
This is a repository copy of Phase-reduction analysis of periodic thermoacoustic 
oscillations in a Rijke tube.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181924/

Version: Accepted Version

Article:

Skene, CS orcid.org/0000-0003-0994-2013 and Taira, K (2022) Phase-reduction analysis 
of periodic thermoacoustic oscillations in a Rijke tube. Journal of Fluid Mechanics, 933. 
A35. ISSN 0022-1120 

https://doi.org/10.1017/jfm.2021.1093

© The Author(s), 2021. Published by Cambridge University Press. "This article has been 
published in a revised form in Journal of Fluid Mechanics 
https://doi.org/10.1017/jfm.2021.1093. This version is free to view and download for private
research and study only. Not for re-distribution, re-sale or use in derivative works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Under consideration for publication in J. Fluid Mech. 1

Banner appropriate to article type will appear here in typeset article

Phase reduction analysis of periodic1

thermoacoustic oscillations in a Rijke tube2

Calum S. Skene1†‡ and Kunihiko Taira13

1Department of Mechanical and Aerospace Engineering, University of California, Los Angeles,4

CA 90095, USA5
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Phase reduction analysis captures the linear phase dynamics with respect to a7

limit cycle subjected to weak external forcing. We apply this technique to study8

the phase dynamics of the self-sustained oscillations produced by a Rijke tube9

undergoing thermoacoustic instability. Through the phase reduction formulation,10

we are able to reduce these dynamics to a scalar equation for the phase, allowing11

us to efficiently determine the synchronisation properties of the system. For the12

thermoacoustic system, we find the conditions for which m : n frequency locking13

occurs, shedding light on the mechanisms behind asynchronous and synchronous14

quenching. We also reveal the optimal placement of pressure actuators that15

provide the most efficient route to synchronisation.16

Key words:17

1. Introduction18

Due to heightened environmental regulations, there has been a move towards19

using lean premixed combustors (LPCs) for their ability to operate at lower20

temperatures in a low NO
x
regime (Correa 1998). Whilst there are many health21

and environmental advantages to avoiding the production of NO
x
, which is a lung22

irritant and can cause acid rain and depletion of the Ozone layer (Mahashabde23

et al. 2011), LPCs present many practical issues, including their susceptibility24

towards thermoacoustic instability (Culick 1996; Lieuwen & Yang 2005).25

Thermoacoustic instability arises due to a feedback mechanism between acous-26

tic waves and unsteady heat release. Unsteady heat release produces acoustic27

fluctuations which in turn interact with the flame causing more unsteady heat28

release. If these acoustic fluctuations are in phase with the unsteady heat release,29

this causes energy to be added to the system, which can lead to instability. This30

mechanism was first described by Rayleigh, J. L. (1878) who summarised it by31

† Email address for correspondence: c.s.skene@leeds.ac.uk
‡ Present address: Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT,

UK
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a simple, but effective, integral criterion. Even though Rayleigh’s criterion for32

instability is mathematically simple, the fact that this mechanism is extremely33

sensitive to the parameters of the system (Juniper & Sujith 2018) means that34

the accurate prediction of thermoacoustic instabilities is a difficult task, leading35

to many combustion systems being built vulnerable to these instabilities.36

As these instabilities can cause material fatigue and lifetime reduction for37

these systems, it is critical to develop control strategies to either suppress, or38

remove entirely, these instabilities (Candel 2002). These control strategies can fall39

into two categories: active (McManus et al. 1993; Zhao et al. 2018) and passive40

(Zhao & Li 2015). Examples of passive control include the addition of Helmholtz41

resonators to provide acoustic damping (Dupère & Dowling 2005). On the other42

hand, active control uses actuation devices such as loudspeakers to provide an43

additional source of acoustic waves (Dowling & Morgans 2005). Furthermore,44

the aforementioned sensitivity of these systems to parameters has made adjoint45

methods an attractive tool in designing these controls (Magri 2019), for example46

in optimising the shape and placement of Helmholtz resonators (Yang et al. 2019)47

or for discovering the optimal feedback mechanism for suppressing the growth rate48

of instabilities (Magri & Juniper 2013). Of particular relevance to our study is49

open-loop control via harmonic forcing of the thermoacoustic system and adjoint50

design methods based on Floquet theory (Magri 2019).51

By introducing harmonic forcing, the phase relationship between the unsteady52

heat release and pressure perturbations can be disrupted leading to a decrease53

in the self-sustained limit cycle oscillations (Kashinath et al. 2018; Mondal et al.54

2019; Roy et al. 2020). Depending on the value of the forcing frequency in relation55

to the natural frequency of the limit cycle, this decrease can be split into two cases.56

Synchronous quenching occurs if the forcing is close to the natural frequency and57

although the self-excited oscillations are suppressed, the system synchronises to58

the forcing frequency, causing a resonant amplification. On the other hand, if the59

forcing frequency is farther away from the natural frequency, then a reduction in60

the self-excited oscillations can occur without resonant amplification. Therefore,61

understanding a-priori the synchronisation properties of the system is of upmost62

importance in order to determine good candidate frequencies, and forcing shapes,63

that result in synchronisation away from resonant frequencies. The aim of this64

study is to apply phase reduction analysis to thermoacoustic systems, an adjoint-65

Floquet-based method, which will allow the synchronisation characteristics of66

the system to be obtained efficiently from numerical simulations. Furthermore,67

we will showcase the usefulness of this information in the design of open-loop68

control strategies via harmonic forcing.69

Phase reduction analysis is a technique that has been widely used for studying70

the dynamics of synchronisation in biological systems (Kuramoto 1984; Pikovsky71

et al. 2003; Ermentrout & Terman 2010; Boccaletti et al. 2018). It is only72

relatively recently that phase reduction been introduced to the fluids community73

