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Abstract
Unfolding iterative algorithms into deep networks can increase the rate

of convergence which is amenable to Direction-of-arrival (DOA) estimation
problems. However, there normally exists unknown mutual coupling be-
tween antenna array elements. In this paper, a novel Position-enAbled Com-
plex Toeplitz Learned Iterative Shrinkage Thresholding Algorithm (PACT-
LISTA) is proposed which makes use of the data driven method to solve the
mutual coupling effect and improve the parameter estimation performance.
First, a sparse recovery (SR) model is developed to explore the inherent
Topelitz structure. In order to solve the SR problem, a Complex Toeplitz
LISTA (CT-LISTA) network is proposed, which integrates the Toeplitz struc-
ture into the Complex LISTA (C-LISTA) network. By ignoring the amplitude
and phase information of the recovered signal, the idea of position-priority is
applied to further improve the estimation accuracy. Through an innovative
iteration method, the system gradually converges to the optimized stable
state, which is associated with an accuracy parameter. Simulations are pro-
vided to demonstrate that the proposed approach significantly outperforms
the state of art methods.
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recovery, Mutual Coupling

1. Introduction1

DOA estimation plays an important role in medical imaging, wireless2

communications, radar, sonar and navigation. The traditional subspace3

based methods, such as the multiple signal classification (MUSIC) algorithm4

[1] and the estimation of signal parameters via rotational invariance tech-5

niques (ESPRIT) algorithm[2], [3], require multiple snapshots for covariance6

estimation. In contrast, the compressed sensing (CS) based method allows7

recovery of signals in a sparse domain using a small number of snapshots,8

and can be solved efficiently using the Alternating Direction Method of Mul-9

tipliers (ADMM) [4] algorithm and the Iterative Shrinkage Thresholding Al-10

gorithm (ISTA) [5].11

Recently, some deep learning methods, such as spatial distribution fea-12

ture learning [6] and Deep Neural Networks (DNN) based DOA estimation13

schemes [7–10], were proposed for effective DOA estimation. By unfolding14

the ADMM or ISTA algorithms into deep neural networks, several deep un-15

folding methods [11–14] were proposed to further reduce the number of itera-16

tions and accelerate the convergence speed. The learning iterative shrinkage17

thresholding algorithm (LISTA) [11] is a representative example, which cre-18

ates a recurrent neural network (RNN) structure to recover sparse signals.19

In [15], Fu et al proposed a complex-valued convolutional network, named20

LISTA-Toeplitz, for DOA estimation, where the learned mutual inhibition21

matrix (MIM) has a Toeplitz structure. These deep unfolding methods out-22

performs traditional CS based methods in convergence speed and achieves23

high accuracy in DOA estimation.24

For the DOA estimation problem with unknown mutual coupling, the25

effect of mutual coupling embodied in array manifolds will reduce the pa-26

rameter estimation accuracy. By adding an auxiliary sensor, the mutual27

coupling matrix (MCM) can be modeled and converted into a banded sym-28

metric Toeplitz matrix [16], and then CS based sparse recovery (SR) methods29

can be applied to solve the DOA estimation problem using on-grid [17], off-30

grid [18] or gridless [19] methods. In this paper, we try to improve the per-31

formance of DOA estimation in the presence of unknown mutual coupling by32

algorithm unfolding. Although MCM breaks the original Toeplitz structure33

of the MIM by utilizing the special banded symmetric Toeplitz structure of34
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the MCM of a uniform linear array (ULA) [20] and truncating the signal to35

construct a new array manifold, we can reconstruct the MIM with a Teoplitz36

structure.37

Furthermore, it is noticed that the SR method can recover both amplitude38

and phase of the sparse signal, while for DOA estimation, only sparse peak39

positions are needed in the recovered signal. Inspired by [21], a novel neural40

network named Position-enAbled Complex Toeplitz LISTA is proposed in41

this paper, which can directly find the non-zero positions of sparse signals to42

