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A B S T R A C T 

Magnetohydrodynamic (MHD) waves are routinely observed in the solar atmosphere. These waves are important in the context of 

solar physics as it is widely believ ed the y can contribute to the energy budget of the solar atmosphere and are a prime candidate 

to contribute towards coronal heating. Realistic models of these waves are required representing observed configurations 

such that plasma properties can be determined more accurately, since they cannot be measured directly. This work utilizes a 

pre viously de veloped numerical technique to find permittable eigenv alues under dif ferent non-uniform equilibrium conditions in 

a Cartesian magnetic slab geometry. Here, we investigate the properties of magnetoacoustic waves under non-uniform equilibria 

in a cylindrical geometry. Previously obtained analytical results are retrieved to emphasize the power and applicability of this 

numerical technique. Further case studies investigate the effect that a radially non-uniform plasma density and non-uniform 

plasma flow, modelled as a series of Gaussian profiles, have on the properties of different MHD wav es. F or all cases the dispersion 

diagrams are obtained and spatial eigenfunctions calculated which display the effects of the equilibrium inhomogeneity. It is 

shown that as the equilibrium non-uniformity is increased, the radial spatial eigenfunctions are affected and extra nodes 

introduced, similar to the previous investigation of a magnetic slab. Furthermore, azimuthal perturbations are increased with 

increasing inhomogeneity introducing vortical motions inside the wav e guide. Finally, 2D and 3D representations of the velocity 

fields are shown which may be useful for observers for wave mode identification under realistic magnetic wav e guides with ever 

increasing instrument resolution. 

Key words: MHD – waves – Sun: oscillations. 

1  I N T RO D U C T I O N  

Observations of the solar atmosphere show that it is replete with 

magnetohydrodynamic (MHD) wav es. Ov er recent years, a great 

impro v ement in both ground and space-based telescopes with finer 

spatial and temporal resolution has revealed the vast number of 

structures that may act as wav e guides for MHD waves. There has 

been abundant evidence of the highly structured solar atmosphere 

supporting the propagation of these waves (see e.g. Nakariakov et al. 

1999 ; De Pontieu et al. 2007 ; Morton et al. 2011 ; Keys et al. 2018 ). 

The combination of observational data with analytical models allows 

for the common practice known as ‘solar atmospheric seismology’. 

This technique allows researchers to calculate properties of the solar 

atmospheric plasma that may be difficult to determine directly from 

observations, by analysing the propagation of waves through the 

medium. Ho we ver, for this to be a useful technique, there is a 

need for a high degree of accuracy in both the observations and 

the theoretical models. While great impro v ement has been made on 

the observational side, there is still much unknown about modelling 

wave propagation in general realistic solar wav e guides. 

Analytical theory of MHD waves with an application to solar 

physics is widely accepted as being introduced many decades ago 

⋆ E-mail: sjskirvin1@sheffield.ac.uk (SJS); v.fedun@sheffield.ac.uk (VF) 

(Hain & L ̈ust 1958 ; Spruit & Zweibel 1979 ; Wilson 1979 , 1980 ; 

Roberts 1981a , b ; Edwin & Roberts 1982 , 1983 ; Spruit 1982 ). 

These early works provided a description of the properties of 

MHD waves in both Cartesian and cylindrical geometries of the 

wav e guide comprised of different magnetic interfaces. Since then, 

adaptations and specific case studies have been undertaken to explore 

the properties of MHD waves under more complicated yet realistic 

plasma configurations. A non-e xhaustiv e list includes inv estigating 

waves in non-uniform magnetic slabs (Arregui et al. 2007 ; Lopin & 

Nagorny 2015a , b ; Li et al. 2018 ; Skirvin, Fedun & Verth 2021 ), 

curved magnetic slabs (Verwichte, Foullon & Nakariakov 2006 ), 

twisted magnetic cylinders (Erd ́elyi & Fedun 2007 , 2010 ; Terradas & 

Goossens 2012 ; Terradas, Magyar & Van Doorsselaere 2018 ), and 

magnetic cylinders with vortex flows (Cheremnykh et al. 2017 , 2018 ; 

Tsap et al. 2020 ). It is widely known that within a non-uniform 

plasma in ideal MHD, waves propagating at specific frequencies 

may resonate with the local plasma. This occurs in continuum regions 

where the wave propagates at either the local Alfv ́en speed or the 

local tube (cusp) speed. At these locations, it is to be expected 

that wave energy can be extracted by processes such as resonant 

absorption (Goossens, Ruderman & Hollweg 1995 ; Keppens 1996 ; 

Goossens, Erd ́elyi & Ruderman 2011 ). Undertaking an investigation 

into wave damping mechanisms relies on treating the wave frequency 

as a complex quantity, where the imaginary component provides 

information on either wave damping or an y wav e-related instabilities. 
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2690 S. J. Skirvin et al. 