(Kawamura & Nakao 2015; Taira & Nakao 2018; Iima 2019; Khodkar & Taira74

2020; Nair et al. 2021; Khodkar et al. 2021; Loe et al. 2021). In essence, phase75

reduction allows the linear phase dynamics of a stable periodic system to be repre-76

sented by a simple scalar ordinary differential equation (ODE) for the phase. This77

ODE is characterised by the phase sensitivity function which encodes properties78

of how external forcing affects the phase. Obtaining the phase sensitivity function79

therefore allows for the efficient determination of the synchronisation properties80

of the underlying system, which in the present study is focused on thermoacoustic81
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Figure 1: Rijke tube setup with example velocity and pressure profiles.

systems. In what follows, section 2 outlines the Rijke tube model, section 3 lays82

out the mathematics of phase reduction analysis, the numerics are described in83

section 4, the results are presented in section 5 and finally, the conclusions are84

offered in section 6. Appendix A contains further mathematical details of the85

method, as well as solidifying the link between phase sensitivity analysis and86

Floquet theory (Floquet 1883) for delay differential equations (Simmendinger87

et al. 1999).88

2. The Rijke tube: An example thermoacoustic system89

A Rijke tube (Rijke 1859) is a relatively simple setup that exhibits a rich range90

of dynamics with thermoacoustic instability. We show the basic setup in figure 191

and model the system as a one-dimensional flow in a pipe. The left side of the92

pipe is aligned with x = 0, with the pipe having a non-dimensional unit length.93

A heat source is placed at x = xf , and is modeled as a thin wire using a modified94

version (Heckl 1990) of Kings law (King 1914).95

Following the derivation in Sayadi et al. (2014), the non-dimensional governing96

equations for this system is provided by97

∂u

∂t
+ (γMa)−1 ∂p

∂x
= 0, (2.1)98

∂p

∂t
+ (γMa)

∂u

∂x
+ ξ ∗ p = γMaQ+ ǫf+

p , (2.2)99

for the velocity u and the pressure p, which form our state space y = (u, p)T .100

Following the work of Mondal et al. (2019), a weak external pressure forcing f+
p101

with amplitude ǫ ≪ 1 is added to the pressure field. The governing equations102

hold two non-dimensional parameters of Mach number Ma and the specific heat103

ratio γ. The damping for wavenumber j is given via a convolution ∗ in terms104

of damping coefficients c1 and c2 as ξj = c1j
2 + c2

√
j. We see that the only105

nonlinearity that enters the equation is through the heat release rate term,106

Q = Qf (t− τ)δ(x− xf ) =
K

2

[√

|1/3 + uf (t− τ)| −
√

1/3

]

δ(x− xf ), (2.3)107

which is localised to the flame location xf , using a Dirac delta function δ, with a108

time-dependent amplitude Qf that depends on the velocity at the flame uf , flame109

time delay τ and the heater strength K. This system is a delay partial differential110

equation (DPDE) due to the lag introduced through the heating term. Therefore,111

the initial condition for this equation must be specified for t ∈ [t0−τ, t0]. We apply112

open boundaries at the pipe ends, which correspond to homogeneous Dirichlet113

and Neumann conditions for p and u, respectively.114

For a sufficiently large K, the fixed point (u, p) = (0, 0) is unstable and, for115

all parameters regimes considered in this study, non-linear saturation of this116
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instability yields a self-sustained limit cycle with period T . As we are dealing with117

a DPDE whose solution must be known over [t − τ, t] in order to propagate the118

solution forward, the limit cycle is actually defined up to τ time-units previously.119

To make this dependence on the history of the system clear, we now introduce120

the following notation (Hale 1977) (see appendix A for further details). In what121

follows, we consider the discretised system and write the state-equation as the122

delay differential equation (DDE)123

ẏ = f(t,y(t)) + g(t− τ,y(t− τ)) + ǫh(t), (2.4)124

with f , g and h arising from the discretisation of (2.2). We write a solution to125

this equation in the form yt(φ) = y(t + φ) where φ ∈ [−τ, 0]. In particular, we126

can express our limit cycle, a periodic solution in the absence of forcing (ǫ = 0),127

as yLC
t (φ), where yLC

t+T (φ) = yLC
t (φ).128

3. Phase reduction analysis129

For a given limit cycle, we can introduce the concept of phase through a two-part130

definition. First, we associate the phase θ with states yLC
t (φ) on the limit cycle via131

θ = 2πt/T mod 2π. Hence, the phase θ ∈ [0, 2π] is a scalar variable that represents132

the limit cycle. Second, we extend the phase definition to states in the vicinity133

of our limit cycle by restricting ourselves to limit cycles that are asymptotically134

stable. This means that if yt(φ) is a state not necessarily on the limit cycle then135

there exists a state on the limit cycle yLC
t+α(φ) such that ‖yt(φ)− yLC

t+α(φ))‖ → 0136

as t → ∞. We can then say that the phase of yt(φ) is the same as the point in137

time it asymptotically tends to and therefore Θ(yt(φ)) = Θ(yLC
t+α(φ)) where the138

phase function Θ is defined such that Θ(yt(φ)) = θ. While the phase is directly139

related to the time variable in this problem, phase can in general be related to140