realize DOA estimation without completely recovering the whole signal.43

The paper is organized as follows. Section II introduces the signal model44

with array mutual coupling and formulation for the DOA estimation prob-45

lem. Section III proposes a modified neural network which has a better46

performance in DOA estimation while dealing with mutual coupling effects.47

A novel neural network is proposed in Section IV to find the non-zero po-48

sitions of sparse signals to realize DOA estimation. Simulation results are49

provided in Section V, which show that the proposed networks can deal with50

the mutual coupling effect effectively and achieve high estimation accuracy51

with fast convergence rate. Finally, conclusions are drawn in Section VI.52

2. Signal Model and Problem Formulation53

2.1. Signal Model54

Consider a ULA with N elements, and S narrow-band far-field signals
xs(t), s = 1, 2, ..., S, from directions θs= [θ1,θ2, · · · ,θS] respectively. Then,
we can have the following data model

y(t) = A(θs)xs(t) + n(t), (1)

where xs(t) = [x1(t), x2(t), ..., xS(t)]
T , y(t) = [y1(t), y2(t), . . . , yN(t)]

T de-
notes the N received signals by the ULA, and n(t) = [n1(t), n2(t), . . . , nN(t)]

T

is the additive white Gaussian noise vector with zero mean and variance σ2
n.

A(θs) = [a(θ1), a(θ2), . . . , a(θS)] ∈ C
N×S is the array steering matrix where

a(θs) = [a(θs)
0, a(θs)

1, . . . , a(θs)
N−1]T with a(θs) = e−j2π d sin θs

λ . The spacing
between two adjacent array elements is half the signal wavelength λ. By
discretizing the whole spatial direction range into K grids (K >> S), the
received signal vector of the array at snapshot t can be reformulated as

y(t) = A(θ)x(t) + n(t), (2)

3



where θ = [θ1, θ2, · · · , θK ], x(t) = [x1(t), x2(t), ..., xK(t)]
T is a S-sparse vector,55

the index of S non-zero elements represents the direction of signals while the56

other (K − S) zero elements mean that there are no sources to be detected57

in these directions.58

Define fs = 1+sin θs
2

∈ [0, 1] as the spatial frequency when θs ∈ [−π
2
, π
2
].59

The array steering matrix is reformulated as A = [a(f1), a(f2), . . . , a(fK)],60

and the array steering vector a(fs) = [a(fs)
0, a(fs)

1, . . . , a(fs)
N−1]T with61

a(fs) = e−jπ(2fs−1).62

Considering the effect of mutual coupling between adjacent sensors, MCM63

is introduced and the array outputs are rewritten as64

M =




m0 m1 · · · mP−1

m1 m0 m1 · · · mP−1 0
... . . . . . . . . . . . . . . .

mP−1 · · · m1 m0 m1 · · · mP−1

. . . ... . . . . . . . . . . . . . . .
mP−1

... m1 m0 m1 · · · mP−1

0
. . . ... . . . . . . . . . ...

mP−1 · · · m1 m0 m1

mP−1 · · · m1 m0




N×N

, (3)

where mp, p = 0, . . . , P − 1, is the mutual coupling coefficient between the65

n-th sensor and the (n− p)-th sensor or (n+ p)-th sensor with n = 1, . . . , N .66

As the mutual coupling effect decreases with increasing distance between67

sensors, we have m0 > m1 > · · · > mP−1. The mutual coupling effect68

between sensors too far apart is ignored.69

In order to utilize the Toeplitz structure of the central columns in M, we
define a selecting matrix Q = [0[N−2(P−1)]×(P−1) IN−2(P−1) 0[N−2(P−1)]×(P−1)]
to establish a new truncated signal as

ȳ(t) = Qy(t) = QMAx(t) +Qn(t)
= M̄Ax(t) +Qn(t),

(4)

where M̄ = QM is the central part of M as

M̄ =




mP−1 · · · m1 m0 m1 · · · mP−1 0 0

0
. . . ... . . . . . . . . . . . . . . . 0

0 0 mP−1 · · · m1 m0 m1 · · · mP−1



[N−2(P−1)]×N

.