This phenomenon is not considered in this work ho we ver rele v ant 

studies can be found in e.g. Heyvaerts & Priest ( 1983 ) and Yu et al. 

( 2021 ). This study includes plasma (gas) pressure in the analysis; 

ho we ver, it a v oids resonantly damped modes by assuming that the 

wav e frequenc y is purely real. It should be noted that previous 

works have investigated the resonantly damped modes; ho we ver, 

in their analysis they assume that the plasma- β is zero, which 

ultimately remo v es the slow magnetoacoustic modes from their 

analysis (Van Doorsselaere et al. 2004 ; Soler et al. 2013 ; Soler 2017 , 

2019 ). 

It is well known that the solar atmosphere and features within it 

are highly non-uniform, mainly due to the fine magnetic fields which 

permeate throughout (e.g. Williams et al. 2020 ). This non-uniformity 

has an important effect on the propagation and observation of MHD 

w aves. It w as shown in Skirvin et al. ( 2021 ) (hereafter Paper 1 ) that 

an inhomogeneous plasma equilibrium changes the eigenvalues for 

trapped wave modes dependant upon the scale of the inhomogeneity. 

If the plasma is highly non-uniform then the permittable bands 

within which MHD waves can propagate become narrower, whereas 

the continuum regions, where physical damping processes can take 

place, spread a wider range of phase speeds. The non-uniform 

equilibrium can also affect the spatial distributions of observable 

eigenfunctions produced by MHD wave propagation. It was found 

that in coronal slab structures, slow body modes are more affected by 

large inhomogeneities in density o v er the width of a magnetic slab; 

the same is true for body modes in a photospheric slab. 

Furthermore, the effect of non-uniformity has important implica- 

tions for identifying wave modes in observations. It is well known 

that the theoretical Alfv ́en mode along with the slow and fast 

magnetoacoustic modes only exist in pure form in a uniform plasma 

of an infinite extent. In such a scenario the Alfv ́en wave propagates 

as a purely incompressible vortical perturbation with only magnetic 

tension acting as the restoring force. Furthermore, magnetoacoustic 

waves propagate as compressible disturbances which can be iden- 

tified through observations of plasma intensity perturbations with 

a combination of magnetic tension and total pressure acting as the 

restoring forces. In reality ho we ver, the solar atmosphere is highly 

non-uniform and not infinite. Consequently, it is difficult to interpret 

observations of MHD wave modes as one of the three distinct wave 

modes in a uniform plasma. In a non-uniform plasma MHD waves 

hav e mix ed properties and cannot be classified as pure Alfv ́en or pure 

magnetoacoustic (Goossens, Arregui & Van Doorsselaere 2019 ). 

It has been shown analytically that even a simple discontinuity in 

a plasma equilibrium, such as a piecewise discontinuous density 

profile similar to that modelled as a magnetic cylinder, that the 

fundamental radial non-axisymmetric magnetoacoustic mode (kink 

mode) should in fact be interpreted as a surface Alfv ́en wave (Wentzel 

1979 ; Goossens et al. 2012 ). The analytical study conducted by 

Goossens et al. ( 2012 ) focused on the role that vorticity plays when 

the plasma in non-uniform. For a pure Alfv ́en wave the displacements 

are vortical everywhere however for a pure magnetoacoustic wave 

there is zero vorticity. As the piecewise discontinuity is replaced 

with a continuous profile, vorticity is spread out o v er the whole 

interval co v ered by the Alfv ́en continuum, where the density is 

inhomogeneous. The role of vorticity in a non-uniform magnetic 

flux tube is further investigated in this work for both a non-uniform 

equilibrium density and a non-uniform background plasma flow. 

The effect of a steady background plasma flow on the properties of 

MHD waves has been previously studied in a cylindrical geometry. 

An investigation by Terra-Homem, Erd ́elyi & Ballai ( 2003 ) derived 

and solved the dispersion relation for MHD waves in a uniform 

magnetic cylinder with a uniform background plasma flow. Further 

studies have looked at the potential a steady flow may have for 

the onset of the Kelvin–Helmholtz instability, which may provide 

a turbulent cascade of energy that could heat localized plasma 

(Zhelyazkov 2012 , 2013 ). Ho we ver, little research has been con- 

ducted which investigates the effect a non-steady plasma flow may 

have on the properties of MHD waves in a magnetic cylinder due to 

the difficulty of analytically deriving a dispersion relation. 