sensor measurements (Taira & Nakao 2018). It is also worth noting that whilst141

alternative definitions of phase can be introduced, the motivation behind our142

definition is that it will allow us to study the synchronisation properties of the143

limit cycle using linear theory.144

For states on the limit cycle the phase θ satisfies θ̇ = ωn = 2π/T where ωn145

is the angular frequency of the limit cycle. However, in the presence of a small146

external forcing, the phase equation becomes (Kotani et al. 2012; Novičenko &147

Pyragas 2012)148

θ̇ = ωn + ǫZ(θ)Th(t) +O(ǫ2). (3.1)149

The function Z(θ) is the phase-sensitivity function, and allows us to assess the150

influence of a perturbation h(t) on the phase-dynamics. In order to determine151

this phase sensitivity function, two main methods can be employed. The first152

of which is to perturb the equation for a range of values of θ, building up the153

function one point at a time (Taira & Nakao 2018). A second approach, which154

we consider, finds Z as the solution to an adjoint problem (Kotani et al. 2012;155

Novičenko & Pyragas 2012).156

For the latter approach, we begin by linearising the unperturbed governing157

equations (2.4) about the limit cycle yLC
t (φ) providing the linear DDE158

ẏ′ = A1(t)y
′(t) + A2(t)y

′(t− τ). (3.2)159

This equation describes the dynamics of a small perturbation y′ about the limit160

cycle. Here, the matrices A1 and A2 are the Jacobians A1(t) = ∇yf(y)|y=yt(0)
and161

Focus on Fluids articles must not exceed this page length
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A2(t) = ∇yg(y)|y=yt(−τ)
, respectively.As discussed more extensively in appendix162

A, we must first define a bilinear form to introduce the adjoint for a DDE. For163

the present DDE, the appropriate bilinear form (Kotani et al. 2012; Novičenko164

& Pyragas 2012) is165

〈a(t), b(t)〉 ≡ a(t)Tb(t) +

∫ 0

−τ

a(t+ τ + ξ)TA2(t+ τ + ξ)b(t+ ξ) dξ. (3.3)166

Using this bilinear form, the adjoint can be found (see appendix A) to satisfy the167

adjoint equation168

ẏ† = −A
T
1 (t)y

†(t)− A
T
2 (t+ τ)y†(t+ τ). (3.4)169

With the linear equation (3.2) and its adjoint (3.4), we can find the phase170

sensitivity function via the link between a phase shift and Floquet theory, which171

governs the stability of the limit cycle. As we have assumed that the limit cycle is172

stable, all the Floquet exponents are inside the unit circle, except for one which173

provides the phase shift. Indeed, for an autonomous system there is always one174

neutral Floquet exponent which has the eigenvector ẏLC
t (φ).175

The Floquet exponents for the adjoint system (3.4) are the negative com-176

plex conjugates of the direct case. This means that by solving equation (3.4)177

backwards in time, the system is stable and has one neutral Floquet exponent178

with the corresponding eigenvector y†
t(φ). Normalising this eigenvector such that179

〈y†
t(φ), ẏ

LC
t (φ)〉 = ωn yields the phase sensitivity function via Z(θ) = y

†

t=θ/ωn
(0)180

(see appendix A for details). In practice, we can find the adjoint eigenvector181

by integrating equation (3.4) back in time from an arbitrary initial condition182

to obtain the ‘adjoint limit-cycle,’ which given a sufficiently long time horizon183

converges to the neutral Floquet solution.184

Using the phase sensitivity function, the phase coupling function can be deter-185

mined. We consider the general case of m : n phase locking, meaning that for m186

periods of the external forcing, the system completes n cycles. By introducing187

the phase difference ∆θ(t) = θ(t) − (n/m)ωf t, and assuming that ∆θ(t) is188

slowly varying, it can be shown (see Khodkar & Taira (2020) for example) that189

synchronisation will occur if190

ǫ min
∆θ

Γm,n(∆θ) < (n/m)ωf − ωn < ǫ max
∆θ

Γm,n(∆θ), (3.5)191

where192

Γm,n(∆θ) ≡ 1

mTf

∫ t0+mTf

t0

Z (∆θ(t) + (n/m)ωfs)
T
h(s)ds, (3.6)193

is the phase coupling function and Tf is the period of the external forcing. This194

inequality gives a region of synchronisation over the space of forcing angular195

frequency ωf and forcing amplitude ǫ, known as an Arnold tongue, in which196

m : n frequency locking is possible.197
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4. Numerical implementation198

To numerically solve the governing equations (2.2), we consider the Galerkin199

projection approach of Balasubramanian & Sujith (2008). With expansions200

u =
N∑

j=1

ηj(t) cos(jπx), (4.1)201

202

p = −
N∑

j=1

(
η̇j(t)γMa

jπ

)

sin(jπx), (4.2)203

204

f+
p =

N∑

j=1

f+
pj sin(jπx), (4.3)205

we automatically satisfy the boundary conditions and reduce the full DPDE to a206

DDE for the coefficients ηj and η̇j. The heat release terms become207

uf =

N∑

j=1

ηj(t− τ) cos(jπxf ), (4.4)208

209

q̇j = jπK

(√

|1/3 + uf | −
√

1/3

)

sin(jπxf ), (4.5)210

and we can write the system (2.2) as211

η̈j + (jπ)2ηj + ξj η̇j = −q̇j −
jπǫ

γMa
f+
pj . (4.6)212

This equation can be recast to the first order DDE213

d

dt

(
η(t)
η̇(t)

)

=

(
0 I

W D

)(
η(t)
η̇(t)