(5)
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Then, a new truncated steering vector ã(fs) considering the effect of
mutual coupling can be obtained as

ã(fs) = M̄a(fs) = G(fs)ā(fs), (6)

where ā(fs) = [a(fs)
0, a(fs)

1, ..., a(fs)
N−2P+1]T and G(fs) =

P−1∑
l=1−P

m|l|a(fs)
l+P−1

is a scalar related to the steering vector and mutual coupling effect. In gen-
eral, G(fs) ̸= 0, fs ∈ [0, 1]. Then, ã(fs) can be reformulated as

ã(fs)=ā(fs)G(fs). (7)

Thus, (4) can be rewritten as

ȳ(t) = ĀHx(t) +Qn(t), (8)

where

H =




G(f1) 0
G(f1)

. . .
0 G(fK)


 ∈ C

K×K , (9)

Ā = [ā(f1), ā(f2), ..., ā(fK)] ∈ C
[N−2(P−1)]×K . (10)

Finally, we establish a new received signal model containing a new target
signal x̄(t) = Hx(t) as

ȳ(t) = Āx̄(t) +Qn(t). (11)

As H has a diagonal structure, the results of DOA estimation will be the70

same by reconstructing x̄(t) and x(t) from (11) and (4), respectively.71

2.2. Problem Formulation72

The DOA estimation problem with unknown mutual coupling can be
formulated as a sparse recovery problem as

min
x̄(t)

1

2

∥∥ȳ(t)− Āx̄(t)
∥∥2

2
+ u ∥x̄(t)∥1 , (12)

where ||.||1 and ||.||2 represents l1norm and l2norm, respectively, and u is a73

regularization parameter.74

5



y
_

(t)

Wh

(1)

x
_̂ (t)

(1)

W t

(2)

Wh

(2)
Wh

(Z)

x
_̂ (t)

(2)

W t

(Z)
x
_̂ (t)

(Z)
soft( , )(1) soft( , )(2) soft( , )(Z) 

Figure 1: A Z-layer feed-forward LISTA network.

ISTA [5] can be used to recover the sparse signal x̄(t) iteratively through
a recursive formula

[x̄(t)k+1]i = soft([ 1
L
ĀH ȳ(t) + (I− 1

L
ĀHĀ)x̄(t)k]i,

u
L
) , (13)

where soft(ωi, ε)=̇ sign(ωi)max(|ωi| − ε, 0), L is the Lipschitz constant, k is75

the index of iteration, and [x̄(t)]i is the i-th element of vector x̄(t).76

Our problem is to unfold the ISTA algorithm in (13) into a deep neural77

network to improve the estimation accuracy and accelerate the convergence78

speed. Specifically, for DOA estimation, we would like to design a neural79

network for complex signal processing and make full use of the inherent80

signal structure.81

3. Proposed Complex Toeplitz LISTA Network for DOA Estima-82

tion with Uknown Mutual Coupling83

The learned iterative shrinkage and thresholding algorithm (LISTA) [22]84

is a recurrent neural network designed to mimic ISTA for approximating the85

solution of (13). An example Z-layer feed-forward LISTA network is shown86

in Fig. 1.87

For the DOA estimation problem in (13), the output of the (k + 1)-th
layer of the LISTA network is given by

x̄(t)(k+1) = soft(Wh
(k)ȳ(t) +Wt

(k)x̄(t)(k), ζ(k)), (14)

where k represents the network layer index ranging from 0 to Z−1, Wh and
Wt are the filter matrix and the mutual inhibition matrix (MIM), respec-
tively. These two matrices are initialized to Wh = 1

L
ĀH and Wt = I− 1

L
ĀHĀ

at each layer, while ζ = u
L

is the soft threshold initialization value, and
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Figure 2: One layer of the Complex LISTA Network.

