons were not significant (t (10) ≤ 1.62, p ≥ 0.136).
When the relationship between gaze duration and participants’
performance on the task was examined for the first stage of the
task, Pearson correlation coefficient established a significant
positive correlation between gaze duration and the sum of

individual robot joint movements (robot steps) (r � 0.715, p �
0.013).

Furthermore, the gaze duration at the bottom-right quadrant
in Scenario 4 was the longest when compared to other scenarios.
Descriptively, in this scenario, participants’ gaze duration in other
quadrants was very low. Having longer gaze duration does not
necessarily imply a corresponding higher fixation count, but the

fixation count confirms the results of the gaze duration for
this study.

4.4 Gaze Distractions by Feedback
Modalities
Due to the importance of video feedback in teleoperation, as
found in the results, we also sought to see the effect of each
feedback scenario on participants’ gaze during the teleoperation
task. We were interested in investigating whether the participants
were distracted by the different feedback scenarios and the extent

to which they were distracted. Distraction would be manifested as
teleoperators looking away from areas of interest that they
focused on when there wasn’t any other feedback (other than
the video feeds). The areas of interest are defined as the screen for
video feedback, the robot controller, and robot control
instructions. The distraction time was calculated by
subtracting the sum of gaze time on areas of interest from the
total time of interest duration. The total time of interest duration
is the time spent on the task. A repeated measures ANOVA with

FIGURE 4 | Gaze duration toward instructions as a function of attempt for stage 1.
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independent measure of seven scenarios and dependent measure
of gaze duration outside areas of interest with covariant of gaming
experience showed the main effect of scenario to be significant F
(6,48) � 2.46, p � 0.037, η2 � 0.235. The interaction Scenario x
Gaming experience was not significant F (6, 48) � 1.95, p � 0.092,
η
2
� 0.196.

Post hoc investigation with the Bonferroni adjustment for
multiple comparison did not indicate any significant differences
between scenarios (p ≥0 .999). The equivalent analysis on the
attempt order showed that the main effect of attempt was
significant (F (6,48) � 2.86, p � 0.018, η2 � 263), as well as the
interaction between attempt and gaming experience (F (6,48) �

FIGURE 5 | Graphical comparison of camera view changes for different stages of the task based on scenarios.
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3.11, p � 0.012, η2 � 0.280). Further investigation of the main
effect of attempt with Bonferroni adjustment for multiple
comparisons did not indicate any significant difference
between Attempts (p ≥0 .222). The result suggests that
participants gaze outside the areas of interest was both
dependent on feedback modalities (scenarios) and dependent
on which attempt it was. However, post hoc results did not
indicate significant difference between attempts and scenarios.

5 DISCUSSION

As physically assistive robotic systems are still lacking in ability
for safe fully autonomous operation, telerobotics can be employed
to offer remote assistance. However, a relatively unexplored area
of research, which this study addresses, is the understanding of
how teleoperators use/relate with different feedback modalities
and the teleoperation setup. Our experimental setup was designed

for participants to carry out a teleoperated task of picking up a jar
filled with sunflower seeds and emptying its content into another
container. The task was repeated seven times for different
feedback scenarios. In this study, we present the analysis of
the gaze data recorded during the task to understand how
teleoperators interacted with the system. Results on other
findings during the same study have been published by
Bolarinwa et al. (2019).

Results show that participants consulted the instruction sheet

(on how to control the robot) less with each repetition of the task.
However, the reduced consultation of the instruction sheet was
not significantly affected by the different feedback scenarios or
prior gaming experience of participants. This confirms the first
hypothesis (H1) regarding a learning effect of robot control in
teleoperated task repetition. Participants learn to control the
teleoperated robot arm better with each repetition of the task.
Even though proficiency improves with repetition, we were able
to confirm that it can be monitored using gaze data and that

FIGURE 6 | Graphical comparison of camera view changes for different stages of the task based on scenarios.
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feedback scenarios do not influence the learning process. The
learning effect was not influenced by the feedback scenarios
employed. The confirmation of hypothesis one (H1) is,
however, relative to the specific joystick used in the study.
Further studies can be carried out to confirm this hypothesis
using other devices and technologies. The learning effect is also
limited to how the robot is controlled without having any
influence on how the task is carried out.