)

−
(

0
q̇(η(t − τ ))

)

− ǫ

(
0
f

+
p

)

, (4.7)214

where215

η = (η1, ..., ηN)
T , fp = (π/(γMa)fp1..., Nπ/(γMa)fpN)

T (4.8)216

and diagonal matrices W and D have entries Wjj = −(jπ)2 and Djj = −ξj,217

respectively.218

It is important to note that the size of ǫ does not affect the phase sensitivity219

function Z as this is determined through a linear formulation. However, when220

the phase sensitivity function is used to find the bounds of synchronisation via221

equation (3.5), we are in effect using a first-order Taylor expansion in ǫ in which Z222

is the linear term. Therefore, the size of ǫ can affect the synchronisation region.223

Indeed, ǫ is the amplitude of the external forcing, and it is useful to have a224

physical measure of how large this amplitude is. To this end, we introduce the225

total non-dimensional acoustic energy per unit volume of the system (Juniper226

2011)227

E =
1

2

[

u2 +
p2

(γMa)2

]

=
1

2

N∑

j=1

η2
j +

1

2

N∑

j=1

(
η̇j
jπ

)2

. (4.9)228

This energy measure allows us to quantify the size of ǫ. In other words, we assess229

the magnitude of the added perturbation.230
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Figure 2: (left) Neutral curves for the stability of the fixed point (u, p) = (0, 0).
Highlighted with a blue cross are the parameters for our base case. (right) Plot
of u against p at x = 0.2 for the direct solution. The transient behaviour is

displayed in orange, with the limit cycle shown in blue.

To obtain the linearised and adjoint equations, we cast the Galerkin model231

(4.7) in the form of a DDE (2.4). Here, we have232

A1 =

(
0 I

W D

)

, A2 =

(
0 0

B 0

)

, (4.10)233

in our linearised equation (3.2) where234

(B)ij(t) = − iπK sin(iπxf )sgn(
1
3
+ uf (t− τ)) cos(jπxf )

2
√∣

∣ 1
3
+ uf (t− τ)

∣
∣

. (4.11)235

Our implementation, which is available (Skene & Taira 2021), is based on the sixth236

order DDE solver Vern6 (Verner 2010) contained in the DifferentialEquations.jl237

package (Rackauckas & Nie 2017).238

5. Results239

Using the Galerkin expansion approach introduced above, we are able to sys-240

tematically obtain the phase sensitivity function for a given set of parameters.241

As our goal is not only to find the phase sensitivity function, but also to assess242

the synchronisation dynamics with a view to open-loop forcing, we consider a243

range of values for the flame time delay τ , flame strength K and flame location244

xf . For all cases, we fix the number of Galerkin modes to N = 10, which gives245

a reasonable compromise between obtaining higher-mode behaviour and keeping246

the computational run-time reasonable. We herein set the damping parameters247

to c1 = 0.1 and c2 = 0.06 and fix Ma = 0.005 and γ = 1.4. The neutral stability248

curves for the fixed point (u, p) = (0, 0) in τ − K space for different values of249

the flame location are shown in figure 2 (left). In what follows, we only consider250

unstable cases as this will ensure that a limit cycle solution emerges. However,251

even in the stable regime, limit cycle solutions can be found, as in the study252

by Juniper (2011) and the methods of this paper also carry over to these limit253

cycles, provided they are Floquet stable. It is also worth noting that Juniper254

(2011) showed that due to non-normality a small perturbation can grow large255

enough to move the system away from its stable configuration, an effect which is256

not accounted for by our current analysis which is valid close to the limit cycle.257

We start by examining the case with K = 0.72, xf = 0.25 and τ = 0.2,258
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(right) The value of the bilinear form, as well as the breakdown into its inner

product and integral contributions, over one period.

following Mondal et al. (2019). This baseline case is highlighted in figure 2 (left)259

and is located just inside the unstable regime. To obtain the limit cycle, we260

solve equation (4.7) in the absence of external forcing and with a small random261

initial condition. For these parameters, the state (u, p) = (0, 0) is unstable, the262

perturbation grows, and eventually saturates into a limit cycle. By starting at263

t = −400, we obtain a limit cycle (see figure 2 (right)) free of transient effects by264

t = 0, which is further integrated to t = 400. This allows us to obtain the phase265

sensitivity function by solving the adjoint equation backwards in time, starting266

from a random initial condition, from t = 400 to 0 (see figure 3 (left)). We267

compute the phase sensitivity function using the adjoint solution for t ∈ [0, T ]268

with T = 1.93, scaling with the normalisation specified in section 3. Whilst269

enabling us to fix the amplitude of the phase sensitivity function, the inner270

product (3.3) also provides a good check of our adjoint solution. The inner product271

must be constant in time and consists of two parts; a dot product and an integral.272

Figure 3 (right) confirms the value the inner product being constant over one273

period, verifying our adjoint solution.274

With the phase sensitivity function determined, we can compute the phase275

coupling function using equation (3.6). The forcing term is specified to be f+
pj =276

−γMa/(jπ)c cos(ωf t) following Mondal et al. (2019), with c chosen such that the277

forcing has a unit acoustic energy norm. The resulting Arnold tongue obtained278

from criteria (3.5) is shown in figure 4 (left). We have shown on the y-axis both the279

amplitude ǫ as well as Af which matches the amplitude displayed by Mondal et al.280