Θ(k) = [Wh
(k),Wt

(k), ζ(k)] is the parameters to be learned. Θ(k) is learned
during the training phase by minimizing the quadratic loss function

L(Θ(k)) =
1

J

J∑

j=1

∥∥∥ˆ̄x(t)j,(k)
(
ȳ(t)j;Θ(k)

)
− x̄(t)j

∥∥∥
2

2
, (15)

where J is the number of samples in the training data set, and x̂(t)(k)
(
ȳ(t)j;Θ(k)

)
88

is the output of the k-th layer network using input ȳ(t)j and parameters Θ(k).89

This learning based method requires no prior information of array manifold90

at the training phase; however, such information can be used at the initiation91

phase only.92

3.1. Complex LISTA Network93

Most popular deep learning toolboxes, such as Tensorflow and Pytorch,94

are designed for real-valued signals, which is not directly applicable to DOA95

estimation problems. Separating the training data into real and imaginary96

parts using two channels will double the network size and break the connec-97

tion between them, thus losing the amplitude and phase information of the98

complex numbers.99

To this end, a new Complex LISTA (C-LISTA) network is proposed to100

deal with the complex-valued data, which provides a nested structure of input101
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and output data at each layer, as shown in Fig. 2. The real and imaginary102

parts are represented by (·)R and (·)I , respectively, and the output of the103

k-th network is104

x̄(t)(k+1) = csoft(v(k)
R+v(k)

I

√
−1, ζ(k)), (16)

where
v(k)

R = (Wh
(k))Rȳ(t)R + (Wt

(k))R(x̄(t)
(k))R

−(Wh
(k))I ȳ(t)I − (Wt

(k))I(x̄(t)
(k))I ,

v(k)
I = (Wh

(k))Rȳ(t)I + (Wt
(k))R(x̄(t)

(k))I
+(Wh

(k))I ȳ(t)R + (Wt
(k))I(x̄(t)

(k))R,

(17)

√
−1 is the imaginary unit. Let v = vR + vI

√
−1 ∈ C

K , a complex soft
threshold operator csoft(·, ζ) is proposed to replace the soft threshold oper-
ator in (14), that is

csoft(v,ζ)i = vi

max(|vi| − ζ, 0)

max(|vi| − ζ, 0) + ζ
, i = 1, 2, · · · , K. (18)

The loss function in (15) is reformulated to the complex form as

L(Θ(k)) =
1

2J

J∑

j=1




∥∥∥ˆ̄x(t)(k)R

(
ȳ(t)R

j;Θ(k)
)
− x̄(t)R

j
∥∥∥
2
+∥∥∥ˆ̄x(t)I

(k)
(
ȳ(t)I

j;Θ(k)
)
− x̄(t)I

j
∥∥∥
2


. (19)

3.2. Complex Toeplitz LISTA Network105

As for DOA estimation, the initialization of MIM I − 1
L
ĀHĀ of LISTA

network in (14) ought to be a Toeplitz matrix, as ĀHĀ is a Gram matrix
whose element at the i-th row and j-th column [ĀHĀ]ij = ā(fi)

H ā(fj), which
means that it might be able to shrink the unfolded network by reducing the
dimensionality of MIMs. Accordingly, the matrix multiplication Wtx̄(t) can
be transformed into vector convolution ct ∗ x̄(t), formulated as

Wtx̄(t) = ct ∗ x̄(t), (20)

where

Wt =




c0 c−1 c−2 · · · c−(K−1)

c1 c0 c−1
. . . ...

c2
. . . . . . . . . c−2

... . . . . . . . . . c−1

cK−1 · · · c2 c1 c0



, (21)
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Figure 3: Complex Toeplitz LISTA Network.

ct = [c−(K−1), ..., c−1, c0, c1, ..., cK−1]
T . (22)

By applying the the convolutional operation, we propose a new network
called Complex Toeplitz LISTA (CT-LISTA), as shown in Fig. 3. Θc

(k) =
[Wh

(k), ct
(k), ζ(k)] is considered as the network parameters to be learned.

