
1. Introduction
With the advancement of Synthetic Aperture Radar (SAR) satellite missions, Interferometric SAR (InSAR) 
has become an established method to measure the Earth's surface deformation caused by earthquakes, 
greatly improving our ability to observe active tectonic processes (Elliott et al., 2016; Massonnet et al., 1993; 
Peltzer & Rosen, 1995; Salvi et al., 2012). InSAR offers an alternative approach, other than seismology, to 
provide independent measures of fault location, depth, and orientation (e.g., Lohman & Simons, 2005; Ped-
ersen et al., 2003). Unfortunately, due to the dominant error sources within InSAR data of decorrelation and 
atmospheric noise (Agram & Simons, 2015; Zebker et al., 1997), only earthquakes above a certain size or 
that are shallow enough can be observed. Recent studies exploit the potential of the latest SAR satellites us-
ing single interferograms to detect earthquakes in the first instance (e.g., Funning & Garcia, 2019; Morish-
ita, 2019), but the overall detectability of earthquakes by this approach is inconsistent and non-robust, and 
subject to extremely high failure rates (49% failure for Sentinel-1 and 23% failure for ALOS-2).

This circumstance makes using InSAR for earthquake studies challenging, especially for small earthquakes 
(Mw 5.0–6.5, from a geodetic point of view) due to their weak signals, despite in some cases still causing 
fatalities when close to population centers (England & Jackson, 2011). However, there is merit in trying 
to increase the sensitivity of our observations, as we can draw inferences from a huge number of small 
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earthquakes assuming their behavior scales similarly with large ones (Ide, 2019). Additionally, by precisely 
locating these small earthquakes, it may be possible to link seismic activity directly with active fault struc-
tures that are capable of larger earthquakes.

To achieve more accurate and robust measurements, InSAR time series analysis has been previously pro-
posed (Crosetto et al., 2016; Hooper et al., 2012; Jolivet et al., 2012; Osmanoğlu et al., 2016). Phase-stable or 
high-coherence pixels are identified to reduce the decorrelation noise (e.g., Ferretti et al., 2011; Samiei-Es-
fahany et al., 2016), and spatiotemporal filtering is applied with the optional implementation of a tropo-
spheric correction to lower the impact of atmospheric noise (e.g., Dalaison & Jolivet, 2020; Doin et al., 2009; 
Goldstein & Werner, 1998; Li et al., 2005; Pepe et al., 2015). Some recent cases show that InSAR time series 
analysis, which has been used to measure small amplitude, long duration ground displacements associated 
with interseismic strain accumulation, postseismic deformation, and shallow creep (Fialko, 2006; Hilley 
et al., 2004; Ryder et al., 2007), has the capability to extract coseismic signals from various sources of noise 
(Fielding et al., 2017; Grandin et al., 2017), suggesting a promising way for enhancing earthquake detection 
using InSAR.

To fully exploit the potential of InSAR in earthquake detection and modeling, we perform InSAR time 
series analysis of Sentinel-1 data and focus on three recent earthquakes (Mw 5.6–6.3, ∼10 km depth) in 
south-western Iran as case studies. The Arabia–Eurasia collision causes numerous large earthquakes that 
have been recorded in history (Ambraseys, 2001) and long-lived postseismic afterslip from more recent ob-
served events in this broad deformation zone (Copley et al., 2015; Copley & Reynolds, 2014). On November 
12, 2017, the large Mw 7.3 Ezgeleh–Sarpolzahab earthquake struck this region, triggering many aftershocks 
and long-lived postseismic deformation in the area surrounding the mainshock (Barnhart et al., 2018; Feng 
et al., 2018; Nissen et al., 2019). We focus on three notable late aftershocks as examples (Mw 6.0, Mw 6.3, and 
Mw 5.6 earthquakes, which happened on August 25, 2018, November 25, 2018, and January 6, 2019, respec-
tively). We process five years of Sentinel-1 observations over this area, from November 2014 to September 
2019 to ensure enough data is available to constrain potential secular and annual deformation (Figure 1), 
and reconstruct the enhanced coseismic deformation field using a parameterized function describing sur-
face displacement to time series data. We use independent seismological observations and a recent geodetic 
solution (Fathian et al.,  2021) to validate our approach. We find that our deformation fields better con-
strain the source models and are more consistent with seismological data compared to those using single 
interferograms.