In this work, the approach to that described in Paper 1 is slightly 

modified with the main difference in the coordinate system used, 

which affects the vector operators in the analytical investigation. 

In this investigation, the numerical technique developed previously 

is applied to initially uniform c ylindrical wav e guides to reproduce 

previously obtained analytical results of a uniform cylinder, also 

including a steady background flow. Thereafter, the internal spatial 

profile of plasma density and background flow is allowed to be 

non-uniform in the shape of a series of Gaussian profiles, which 

cannot be investigated purely analytically, with discussions about 

the observable differences in wave properties due to this non-uniform 

equilibria. 

This paper is organized as follows: the ideal MHD equations 

describing motions in a radially non-uniform cylinder are presented 

in Section 2. In Section 3, the numerical tool is applied to previously 

studied cases with known analytical results, the analytical and nu- 

merical results are compared. Further investigations of non-uniform 

density cases which cannot be studied analytically are discussed in 

Section 4. The MHD wa ve beha viour in a uniform coronal cylinder 

with a non-uniform background plasma flow is analysed in Section 5. 

Lastly, a summary and discussion of the results obtained in this paper 

can be found in Section 6. 

2  M E T H O D  

This work adopts a cylindrical geometry in the form ( r , ϕ, z). The 

initial equilibrium is allowed to be radially, spatially dependant for all 

variables and has background magnetic field vector components in 

the form (0, 0, B 0 z ) and background velocity field vector components 

(0, 0, U 0 z ( r )). In this work, U 0 z is taken to be positive which 

corresponds to a flow in the positiv e v ertical direction. Since the 

equilibrium quantities depend on r only, the perturbed quantities can 

be Fourier-analysed with respect to the ignorable coordinates ϕ, z, 

and time t , and put proportional to 

exp [ i ( mϕ + kz − ωt ) ] , 

where m is the azimuthal wavenumber, k the vertical wavenumber, 

and ω the wave frequency. 

The system of linearized MHD equations (see Paper 1 ) can be 

reduced to a system of two differential equations containing the total 

pressure perturbation ˆ P T and the radial displacement perturbation 

r ̂  ξr as previously done in e.g. Sakurai, Goossens & Hollweg ( 1991 ), 

Goossens, Hollweg & Sakurai ( 1992 ), and Erd ́elyi & Fedun ( 2007 , 

2010 ). It should be noted that the full set of equations written in 

these works listed abo v e considers an equilibrium that includes 

background magnetic and velocity azimuthal components. In this 

work, these physical properties are ignored and as a result the 

go v erning differential equations can be written as: 

D 
d 

d r 

(

r ̂  ξr 

)

= −C 1 r ˆ P T , (1) 

D 
d ˆ P T 

d r 
= C 2 ̂

 ξr , (2) 

where 

D = ρ
(

c 2 + v 2 A 

) (

�2 
− ω 

2 
A 

) (

�2 
− ω 

2 
c 

)

, (3) 
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MHD waves in inhomo g eneous flux tubes 2691 

� = ω − kU 0 z ( r) , (4) 

c 2 = 
γP 

ρ
, v 2 A = 

B 
2 
0 z 

μρ
, ω 

2 
A = 

k 2 B 
2 
0 z 

μρ
, ω 

2 
c = 

ω 
2 
A c 

2 

(

c 2 + v 2 A 

) , (5) 

C 1 = �4 
−

(

c 2 + v 2 A 

)

(

m 
2 

r 2 
+ k 2 

)

(

�2 
− ω 

2 
c 

)

, (6) 

C 2 = Dρ
(

�2 
− ω 

2 
A 

)

. (7) 