Each layer is constructed by a linear convolutional operator with a proximal
mapping and the output of the (k− 1)-th layer. The two-dimensional learn-
able weight matrix Wt

(k) of size K×K is transformed into a one-dimensional
weight vector ct of size 2K1 by modifying (17) into

v(k)
R = (Wh

(k))Rȳ(t)R + (ct
(k))R ∗ (x̄(t)(k))R

−(Wh
(k))I ȳ(t)I − (ct

(k))I ∗ (x̄(t)
(k))I ,

v(k)
I = (Wh

(k))Rȳ(t)I + (ct
(k))R ∗ (x̄(t)(k))I

+(Wh
(k))I ȳ(t)R + (ct

(k))I ∗ (x̄(t)
(k))R.

(23)

Therefore, the proposed CT-LISTA network greatly reduces the number106

of weight units required for training compared with the other LISTA net-107

works, and will be able to deal with large-scale sparse recovery problems108

more efficiently. In addition, by making full use of the inherent data struc-109

ture the estimation accuracy can be improved potentially.110

4. Proposed Improved Position-enAbled Network111

The above CT-LISTA network reconstructs the target signal ˆ̄x firstly and112

then determines the target direction based on position of the non-zero ele-113

ments of the reconstructed signal. Considering the amplitude of ˆ̄x(t) is not114

required for DOA estimation, in this section, we propose a Position-enAbled115

Complex Toeplitz LISTA (PACT-LISTA) network which is specifically de-116

signed for DOA estimation and does not need to reconstruct the signal in117

advance, as shown in Fig. 4.118
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Firstly, we modify the training data set from {(ȳ(t)j, x̄(t)j)}Jj=1 to
{(ȳ(t)j,h(t)j)}Jj=1 by defining the position-enabled labels h(t)j as

[h(t)j]l =

{
1 +

√
−1, if [x̄(t)j]l ̸= 0,

0, otherwise . (24)

In order to limit the real and imaginary parts of output in the Z-th
layer, i.e.,

(
h(t)(Z)

)
R

and
(
h(t)(Z)

)
I
, to the range of [0, 1], so that it can be

compared with the revised position-enabled labels h(t)j , we define a bounded
function as

p(h) = |tanh(h)| =
∣∣∣∣
eh − e−h

eh + e−h

∣∣∣∣ . (25)

Then, the output p is binarized into 0 and 1 using the unit step function

q(p) = ε(p− ξ) =

{
1, p ≥ ξ

0, p < ξ
. (26)

As the binary function is non-differential, we train the neural network
using the output of p(·) rather than q(·). The loss function is defined as

L(Θc
(k)) =

1

2J

J∑

j=1




∥∥∥h̃(t)R
(k)

(
ȳ(t)R

j;Θc
(k)
)
− h(t)R

j
∥∥∥
2
+∥∥∥h̃(t)I

(k)
(
ȳ(t)I

j;Θc
(k)
)
− h(t)I

j
∥∥∥
2


. (27)

By combining the real and image channels, it can be seen that the re-
sulting complex output h̄(t) contains the values

√
−1 and 1, which are not

required and should be removed using the selection function

s(h̄) =

{
1 +

√
−1, |h̄| > 1
0, else . (29)
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Finally, ĥ(t) is estimated in terms of non-zero tap positions of x̄(t), i.e.,119

[ĥ(t)]l = 0 or [ĥ(t)]l = 1 +
√
−1, corresponding to the taps of the recon-120

structed signal x̂(t) in Section III with zero value or non-zero value, respec-121

tively.122

5. SIMULATION RESULTS123

In this section, simulations are performed to show the effectiveness of the124

proposed CT-LISTA and PACT-LISTA. Two other methods, including ISTA125

and LISTA are considered for performance comparison.126

The normalized mean squared error (NMSE)