Since the task carried out can be divided into stages, we
examined gaze duration and the fixation count toward the
different video feedback quadrants for the different stages of

the task. Overall gaze duration and fixation count were
observed to be highest in stage one of the task, relative to other
stages. However, the least consulted video feedback quadrant
cannot be concluded as the least important. Results show that
all the video feedback quadrants were consulted but with varying
gaze duration and the fixation count. Figure 7 shows the heat map
of overall gaze duration for different camera quadrants. More
studies may be carried out to examine the effect of removing the
least consulted quadrants on the success of such teleoperated
tasks. During stage three of the task, highest gaze duration and the
fixation count were recorded toward the top right video feedback

quadrant. Gaze duration and the fixation count for the bottom-
right quadrant were highest in the first stage of the task. This
suggests that participants prefer certain video feedback quadrants
during specific stages of the task and this knowledge may be used
to improve the design of video feedback for teleoperation. Video
quadrant consultation can be influenced by the stage of the task.
The sum of robot joint movements and objective evaluation of the
different stages of the task show that more work was done in stages
1 and 3 of the task in order to complete those stages relative to
stages 2 and 4. This was also confirmed with significantly higher
gaze duration and the fixation count for stages 1 and 3 of the task.

The feedback scenarios employed did not influence the video
feedback quadrant consulted, but for all scenarios, longer gaze
duration and the fixation count were noticed for the bottom-
right quadrant as participants carried out the task. Scenario 4
(S4) had the highest gaze duration when the effect of feedback

was investigated for the bottom-right quadrant (Table 5). We
compared the longer gaze duration and the fixation count results
of Scenario 4 (S4) with results published by Bolarinwa et al. (2019).
Bolarinwa et al. (2019) reported that the most significant
improvement in gripper orientation was noticed for S4, and
when the system usability scale was compared for all scenarios,
S4 also had the joint highest score recorded. The gripper orientation
is a measure of how accurately participants were able to orientate
the gripper before grasping a jar for different feedback scenarios
while the system usability scale is a subjective assessment of usability
of the system for different feedback scenarios. Examining the

number of robot joint steps needed to complete stage 1 across
all scenarios and the ease of use according to Bolarinwa et al. (2019),
S4 was reported to be the easiest scenario for participants.

The task completion time and the number of robot joint steps
reflect a similar pattern to the gaze duration and the fixation
count (Figure 8). The highest average task completion time and
robot joint steps were recorded for stage 1, followed by stage 3.
Subjectively examining the different stages of the task relative to
the camera quadrants, we can infer that the bottom-right camera
quadrant displays a better view of stage 1 of the task and that the
top-right quadrant projects a better view of stage 3 of the task.

This is confirmed by the fact that the bottom-right quadrant also
had the highest gaze duration and the fixation count.

Results also show that gaze metrics can be used to infer the
levels of distractions each feedback modality can introduce,
confirming the third hypothesis (H3). In the study, there was
no significant difference between the distractions introduced by
the feedback scenarios.

With reference to the second hypothesis (H2), analysis of
gaze duration and fixation count yields a significant main effect
of scenario (combination of feedback). With no scenario having
significantly longer gaze duration and the fixation count than

other scenario, it is difficult to measure the impact of feedback
scenarios on participants’ performance using gaze duration
alone. However, since other parameters (e.g., distraction
introduced by feedback scenarios and camera quadrants) that
affect teleoperator performance can be measured using gaze

FIGURE 7 | Heat map of average gaze data for stage 1 of the task.
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duration and fixation count, it is difficult to ignore H2 but more
studies may be carried out in this context. H2 is inconclusive in
this study.

We can therefore infer the workload of different stages of the
task by combining results for task completion time, gaze duration
and fixation count, and robot joint steps. Stage 1 appears to be the
stage with most workload. Stages 1 and 3 were found to possess

more workload than stages 2 and 4 based on the recorded
parameters. This type of analysis, which leads to gaining a
better understanding of these relationships, can help with
planning the optimal system setup for the teleoperator as it
also gives an indication of the levels of cognitive workload for
the various stages and aspects of the task. This information can
further help to determine what support should be provided and at
which point in the task execution it should be provided to ensure
ease of teleoperator performance.

Whilst the results of the gaze data for this study did not
indicate whether specific feedback modalities affect the

participants’ gaze time on different camera views,
recording gaze could be a useful method to determine a
teleoperator’s preference of camera views in relation to the
teleoperation task and its level of difficulty. This information
could be very useful in taking an adaptive approach to the
information being provided, for instance by enhancing the
specific information, such as the magnification of a camera

view, as the teleoperator proceeds with the task. The analysis
of gaze data can also be used to confirm the effectiveness of
each feedback modality. To further determine the
significance of these findings, carrying out experiments
with more participants will be needed. However, our
experiments help to lay the foundations for the
applicability of this approach.