Variables ρ, P , B 0 z , γ , and μ denote plasma density, plasma 

pressure, vertical magnetic field, ratio of specific heats (taken γ = 

5/3), and the magnetic permeability , respectively . Quantities c 2 , v 2 A , 

ω 
2 
A , and ω 

2 
c define the squares of the local sound speed, Alfv ́en speed, 

Alfv ́en frequency, and cusp frequency , respectively . Equations (1)–

(7) are the simplified set of equations from earlier studies which can 

be retrieved by setting the azimuthal components v ϕ = B ϕ = 0 (see 

e.g. Sakurai et al. 1991 ; Goossens et al. 1992 ). Equation (4) describes 

the Doppler-shifted frequency due to the presence of the background 

plasma flow. It is clear that when field aligned flow is ignored in 

the model, that the Doppler shifted frequency simply reduces to the 

wav e frequenc y. Furthermore, it can be seen that if the plasma flow is 

steady (spatially uniform) then this expression describes the steady 

Doppler shift shown previously in Nakariakov & Roberts ( 1995 ) and 

Terra-Homem et al. ( 2003 ). Ho we ver, this quantity is now a function 

of radially variable r and as a result the effect of the Doppler-shifted 

frequency depends on the local background plasma flow at that 

location. The set of equations (1)–(7) provide the full equations for 

an y c ylindrical equilibrium with a radially v arying field aligned flo w. 

It should also be noted that they describe any cylindrical equilibrium 

which is non-uniform in the direction of spatial coordinate r (e.g. 

ρ( r )); as a result all quantities would also depend on r in such an 

equilibrium. Equations (1)–(2) can be combined to create a single 

differential equation in either r ̂  ξr : 

d 

d r 

[

f ( r ) 
d 

d r 

(

r ̂  ξr 

)

]

− g( r ) 
(

r ̂  ξr 

)

= 0 , (8) 

where 

f ( r ) = 
D 

r C 1 
, (9) 

g( r) = −
C 2 

rD 
, (10) 

or ˆ P T : 

d 

d r 

[ 

˜ f ( r) 
d ˆ P T 

d r 

] 

− ˜ g ( r) ˆ P T = 0 , (11) 

where 

˜ f ( r ) = 
r D 

C 2 
, (12) 

˜ g ( r) = −
rC 1 

D 
. (13) 

Similar to the scenario encountered in Paper 1 , both equations (8) 

and (11) have no known closed form analytical solutions for arbitrary 

profiles of plasma equilibrium properties such as density, magnetic 

field, background flow etc. Therefore, investigating the properties of 

wave modes propagating within an equilibrium which is non-uniform 

must be done numerically. 

The numerical algorithm employed in this work is the cylindrical 

counterpart of the approach presented in Paper 1 . Trapped modes 

are investigated and complex frequencies are ignored such that the 

waves are assumed to be e v anescent away from the cylinder boundary 

located at r = a . The numerical shooting method is implemented 

to solve equations (8) and (11) ensuring continuity of ˆ P T and ˆ ξr 

across the boundary. The application of this technique is modified 

slightly in this work compared to the magnetic slab counterpart which 

inv estigated wav es in a Cartesian coordinate system. It can be seen 

that equations (8) and (11) become singular at r = 0; as a result 

the numerical shooting method will fail here. To o v ercome this, the 

boundary conditions in this work also require to be matched at the 

(numerical) centre of the cylinder ( r ≪ a ) – dependant upon the 

wave mode being investigated. For example, for the kink mode, ˆ P T 

must be continuous across the boundary at r = a but must also be 

equal to zero at the centre of the cylinder. Likewise for the sausage 

mode, which does not perturb the wav e guide axis, it is required that 
ˆ ξr must be equal to zero at the centre of the cylinder and continuous 

across r = a . Waves which have frequencies and wavenumbers that 

satisfy these conditions while also being solutions to the go v erning 

differential equations will be classed as eigenvalues of the system 

and can be plotted on the dispersion diagram. 

For later reference it may be important to note that the component 

of the displacement vector of magnetic surfaces perpendicular to 

the magnetic field lines ˆ ξϕ can be related to ˆ P T and general plasma 

properties by 

(

�2 
− ω 

2 
A 

)

ˆ ξϕ = 
i 

ρB 0 z 

(

g B ˆ P T 

)

, (14) 

where 

g B = ( k × B ) r = 
m 

r 
B 0 z . 

For the case of a uniform cylinder in the absence of background 

inhomogeneity in terms of plasma, magnetic field, or plasma velocity, 

equation (14) reduces to 

ˆ ξϕ = 
i 

ρ( ω 2 − k 2 v 2 A ) 

m 

r 
ˆ P T , (15) 

which is a previously obtained analytical result for a uniform/non- 

uniform static magnetic cylinder with a straight background magnetic 

field (Goossens et al. 1992 , 2009 ; Goedbloed & Poedts 2004 ; 

Ruderman & Erd ́elyi 2009 ; Priest 2014 ). 