NMSE =
1

SDtest

S∑

s=1

Dtest∑

j=1

(
f (j)
s − f̂ (j)

s

)2

, (30)

is used as performance metric when the number of target sources is known.127

Dtest is the size of the test set.128

However, the NMSE metric is no longer suitable when the number of
target sources is unknown because we can not guarantee the equal size of f̂s
and fs. To this end, we resort to a new metric called Hausdorff distance [23].
For two sets A and B of all the members of vectors f̂s and fs, respectively,
the Hausdorff distance is defined as

dH(A,B) = max{d(A,B), d(B,A)}, (31)
where

d(A,B) = sup{d(f̂s,B)|f̂s ∈ A}, (32)
is the directed difference, d(f̂s,B) = inf{d(f̂s, fs)|fs ∈ B} and d(f̂s, fs) =
|f̂s − fs|. For evaluation over the testing set we have used its mean value,
denoted as

Hd(fs) =
1

Dtest

Dtest∑

j=1

dH((A)j, (B)j). (33)

5.1. Experimental Setup129

Consider an ULA which has N = 64 sensors with S = 5 far-field nar-130

rowband sources arriving at different directions. The whole angle range is131

uniformly discretized into K = 180 points and the number of independent132

sources is S so that the single-snapshot target signal x(t) is S-sparse. P = 4133

and the mutual coupling coefficients are m0 = 1,m1 = 0.4864− 0.4468
√
−1,134

m2 = 0.2545 + 0.2344
√
−1 and m3 = 0.1386− 0.1478

√
−1.135
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5.2. Results and Discussions136

5.2.1. CT-LISTA network137

We generate two data sets {ȳ(t)j, x̄(t)j}Jj=1 and {y(t)j,x(t)j}Jj=1 accord-138

ing to (2) and (11), with and without the effects of mutual coupling, respec-139

tively. The directions of 5 signals are generated randomly with batch size140

of 1000. The training and the testing data are generated in the same way,141

while the size of the training set is dependent on the convergence of the loss142

function or reaching a given maximal number of epochs.143

Fig. 5 shows the reconstructed signals x̂(t) obtained from C-LISTA net-144

work and CT-LISTA network supposing this effect does not exist in the145

measurement data. It can be seen that both neural networks can achieve146

high-precision DOA estimation under noiseless conditions. Fig. 6 shows the

(a) (b)

Figure 5: Network outputs without mutual coupling in the noiseless case: (a) C-LISTA,
(b) CT-LISTA.

147

reconstructed signals x̂(t) obtained from C-LISTA network and CT-LISTA148

network considering only the effect of the mutual coupling without the noise.149

It can be seen that even if the reconstructed signal cannot be close to the150

source signal x(t) due to the influence of mutual coupling, DOA estimation151

can be well realized. When SNR=14dB, the DOA estimation results are152

shown in Fig. 7. It can be seen that the influence of noise on experimental153

results is very small compared with that of mutual coupling.154
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(a) (b)

Figure 6: Network outputs with mutual coupling in the noiseless case. (a) C-LISTA, (b)
CT-LISTA

(a) (b)

Figure 7: Network outputs with mutual coupling, SNR=14dB: (a) C-LISTA, (b) CT-
LISTA

We analyse the performance of the proposed the CT-LISTA network un-155

der different number of arrays. In the high SNR region, the more the number156

of elements, the better the estimation result in Fig. 8. However, it is not ob-157

vious in the low SNR region.158
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Figure 8: DOA estimation performance under different number of arrays verses SNR (CT-
LISTA)

Fig. 9 presents the NMSE and Hd results verse the iteration number in159

noiseless case, with known and unknown number of sources, respectively,160

and the maximum number of iterations being 20. DOA estimation results161

are obtained from indexes of S maximum signal peaks if the number of162

sources is known, while the crest search method is applied under unknown163

number of sources situation. ISTA will convergences to about -15dB after164

3000 iterations. It can be seen that the neural network methods have a faster165

convergence speed. On the other hand, it also shows that CT-LISTA further166

improves the DOA estimation performance compared to C-LISTA.167

Fig. 10 shows the performance comparison at different SNRs. It can be168

seen that the proposed CT-LISTA has the best DOA estimation accuracy169

compared with other methods in the case of mutual coupling and the neural170

network methods outperform ISTA. However, all methods fails at the low171

SNR region, specifically, lower than 10dB.172
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(a) (b)

Figure 9: DOA estimation performance verse layers or iterations in noiseless case: (a)
known number of sources, (b) unknown number of sources.