(2019) due to the different normalisations used. The ‘V’ shape shows the minimum281

amplitude of the forcing needed to obtain synchronisation at the different values282

of the frequency f = ωf/(2π), with synchronisation being possible inside the283

V-shaped region. We see that for frequencies equal to the natural frequency of284

the system fn, synchronisation is always possible. However, as this frequency is285

increased or decreased a greater forcing amplitude is needed.286

Figure 4 (left) shows that there is a good agreement with our obtained Arnold287

tongue and the one computed by Mondal et al. (2019) which holds true even288

for large forcing amplitudes ǫ. The Arnold tongue calculated by Mondal et al.289

(2019) required performing a series of nonlinear simulations at different forcing290

amplitudes to obtain, on a point-by-point basis, the resulting synchronisation291

behaviour. This means that the Arnold tongue they obtain includes nonlinear292

behaviour, such as phase trapping. In our case, we consider a linear analysis293
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Figure 4: (left) The Arnold tongue showing the regions where synchronisation is
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and phase drifting (orange circles), as well as phase locking and phase trapping
(green squares) from Mondal et al. (2019). (right) The Arnold tongues for the

general cases of 1 : 2 (orange), 1 : 1 (blue), 2 : 1 (green) and 3 : 1 (red)
synchronisation.

which enables us to efficiently calculate the entire Arnold tongue with a single294

adjoint simulation. The differences can be therefore be attributed to non-linear295

effects. We also see that our Arnold tongue is symmetric. This symmetry has296

to occur when using a Galerkin model since both u and p have zero means.297

However, the experimentally obtained Arnold tongue (Mondal et al. 2019) has298

an asymmetry showing that synchronisation was easier for frequencies below the299

natural frequency. This is a direct consequence of their experimental setup which300

has a mean flow.301

In addition to 1 : 1 synchronisation, figure 4 (right) reveals the general case of302

m : n phase locking predicted by the present analysis. The figure shows that 1 : 1303

synchronisation is the easiest to achieve, with 3 : 1 frequency locking also being304

feasible, albeit over a narrower region. Perhaps most importantly, we see that for305

our system 1 : 2 synchronisation is impractical to attain. In the study of Mondal306

et al. (2019), asynchronous quenching was achieved for frequencies lower than307

the natural frequency, a region in which 1 : 2 type phase locking could occur.308

By obtaining figure 4 (right), we can directly observe a-priori the phase locking309

behaviour in this region. This further emphasises the importance of obtaining310

the Arnold tongues in designing open-loop control strategies, and highlights the311

capabilities of the phase sensitivity method to efficiently find the synchronisation312

conditions.313

The fact that the phase sensitivity function is independent of the forcing func-314

tion means that we can efficiently consider the optimal placement of the pressure315

forcing for the purpose of synchronisation. Identifying the optimal placement316

allows for designing effective open-loop control strategies to move the frequency of317

the limit cycle to a desired one for a particular system via synchronisation. This is318

similar to the approach of Khodkar & Taira (2020), where the optimal placement319

of actuators for synchronisation was considered in the case of vortex shedding320

behind a cylinder. To assess the ease (or difficulty) of achieving synchronisation,321

we consider synchronisability S ≡ max(Γ )−min(Γ ), which essentially represents322

the width of the the Arnold tongue (Khodkar & Taira 2020). Instead of a global323

pressure forcing, we now consider a pointwise placement of pressure actuation324

given by f+
p = γMaδ(x − xp) cos(ωf t), where xp is the actuator location along325

the Rijke tube. In terms of our Galerkin model, this corresponds to setting326
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Figure 5: The synchronisability as the pressure actuation location is varied
along the tube. (top) K = 0.72, τ = 0.2 and xf ∈ [0.25, 0.33]. (bottom left)

K = 0.72, τ ∈ [0.2, 0.29] and xf = 0.25. (bottom right) K ∈ [0.72, 0.99], τ = 0.2
and xf = 0.25.

f+
pj = 2γMa sin(jπxp) cos(ωf t). We seek the synchronisability for a range of327

parameters, each requiring us to obtain a new phase sensitivity function using328

the method described for our base case.329

The synchronisability for varied xp along the tube is shown in figure 5 for a330

wide range of parameters. In all cases, the maximum value of synchronisability331

occurs at xp = 0.5, i.e., half way along the Rijke tube. The fact that the optimal332

location is at the tube mid-point could be attributed to the natural acoustic mode-333

shapes which all have a maximum at the midpoint. It also aligns with what was334

discovered for passive control via an adjoint analysis of the eigenvalue sensitivities335

(Magri & Juniper 2013) where a pressure based feedback forcing of the pressure336

equation was found to be maximal near the tube centre (around xp = 0.58).337

The difference between their location and ours could be due to the choice of338

linearisation. Namely, the fact that ours is around the limit cycle whereas theirs339

is around a fixed point. This is an important consideration since Juniper (2011)340

shows that there are multiple stable limit cycles for a given set of parameters.341

As these come from the same fixed-point they will share the same eigenvalue-342

based conclusions. However, linearising about the limit cycle enables to form of343

the periodic orbit to influence the resulting adjoint solution and may lead to344

different conclusions.345

Interestingly, in all cases the flame location induces an inflection point, with346

figure 5 (top) showing that this inflection moves with the flame location causing a347

new local maximum to occur to the left of the flame. While this may suggest that348

the flame locally inhibits synchronisation for pressure-based actuation, we should349

be careful in interpreting the behaviour at the flame due to the Galerkin method350

used to solve the equations. The Galerkin projection does not capture the jump351

Rapids articles must not exceed this page length
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Figure 6: (left) Eigenvalues for the one frequency (blue crosses) and two
frequency (orange circles) systems. (right) Neutral curve for xf = 0.2.