2. Methodology
Using Sentinel-1 Single Look Complex images, we form interferograms with multilooking (4 in azimuth 
and 20 in range yielding a pixel size of ∼50   60  m2) and spatial filtering using the LiCSAR processor 
chain (Lazecky et al., 2020). The DEM used during the processing is Shuttle Radar Topography Mission 3 s. 
We form interferogram networks by connecting each image to three subsequent acquisitions and use the 
StaMPS software (Hooper et al., 2007) to perform time series analysis, including GACOS corrections for 
tropospheric artefacts using the TRAIN software (Bekaert et al., 2015; Yu et al., 2018).

For earthquake studies, InSAR time series analysis leads to frequent estimates of surface displacement 
through time, providing better noise resilience. Compared to single interferograms, we can improve earth-
quake detection and the quality of coseismic surface deformation measurements in time series, especially 
when the deformation signals are obscured by decorrelation or atmospheric noise. Additionally, we can 
separate multiple earthquakes which occur close in time and space (e.g., the Mw 6.3 and Mw 5.6 earthquakes 
are separated by only 42 days and 30 km) through data fitting to time series (Figure 2).

Having established that a coseismic signal is discernable in time series, further improvements can be made if 
we assume a deformation model appropriate for displacements due to the seismic cycle. We can reconstruct 
the coseismic deformation field via a time series approach similar to that used in GNSS (Heflin et al., 2020; 
Tobita, 2016). Considering deformation associated with the seismic loading cycle, we assume that surface 
deformation at time t following an earthquake at time 0t  can be decomposed as follows:
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where  Η  is a Heaviside step function, C represents the coseismic displacement, A and   are the param-
eters for a logarithmic function representing the postseismic deformation (Ingleby & Wright, 2017; Liu & 
Xu, 2019), V  is the long-term linear deformation rate which contains in part the interseismic displacement, 
and b is a constant reference offset in observations.

Whilst postseismic deformation may occur following all earthquakes, we only consider the dominant post-
seismic deformation of the Mw 7.3 mainshock, as the three aftershocks we focus on are either relatively 
small in magnitude or occurred too close in time or space, impeding for robust postseismic fitting. Although 
this simplification will lead to the inclusion of some early postseismic motion into the reconstructed co-
seismic deformation fields, the InSAR derived magnitude and moment from our approach (Table S1) is 
consistent with seismological observations, illustrating this effect is limited in these cases. Other smaller 
events occurred close to our study cases but cannot be distinguished in time series either because they are 
too small or too close to other larger-magnitude earthquakes. Additionally, since the deformation signals 
of the three study cases are coincident in time (Figure 2b), we fit all three aftershocks in one equation. The 
model we used in this study is then:
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Figure 1. Topographic map of the Iran–Iraq border area. The epicenter of the large Mw 7.3 earthquake from November 
12, 2017 is shown by the red star, the three study cases are indicated by focal mechanisms, and all other Mw ≥ 5.0 
earthquakes from the United States Geological Survey catalog are represented by gray circles (spanning November 
2014–September 2019). The white and black dashed rectangle boxes show the area of processed Sentinel-1 data from 
two ascending tracks (A072 and A174) and two descending tracks (D079 and D006). Red lines show major active faults 
(Styron & Pagani, 2020).
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where it  and iC  represent the event time and the coseismic deformation of each earthquake sorted by time 
(  4n  in this study, with first event at 1t  denoting the mainshock).

We first use maximum likelihood approach to determine the postseismic time   and find it can be a con-
stant value (∼6 days) in our study (Figure S1). We then reduce the fitting of Equation 2 to a linear inverse 
problem and evaluate the other parameters and their uncertainties (Figures S2–S4).