6 CONCLUSION AND OUTLOOK

We examined the effect of feedback modalities on participants’
gaze. We also examined how gaze data can help us understand
how teleoperators interact with the system, further helping to
improve the system. We found that gaze data can be used to
understand the areas of increased workload of various tasks and
how it can be used to improve and optimize the setup and
feedback modalities to suit the teleoperator. A key lesson

FIGURE 8 | Task completion time and robot steps for all stages of the task.

TABLE 3 | Gaze duration mean, standard deviation (SD), and post hoc

comparison between 4 angles significance level IN S1

Mean SD N Top left Top right Bottom left

Top left 9.32 8.79 11 - - -

Top right 2.54 5.38 11 0.249 - -

Bottom left 9.72 6.87 11 ≥0.999 0.212 -

Bottom right 35.93 16.19 11 0.007 0.001 0.002

TABLE 4 | Gaze duration mean, standard deviation (SD), and post hoc

comparison between 4 camera views significance level across all conditions

(S1–S7).

Mean SD N Top left Top right Bottom left

Top left 10.87 8.53 9 - - -

Top right 3.33 2.92 9 0.185 - -

Bottom left 11.87 9.49 9 ≥0.999 0.0.173 -

Bottom right 41.61 18.95 9 0.028 0.004 0.010

TABLE 5 | Gaze duration means (SD) across four camera views as a function of

scenario for stage 1.

Top left Top right Bottom left Bottom right

Mean SD Mean SD Mean SD Mean SD

S1 9.32 8.79 2.54 5.38 9.72 6.87 35.93 16.19

S2 9.64 12.62 1.95 4.50 7.41 5.71 26.78 9.16

S3 12.93 11.31 7.96 11.18 12.34 10.97 42.16 39.90

S4 6.85 7.04 2.14 3.80 11.69 10.75 49.39 26.63

S5 14.03 10.49 5.71 7.85 12.87 16.42 40.42 23.32

S6 12.61 12.36 4.80 4.35 12.33 15.51 39.62 30.54

S7 13.41 15.96 2.41 1.85 11.48 11.70 48.51 28.37
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learned is that, for assistive tasks, particularly when developing
shared autonomy systems, analysis of gaze data of both the
teleoperator and service user is likely to be important.

The analysis of gaze data could also be used to confirm the

effectiveness of each feedback modality. Feedback on situational
awareness could help to improve the accuracy with which a task
can be carried out. However, processing feedback may also
increase the task completion time. Since video feedback is
provided across all feedback scenarios, any additional
feedback (e.g., peripheral vision, haptic feedback, and verbal
collaboration) increases the amount and type of information
teleoperators have to process. It could therefore be inferred that
additional feedback increases the cognitive load and may cause
the increase in task completion time; however, more
experiments will be required to establish this empirically.

Also, even though repetition improves proficiency, with gaze
metrics, we were able to confirm that feedback modalities did
not influence the proficiency with which participants controlled
the robot as they repeated the task. Understanding the
distraction caused by the use of feedback may be important
in scenarios where teleoperators need to focus on instantaneous
changes at the remote end. In our experiments, gaze metrics
confirmed that the use of additional feedback did not distract
participants.

There is still a lot of anxiety expressed regarding the use of
robots from both older adults and carers. In this study, we were,

therefore, particularly interested in how the verbal collaboration
could enhance the social elements of the interaction and perhaps
reduce anxiety. As such, we explored the impact of verbal
collaboration, as well as the efficacy of the feedback modalities
for participants who might not have had prior experience of
operating a robot arm. We observed how people without prior
experience of robot control improved when verbal feedback was
available. Based on the initial findings of this study, we
recommend that this merits further exploration.

Further experiment with more participants, including older-
adults as service-users to provide verbal feedback, and carers in
the role of teleoperators, will help to improve the reliability of the
findings. This will also enable us to determine the real-world

applicability and utilization of this approach. While this study has
helped to further understand not only the optimal setup for the
teleoperator in regards to the feedback modalities, further
research into the social interactions between service-users and
teleoperators and how these might be affected by the cognitive
workload on the teleoperator is required.
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