conditions that should be present at the flame, which could be explicitly treated352

by using a higher fidelity numerical scheme (Sayadi et al. 2014). By comparing353

figures 5 (bottom left) and 5 (bottom right) we see that the synchronisation354

dynamics are more sensitive to the flame time delay than the flame strength with355

synchronisation becoming harder as these parameters are increased. We note356

that the increased sensitivity with respect to time-delay agrees with the work of357

Aguilar et al. (2017) who showed this variable also gives the largest sensitivity in358

their thermoacoustic system using an adjoint-based analysis of the eigenvalues.359

Now that many aspects of the phase sensitivity analysis have been presented,360

we consider one more parameter regime. For the baseline case considered so far361

the steady state (u, p) = (0, 0) has one pair of unstable eigenvalues around the362

primary pure-acoustic angular frequency of ω = π (shown in figure 6 (left)). This363

figure also shows stable eigenvalues at the first harmonic of this mode with an364

angular frequency around ω = 2π. The result is a limit cycle that is primarily365

dominated by one frequency. In order to consider a limit cycle with two dominant366

frequencies we can consider the neutral curve presented in Sayadi et al. (2014). For367

the flame location xf = 0.2, the neutral curve shown in figure 6 (right) is obtained.368

We can see that around a flame strength of K ≈ 3 a ‘kink’ develops in the369

neutral curve. As discussed in Sayadi et al. (2014), this ‘kink’ occurs because the370

secondary eigenvalue with ω ≈ 2π becomes more unstable than the fundamental371

mode. Therefore, to consider the effect of two frequencies we now consider the case372

of xf = 0.2,K = 3.5 and τ = 0.05 (shown in figure 7 (right) to be located near the373

‘kink’). We note that for the parameter regime of this two frequency case, Sayadi374

et al. (2014) show that the mode shapes from a Galerkin approach show less375

agreement with a high fidelity approach that properly discretises the discontinuity376

at the flame. Therefore, as in our parametric study showcased in figure 5, we377

proceed with caution when interpreting the results. For these parameters figure378

7 (left) shows that now both the fundamental and first harmonic are unstable,379

with the first harmonic being more unstable than the fundamental mode. As in380

the baseline-case this instability saturates into a limit cycle (see figure 7 (left)),381

where the presence of a second frequency is evident in its ‘loop’.382

Figure 7 (right) shows the Arnold tongues for 1 : 2, 1 : 1, 2 : 1 and 3 : 1383

synchronisation for the same forcing used to produce figure 4 (right). We see that384

1 : 1 phase locking is easier in this system than the baseline. The reason for this385

could be attributed to the fact that figure 5 (left) suggests that synchronisation386

becomes easier as the flame time delay is decreased. However, it is also evident387
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Figure 7: (left) Limit cycle for the multiple frequency system. (right) Arnold
tongues for 1 : 2 (orange), 1 : 1 (blue), 2 : 1 (green) and 3 : 1 (red)

synchronisation for our multiple frequency system.

that 2 : 1 phase locking is now more easily achievable than 3 : 1 phase locking388

which cannot be due to the smaller flame time delay alone. The reason for the389

increased 2 : 1 synchronisability for this double frequency case can be viewed390

as a direct consequence of having a more dominant first harmonic in the non-391

linear solution. This translates into an adjoint solution that contains more content392

at this frequency, which in turn leads to higher synchronisability via the phase393

coupling function.394

We conclude our results by considering the potential speedups available over395

using fully non-simulations to find the Arnold tongues. For both methods a396

limit-cycle solution must first be found. Once this is found, we can estimate397

the subsequent cost of each analysis as follows. For both the phase sensitivity398

and fully non-linear methods the main cost involved is solving either the non-399

linear or adjoint equations, with any post processing, such as obtaining the400

phase coupling function, being negligible. If we assume that the non-linear and401

adjoint equations take the same amount of time tsolve to be solved, then the402

total time of the phase-sensitivity method is Cp.s. = 2tsolve. For the non-linear403

approach, if nf frequencies and nA amplitudes are used then the total time will be404

Cn.l. = nfnAtsolve. Therefore, the speedup using the phase-sensitivity approach is405

Sp = Cn.l./Cp.s. = nfnA/2. For example, if nf = nA = 10 then the phase-sensitivity406

function approach will be around 50 times faster; a substantial speedup.407

It is worth mentioning that the argument above does not take into account408

the fact that the non-linear approach will have only yielded the Arnold tongue409

for one particular forcing function and one choice of n : m phase locking. If410

additional forcing functions or n : m phase lockings are to be examined, then411

each case will call for another Cn.l. time-units. However, the phase sensitivity412

function does not depend on the exact form of the forcing function or phase413

locking type considered, and therefore all subsequent analysis will be essentially414

free compared to the initial cost. These considerations further make the phase415

sensitivity function an efficient choice for determining the phase properties of a416