3. Results
3.1. Coseismic Deformation Reconstruction

Our reconstructed coseismic deformation fields improve the detectability of earthquakes (Figures 3 and S5), 
and obtain higher signal-to-noise ratios (SNRs) as indicated by the reduced noise observed in the semi-var-
iogram fitting (Webster & Oliver, 2007; Figure S6). The coseismic deformation signals are clearer and more 
easily recognizable after reconstruction, especially on the ascending track. Here we take the most chal-
lenging Mw 5.6 earthquake (given its small magnitude) as an example. On both ascending and descending 
tracks, the deformation signals in the interferograms are masked by strong atmospheric noise, but are not 
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Figure 2. Interferometric Synthetic Aperture Radar (InSAR) time series analysis improvements to earthquake detection, using the Mw 6.3 and Mw 5.6 
earthquakes on track D006 as examples. The tropospheric noise has been corrected using GACOS. (a) Left: the shortest (6 days) interferogram covering the Mw 
6.3 earthquake, and three longer interferograms (acquisition dates are indicated by the title) of the area covering the earthquake deformation marked by the 
dashed rectangle. Right: time series analysis for a representative peak displacement pixel P1. Blue vertical dashed line represents the event time of the Mw 6.3 
earthquake. Red horizontal dashed lines show a simple step function fitting of the data, and the values of the offsets (delta) and error bars are shown at the 
lower-left corner. (b) Same as (a) but for the Mw 5.6 earthquake and pixel P2, green vertical dashed line represents the event time of the Mw 5.6 earthquake.
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quite weak enough to be completely invisible upon examination of multiple interferograms (Figure 2b). 
After reconstruction, we successfully make the earthquake signal more readily apparent for identification, 
resolving the ambiguity of whether it is associated with an earthquake deformation signal or solely atmos-
pheric noise. Additionally, we can see that the deformation pattern in the reconstructed signal becomes 
more similar to the expected deformation, shown in the forward modeling (based upon the seismological 
catalog focal plane solution), implying a more seismologically consistent earthquake model.
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Figure 3. Comparison between the shortest interferograms and the reconstructed deformation fields. For the prediction from United States Geological Survey 
(USGS) solution, we assume a uniform dislocation embedded in an isotropic elastic half-space (Okada, 1985), faults are equal in width and length, and the 
slip-to-length ratio is set to  56 10  for these intraplate earthquakes (Scholz, 2002). The plus symbols indicate the epicenter of the focal mechanism from USGS 
solution. (a) Data from track A072. From top to bottom, the rows represent the predictions from USGS solution, the single interferograms, the reconstructed 
deformation fields, predictions from GBIS inversion (Bagnardi & Hooper, 2018), and the residuals between the reconstructed deformation fields and the 
predictions from GBIS inversion, respectively. (b) Same as for (a) but for track D006.
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3.2. Earthquake Modeling

We first downsample the data, reducing the number of pixels to ∼500, with a greater pixel density in the 
nearfield (Figure S7). Then we use the GBIS software (Bagnardi & Hooper, 2018) to provide a uniform fault 
plane slip solution with uncertainties to ascertain the improvement gain in constraining fault parameters 
from our reconstructed deformation fields, and compared to independent seismological observations and a 
recent InSAR solution (Fathian et al., 2021). A common issue when modeling small or buried earthquakes 
that do not rupture up to the surface, is that a focal plane ambiguity remains in InSAR solutions (as it does 
in seismologically determined solutions). Here we try to model both focal planes and select the one which 
provides a normally distributed output of strike values (Mw 6.0 and Mw 6.3) or more seismologically consist-
ent solution (Mw 5.6).

The geodetic solutions from our data (Figure 4 and Table S1) show that although there are some discrepan-
cies (e.g., rake value for the Mw 6.0 earthquake), they agree well with the seismological observations, and the 
modeling results from our time series approach are more seismologically consistent (average 18% vs. 22% 
relative changes). More importantly, reconstructed deformation fields provide better-constrained solutions, 
with an average of 36% narrower confidence interval (CI) for all three earthquake parameters. The Mw 6.0 
earthquake achieved the most obvious gains (average 56% CI reduction) as the deformation signals are more 
distinct after reconstruction. The Mw 6.3 earthquake, whose signals are already clear before reconstruction, 
has the least difference modeling results (1% relative change) while our approach gives significant CI re-
duction (average 26%). Conversely, the solution of the Mw 5.6 earthquake, whose signals have been greatly 
enhanced following our approach, is still relatively poorly constrained. With only one elliptical lobe being 
clearly observed, it becomes difficult to constrain the fault geometry well (large uncertainties for strike and 
rake values). This reemphasizes the limitation of surface displacements in constraining geometry and re-
solving the focal plane rupture ambiguity when the rupture is buried and does not break the surface, even 
with improved SNR (Biggs et al., 2006; Elliott et al., 2010). Additionally, our approach achieves similar fault 
parameters and uncertainties as that from Fathian et al., (2021) for the already visible Mw 6.3 earthquake, 
whilst also providing significant improvements for the Mw 6.0 earthquake (Table S1).