(a) (b)

Figure 10: DOA estimation accuracy verse SNR: (a) known number of sources, (b) un-
known number of sources.

5.2.2. PACT-LISTA173

The performance of the proposed PACT-LISTA is evaluated in this sub-174

section. The revised position-enabled training data sets {ȳ(t)jM ,h(t)jM}Jj=1175

and independent testing data sets are generated according to (24). The176

threshold in (26) is set to ξ = 0.3. The neural network is trained by mini-177

mizing the loss function (27) using the Adam optimizer.178
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(a) (b)

(c)

Figure 11: DOA estimation performance with mutual coupling effect and unknown number
of sources: (a) SNR=2dB, (b) SNR=12dB, (c) SNR=14dB.

We firstly compare the performance of the proposed PACT-LISTA net-179

work, the CT-LISTA network and the CT-LISTA combining (25), (26), (29),180

namely the cascaded CT-LISTA network. At low SNR region, all meth-181

ods have failed as no individual peaks can be found in the spectrogram, as182

shown in Fig. 11(a). As SNR increases, the proposed PACT-LISTA network183

has outperformed all the other methods, as shown in Fig. 11(b), where the184

PAC-LISTA missed two signals while the cascaded methods could not cap-185

ture the weak ones. Compared with CT-LISTA in Fig. 7, it is found that186

the PACT-LISTA method has removed small peak errors, which can be seen187

more clearly in Fig. 11(c).188

We compare the performance of the proposed PACT-LISTA network and189

the CT-LISTA network under different number of signal sources. For CT-190

LISTA, at low SNR region, the more regional signal sources, the better the191
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estimation effect will be in Fig. 12(a). The reverse is true for high SNR192

regions. For PACT-LISTA, the experimental estimation results are always193

better when the number of signal sources is smaller in Fig. 12(b).194

(a) (b)

Figure 12: DOA estimation performance under different number of signal sources verses
SNR. (a) CT-LISTA, (b) PACT-LISTA,

When the number of sources is known, we evaluate the DOA estimation195

performance of the PACT-LISTA network using the NMSE metric, as shown196

in Fig. 13(a). We can see that CT-LISTA outperforms PACT-LISTA be-197

cause the sparse recovery method always performs well with knowledge of198

sparsity degree, which is the number of sources, i.e., number of supports in199

this problem.200

When the number of sources is unknown, at low SNR region, once all the201

elements in ĥ(t) equal 1 +
√
−1, it will result into peak crest failure. Thus202

we have a null set of A and the Hausdorff distance equals 1 as the maximal203

value of fs = 1. The advantages of the proposed position-enabled scheme204

in 8-18dB SNR region have demonstrated that the network focusing on the205

location of the supports rather than the recovery of the signal itself is proper206

for DOA estimation problems. When SNR is greater than 18dB, the sparse207

recovery methods have the best performance.208

6. Conclusion209

In this paper, two different neural networks have been proposed to realize210

fast and high-accuracy DOA estimation in the presence of unknown mutual211
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(a) (b)

Figure 13: DOA estimation performance verses SNR: (a) known number of sources, (b)
unknown number of sources.

coupling effect. A new signal model is established by processing the received212

signal and fusing the mutual coupling coefficient with part of the source213

signals. Then, exploiting the Toeplitz structure of mutual inhibition matrix214

in LISTA, the CT-LISTA is proposed with a faster convergence speed than215

ISTA and LISTA. In addition, the CT-LISTA network greatly reduces the216

number of parameters required for training by reducing the dimension of217

network variables. To further improve the DOA estimation performance,218

the PACT-LISTA network is then proposed, which focuses on estimation of219

the source angles while ignoring the amplitude and phase information of the220

sources. Simulation results show that the CT-LISTA networks have achieved221

a better performance in terms of estimation accuracy and convergence speed222

than LISTA and ISTA, while PACT-LISTA is better than CT-LISTA with223

unknown number of targets.224
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