Floquet-stable system close to its limit cycle. Whilst adjoint approaches can be417

expensive in terms of memory, the fact that the phase sensitivity function is the418

adjoint neutral-Floquet mode means that it can be obtained using simulations419

over just one period of the limit cycle using an algorithm such as that presented420

by Barkley & Henderson (1996). Even though we do not take this approach here,421
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utilising such a method could be critically important in rendering this analysis422

feasible for larger, memory-intensive systems.423

6. Conclusion424

We have performed phase reduction analysis to study the phase synchronisation425

properties of the thermoacoustic system in a Rijke tube with respect to the limit426

cycle produced by its instability. By reducing the phase dynamics to a scalar427

equation for the phase, we are able to reveal the effects of weak external forcing428

on the phase through the phase sensitivity function. The fact that this phase429

sensitivity function can be found through integration of the adjoint equation, and430

does not depend on the exact form of the external forcing, makes this analysis431

particularly efficient and generalisable. We utilised the phase description to map432

out the regions where m : n phase locking can occur and identify the optimal433

positions along the Rijke tube where pressure actuation can result in synchronisa-434

tion. The current study highlights the usefulness of phase sensitivity analysis for435

thermoacoustic problems, especially as an additional tool for designing open-loop436

control strategies via harmonic forcing.437

Whilst keeping in mind that this method is not directly applicable to turbulent438

systems, unstable limit cycles, or for determining synchronisation behaviour far439

from a limit cycle, the present phase reduction analysis for a Rijke tube can be440

extended to suitable, more complex thermoacoustic simulations without major441

change. For future work, it would be interesting to first extend the analysis442

to a higher fidelity model of a Rijke tube (Sayadi et al. 2014) that explicitly443

treats the jump conditions at the flame, allowing for the phase dynamics near444

the flame, and for higher flame strengths, to be accurately quantified. Further to445

this, including the effects of a mean-flow in the Rijke tube model, and introducing446

velocity-based forcing, would also be beneficial in matching the synchronisation447

characteristics of some experimental setups. Applying phase techniques to more448

complex models including flame chemistry and more complex geometries would449

allow phase sensitivity analysis to play a role in the control of instabilities arising450

from more realistic combustion systems.451
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Appendix A. Mathematical details459

For a DDE in the form (2.4) we see that the initial condition (initial history)460

must be specified over −τ 6 t 6 0 for the subsequent solution to be uniquely461

defined. In general, to propagate a state at time t0 forward we need the solution462

to the DDE over −τ 6 t− t0 6 0. Therefore, it is helpful to think of the state as463

a function of the time-delay φ ∈ [−τ, 0], i.e., for each time t we write a solution464

to the equation as yt(φ) = y(t+ φ) (Hale 1977). In this manner, the solution to465

the DDE is a function and we can formally write yt ∈ C([−τ, 0]). An evolution466
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equation can be found directly for the function yt(φ) and is defined piecewise as467

dyt(φ)

dt
=

{
dyt(φ)

dφ
if φ ∈ [−τ, 0)

f(t,yt(0)) + g(t− τ,yt(−τ)) + ǫh(t) if φ = 0
. (A 1)468

Similarly, the linearised equations (with ǫ = 0) can be written as dyt(φ)

dt
= Ayt(φ)469

where the linear operator470

Ayt(φ) =

{
dyt(φ)

dφ
if φ ∈ [−τ, 0)

A1(t)yt(0) +A2(t)yt(−τ) if φ = 0
. (A 2)471

As we are using an infinite dimensional description for solutions to our DDE, care472

is needed when defining the adjoint. For finite dimensional systems the adjoint473

is defined via an inner product since the direct and adjoint variables are defined474

in the same space, e.g., R
N . However, for a DDE the direct variable yt(φ) ∈475

C([−τ, 0]), whereas the adjoint y
†
t(φ) ∈ C([0, τ ]). Hence, in order to define the476

adjoint, a bilinear form V (C([0, τ ]), C([−τ, 0])) → R is needed (see Wischert et al.477

(1994); Simmendinger et al. (1999); Kotani et al. (2012); Novičenko & Pyragas478

(2012)). In terms of our functional notation, the bilinear form (3.3) can be written479

as480

〈at(φ), bt(φ)〉 = at(0)
Tbt(0) +

∫ 0

−τ

at(φ+ τ)TA2(t+ τ + φ)bt(φ) dφ. (A 3)481

The main steps of how to find the adjoint operator are now given and mainly482

follows the derivation available in Rand (2012).483

To define the adjoint, we require that the bilinear form between a direct state484

and its adjoint (dual) state is constant in time (Simmendinger et al. 1999).485

Formally, this means that486

d

dt
〈at(φ), bt(φ)〉 = 0. (A 4)487

Using definition (A 3), along with the fact that dyt(φ)

dt
= Ayt(φ) and the definition488

−dy†
t (φ)

dt
= A†y

†
t(φ), where A† is the yet to be found adjoint operator, we have490

d

dt
〈at(φ), bt(φ)〉 =〈at(φ),Abt(φ)〉 − 〈A†at(φ), bt(φ)〉

+

∫ 0

−τ

at(φ+ τ)T
dA2(t+ τ + φ)

dφ
bt(φ) dφ.

(A 5)491

We see that for no-time delay, setting this expression to zero gives the classic492

adjoint condition that 〈at(φ),Abt(φ)〉 = 〈A†at(φ), bt(φ)〉. However, for a time-493

delayed system the infinite dimensional nature gives an extra term due to the494

memory of the system. Again using the inner product (A 3), we have that496

〈at(φ),Abt(φ)〉 =at(0)
TAbt(0)

+

∫ 0

−τ

at(φ+ τ)TA2(t+ τ + φ)Abt(φ) dφ,
(A 6)497
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which upon using the definition of A (A 2) becomes499

〈at(φ),Abt(φ)〉 =at(0)
T (A1(t)bt(0) +A2(t)bt(−τ))

+

∫ 0

−τ

at(φ+ τ)TA2(t+ τ + φ)
dbt(φ)

dφ
dφ

︸ ︷︷ ︸

I

. (A 7)500

The integral term I in (A 7) can be rearranged using integration by parts to give502

I =
[
at(φ+ τ)TA2(t+ τ + φ)bt(φ)

]0

−τ

−
∫ 0

−τ

[
dat(φ+ τ)

dφ

]T

A2(t+ τ + φ)bt(φ) dφ

−
∫ 0

−τ

at(φ+ τ)T
dA2(t+ τ + φ)

dφ
bt(φ) dφ.