The better-constrained result from depth and location measurements shows the advantage of InSAR obser-
vations (especially for time series, Figure S8). Routine depth measurements for shallow continental earth-
quakes from the seismological observations contain values probably fixed a priori (such as 10 km depth for 
the Mw 6.0 earthquake from USGS catalog). Although the true values cannot be known without additional 
near-field constraints such as a dense aftershock survey, our approach provides better-constrained loca-
tions, and more informative depth measurements with uncertainties for shallow events.

3.3. Comparison With Stacking

Stacking is another method to improve the SNR of InSAR data, which can also be helpful in extracting the 
coseismic deformation of small earthquakes (e.g., Luo et al., 2021; Qian et al., 2019). We perform stack-
ing using all reconstructed pairs of pre- and post-event acquisitions to derive the coseismic deformation 
(Text S1), and compare it to our approach (Figures S9 and S10).

Overall, stacking achieves a similar SNR to our reconstructed deformation fields, while our approach pro-
vides more robust earthquake modeling (average 17% CI reduction). Noticeably, the magnitude of the Mw 
6.0 earthquake from stacking is biased larger than our approach, compared to the results of the other two 
earthquakes. We believe this is because the postseismic deformation of the mainshock is contained in the 
stacked results (Figure S11), although we use observations 6 months later than the mainshock to perform 
stacking. This shows the larger impact from the postseismic deformation of the mainshock than the early 
postseismic motions of the aftershock in our model, and highlights a significant advantage of our approach 
that such bias can be reduced when modeling the aftershocks.
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Figure 4. Modeling outputs for selected fault parameters. Red and blue bins represent the distributions from the reconstructed deformation fields and the 
shortest interferograms, respectively. Green lines are the United States Geological Survey (USGS) solutions (note the rake value for the Mw 6.0 event is −31°). 
(a) Earthquake moment magnitude. (b) Relative location, the horizontal distance between the InSAR derived source location and the epicenter of USGS (not 
indicated by green lines as zero reference value). (c–f) Fault plane center depth, Strike, Dip, and Rake values.
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4. Discussion
4.1. Post-Observation Numbers and Atmospheric Correction

As the reconstruction requires multiple observations either side of the event time, it is important to know 
how many acquisitions are required to achieve a reliable estimation of coseismic offset within uncertainty. 
Given the large archive of Sentinel-1 data that is being amassed, the required pre-observations can be flex-
ible (depending on the noise characteristic or the time series fitting model used) and may vary for different 
scenarios and study purposes. What we consider here is the number of post-earthquake observations re-
quired for a stable earthquake solution. Due to the long revisit time (≥6 days now), it would be of little value 
if we needed to wait many months or even years to collect enough images to obtain a high SNR reconstruc-
tion. A key factor here is the magnitude of atmospheric noise, as it is one of the main error sources of In-
SAR. To determine the relationship between the quality of reconstruction, the post-observations numbers, 
and the level of atmospheric noise, we calculate the change of standard errors (SEs) of the fitted coseismic 
displacements as we increase the use of post-observations during fitting for both tracks, with and without 
applying GACOS corrections first.

The quality of reconstruction improves both with the application of GACOS corrections (average 24.1% 
SEs reduction) and the increase of post-observation numbers used (Figure 5). The Mw 6.3 earthquake is a 
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Figure 5. The impact of the number of post-observations used in time series and application of GACOS corrections on the quality of coseismic displacement 
reconstruction. For each row we show the optimal reconstructed deformation fields (using all our data) from two tracks without GACOS correction, and 
the corresponding decrease (proportional to 1 / N ) of the standard errors (SEs) as the post-observation numbers increase (using all pre-observations, ∼100 
images). We show the mean SE values of all pixels within the black rectangle that cover the peak displacements.
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special case as subsequent data are also used to fit the Mw 5.6 earthquake from the seventh post-observation 
onwards (the green dash line on Figure 5), causing its SEs to be fixed from that point forward. The low SEs 
at that point indicates the good quality of the reconstruction and also explains why these two earthquakes 
can be separated, although they are close in time and space. We determine the average number of post-ob-
servations for reaching a threshold, where the SE is 10% above its minimum value, is 14 acquisitions. This 
suggests our approach will achieve a stable output after around 3 months from the event time (assuming 
the revisit time is 6 days) in our study area. The number of acquisitions for other areas, with different noise 
characteristics, may vary somewhat.

4.2. Long-Term Linear Deformation Rate

For most of the pixels, the obtained long-term linear deformation rates are less than 10  mm/year (Fig-
ure S12). However, considering InSAR can only acquire relative displacements to the reference point, the 
long-term deformation rates we measured are noticeably above the level of interseismic deformation rate 
expected from the recent strain-rate map of our study area derived from GNSS data (Khorrami et al., 2019). 
One of the main reasons for this difference may come from using a constant linear rate in Equation 2. The 
linear deformation rate may be markedly changed after the mainshock according to time series, which po-
tentially biases the estimation of the interseismic deformation rate and consequently the coseismic offset. In 
addition, the long-term rates may be associated with several other sources. First, non-tectonic deformation, 
such as that from hydrologically driven subsidence within basins is likely in this region. Second, topographi-
cally correlated atmosphere can map in as we do not include a seasonal term in the fitting. Third, a cumulat-
ed bias for linear rate estimation in time series may be expected from the use of short period interferograms 
(Ansari et al., 2021). Finally, discontinuities from phase unwrapping errors or any observation gap can have 
a significant impact on linear rate evaluation.

4.3. Implications of Our Approach

The primary use of our approach is to improve the InSAR detectability such that very small earthquakes 
(Mw < 5.0) may be observed when they reach to the surface (e.g., Lohman & Simons, 2005; Qian et al., 2019), 
and refine the deformation signal of earthquakes with low SNR. Due to the poor constraints of precise fault 
location by seismological observations in regions of low instrumentation (Husen & Hardebeck, 2010), this 
will be useful for improving the identification of active faults within continental areas lacking dense seismic 
coverage.

Our approach can also be used to enhance the complex signals of large earthquakes (Mw ≥ 6.5), reducing 
extra noise as we have done with smaller earthquakes. In addition, it can disentangle coseismic signals from 
the postseismic signal that occurred before the first post-acquisition due to the latency of SAR acquisition 
(Floyd et al., 2016; Twardzik et al., 2019; Zinke et al., 2014), useful for the analysis of both coseismic and 
postseismic deformations and avoiding any possible systematic bias in subsequent earthquake modeling 
(Weston et al., 2012).

Further applications of our approach include splitting up complex sequences of earthquakes (especially 
aftershock sequences as we have done here), and possibly studying small-amplitude signals from large, deep 
earthquakes within subduction zones (Barnhart et al., 2014).

5. Conclusions
We demonstrate the use of InSAR time series analysis for detecting and modeling aftershocks in the pres-
ence of the postseismic signal following a major earthquake that otherwise might go undetected within 
single interferograms. We develop an approach using reconstructed coseismic deformation fields to en-
hance the surface displacement signals and subsequently to better constrain the earthquake modeling, in 
particular location and depth. We show that our time series approach improves on noise reduction using 
additional acquisitions following an earthquake, and achieves a stable result with 14 post-observations in 
this study area. We conclude that a time series approach is effective for enhancing the InSAR resolving 
power for earthquake studies, and outline its possible applications for the future.
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Data Availability Statement
The Sentinel-1 SAR data are copyrighted by the European Space Agency and additionally distributed by 
the Alaska Satellite Facility Distributed Active Archive Center (https://earthdata.nasa.gov/eosdis/daacs/
asf). The processed InSAR interferograms used in this work are available at COMET-LiCS Sentinel-1 InSAR 
portal (https://comet.nerc.ac.uk/COMET-LiCS-portal/).
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