(A 8)503

Combining all the terms in (A 7) using the integral term in this form gives505

〈at(φ),Abt(φ)〉 =[A1(t)
Tat(0) +A2(t+ τ)at(τ)]

Tbt(0)

+

∫ 0

−τ

[

−dat(φ+ τ)

dφ

]T

A2(t+ τ + φ)bt(φ) dφ

−
∫ 0

−τ

at(φ+ τ)T
dA2(t+ τ + φ)

dφ
bt(φ) dφ,

(A 9)506

which we recognise as508

〈at(φ),Abt(φ)〉 =〈A†at(φ), bt(φ)〉

−
∫ 0

−τ

aT
t (φ+ τ)

dA2(t+ τ + φ)

dφ
bt(φ) dφ,

(A 10)509

where the adjoint operator A† is now defined as510

A†y
†
t(φ) =

{

−dy†
t (φ)

dφ
if φ ∈ (0, τ ]

AT
1 (t)y

†
t(0) +AT

2 (t+ τ)y†
t(τ) if φ = 0

. (A 11)511

Substituting (A 10) into (A 5) then shows that the bilinear form between a direct512

state and its dual remains constant in time.513

For a T -periodic system close to the limit cycle yLC
t (φ), a state can be written514

as yt(φ) = yLC
t (φ)+ǫy′

t(φ). By the Floquet theorem (Floquet 1883), which carries515

over to delay differential equations (Simmendinger et al. 1999), the perturbation516

y′
t(φ) can be written as517

y′
t(φ) =

∑

i

ci exp(λit)y
i
t(φ), (A 12)518

where the Floquet modes yi
t(φ) are T -periodic functions, ci are coefficients and519

λi ∈ C are the Floquet multipliers. This allows the idea of stability to be carried520

forward to periodic systems. If real(λi) 6 0 for all i, then the limit cycle is521

stable and all perturbed states eventually return to the limit cycle (but generally522

with a phase shift), which is a necessary condition for our phase definition. For523
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an autonomous system, there is always one neutral Floquet mode (i = 0) with524

λ0 = 0. Moreover, the neutral mode shape can be found directly from the limit525

cycle solution via y0
t (φ) = ẏLC

t (φ) (Simmendinger et al. 1999). It can be seen that526

this mode represents the phase shift since a Taylor expansion gives yLC
t+α(φ) ≈527

yLC
t + αẏLC

t (φ). Therefore, it is natural to use Floquet theory to understand the528

phase sensitivity function. We now demonstrate this using a similar approach to529

that of Novičenko & Pyragas (2012).530

Consider the perturbed equation (2.4). Since the forcing term is small we can531

seek the solution in the form yt(φ) = yLC
t (φ) + ǫy′

t(φ). By linearising (2.4) we532

have that this perturbation is governed by the equation ẏ′
t(φ) = Ay′

t(φ)+Ahy′
t(φ)533

where534

Ahyt(φ) =

{
0 if φ ∈ [−τ, 0)

h(t) if φ = 0
, (A 13)535

and A is defined as (A 2) from before. Now, since the perturbation is small and536

remains close to the limit cycle we can use the Floquet theorem to express the537

perturbation in the form538

y′
t(φ) = ǫ

∑

i

ci(t)y
i
t(φ). (A 14)539

From our previous discussion we know that only the i = 0 Floquet mode has the540

ability to change the phase of the system. Therefore, using a similar argument541

as before for each time t, the phase for the perturbed system must be θ = ωnt+542

ǫωnc0(t), giving its evolution equation as θ̇ = ωn + ǫωnċ0(t).543

Now that we have found the phase equation in terms of the time-dependent544

coefficients of the Floquet-expansion, we can use the adjoint to relate ċ0(t) to545

the forcing term h(t). In order to do this, we first recognise that even though546

the Floquet modes are not orthogonal, the direct and adjoint Floquet modes547

form a bi-orthogonal set under our bilinear form (Simmendinger et al. 1999). In548

other words, with an appropriate normalisation of the adjoint, 〈yi,†
t (φ),yj

t(φ)〉 =549

di,jδi,j where di,j are coefficients that depend on the normalisation and δi,j is the550

Kronecker delta. Note that for i = j = 0 this implies that 〈y0,†
t (φ), ẏLC

t (φ)〉 = ωn,551

where we have chosen the normalisation d0,0 = ωn. Using this biorthogonality, we552

can take the bilinear form of (A 14) with y
0,†
t (φ) to find c0(t) as 〈y0,†

t (φ),y′
t(φ)〉 =553

ǫωnc0(t). To find ċ0(t), we differentiate this expression with respect to time. Using554

the already shown result that the time derivative of the contribution to this555

bilinear form from the unperturbed dynamics is zero, we obtain556

ǫωnċ0(t) = 〈y0,†
t (φ),Ahy′

t(φ)〉, (A 15)557

which, from the definition (A 13), becomes ωnċ0(t) = y
0,†
t (0)Th(t). Hence, drop-558

ping the i = 0 superscript, the phase equation is (3.1) with Z(θ) = y
†

t=θ/ωn
(0).559
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