For a non-uniform plasma, including a non-uniform background 

plasma flow, the variable � and the characteristic frequencies ω A 

and ω c will depend on the spatial variable r ; under these conditions 

resonant absorption is rather the rule than the exception. The regions 

bounded by 

ω = ω f ( r) ± ω A ( r) and (16) 

ω = ω f ( r) ± ω c ( r) (17) 

define the Doppler-shifted continua where wave modes can be 

resonantly damped, corresponding to singularities in the go v erning 

equations (1)–(2). Within these regions the wave frequency becomes 

a complex quantity, and as a result these are the regions which are 

not considered in this work. 

3  C O M PA R I S O N  WI TH  K N OW N  S O L U T I O N S  

In this section, the numerical approach is tested against analytical 

results previously obtained for MHD waves in a magnetic cylinder, 

which may represent the majority of structures observed in the solar 

atmosphere that may support the propagation of such waves. In all 

of these cases, the analytical dispersion relation is not required and 

the eigenvalues are obtained purely numerically. 

MNRAS 510, 2689–2706 (2022) 
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2692 S. J. Skirvin et al. 

Figure 1. The numerical solutions plotted on the dispersion diagram for a uniform magnetic cylinder under (a) photospheric conditions given by c e = 1.5 c i , 

v Ai = 2 c i , and v Ae = 0.5 c i . (b) Coronal conditions given by c e = 0.5 c i , v Ai = 2 c i , and v Ae = 5 c i . The red curves denote sausage mode and the blue curves show 

kink mode. Figures replicate those shown in figs 3 and 4 in Edwin & Roberts ( 1983 ). 

Figure 2. The numerical solutions plotted on the dispersion diagram for a uniform magnetic cylinder with a steady background plasma flow under (a) 

photospheric conditions given by c e = 0.6 v Ai , c i = 0.53 v Ai , v Ae = 0, and U 0 i = 0.2 v Ai . (b) Coronal conditions given by c e = 0.07 v Ai , c i = 0.11 v Ai , v Ae = 2 v Ai , 

and U 0 i = 0.35 v Ai . The red curves denote sausage mode and the blue curves show kink mode. Figures replicate those shown by figs 10 and 5 in Terra-Homem 

et al. ( 2003 ), respectively. 

3.1 Uniform magnetic cylinder 

The foundations of investigating MHD waves in a cylindrical geom- 

etry with an application to solar physics were presented in Edwin & 

Roberts ( 1983 ) where the dispersion relations were derived for MHD 

waves in a uniform cylinder embedded in a magnetic environment 

under both photospheric and coronal conditions. This work was an 

extension of previous studies by Wilson ( 1979 ), Wentzel ( 1979 ), 

and Spruit ( 1982 ), which analysed specific types of oscillations in a 

magnetic c ylinder. Reco v ering the dispersion diagrams introduced 

in Edwin & Roberts ( 1983 ) is the starting point for testing the 

numerical algorithm in a cylindrical geometry. Both photospheric 

and coronal dispersion diagrams are shown in Fig. 1 and can be 

directly compared to figs 3 and 4 in Edwin & Roberts ( 1983 ) 

under photospheric and coronal conditions, respectively. Fig. 1 (a) 

shows the resulting dispersion diagram for a uniform cylinder under 

photospheric conditions, where the correct eigenvalues are identified 

that agree with the analytical results of Edwin & Roberts ( 1983 ). The 

branches of fast kink and surface sausage waves are trapped between 

c k and c e , slow body modes are trapped between c Ti and c i , and 

slow kink and sausage surface waves are seen propagating at speeds 

just below c Ti . Fig. 1 (b) displays the obtained dispersion diagram 

for a uniform cylinder under coronal conditions. Fast body modes 

propagate at speeds abo v e v Ai and experience a cut-off at v Ae where 

at speeds faster than this they become leaky (Wilson 1981 ; Stenuit, 

Keppens & Goossens 1998 ; Stenuit et al. 1999 ). The fundamental 

kink branch can be seen trapped between v Ai and c k , which tends 

towards c k in the long wavelength limit; this is in agreement with 

the analytical results of Edwin & Roberts ( 1983 ). Furthermore, in 

a coronal environment, slow body modes are found to be trapped 

between c Ti and c i . This uniform cylinder is a very basic model of 

MNRAS 510, 2689–2706 (2022) 
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MHD waves in inhomo g eneous flux tubes 2693 

Figure 3. Cartoon depicting the equilibrium configuration of a radially dependant non-uniform magnetic flux tube in the solar atmosphere. Three separate 

cases are studied in this work. An inhomogeneous density magnetic flux tube under (a) photospheric conditions and (b) coronal conditions with no plasma flow. 

These types of equilibria may represent features observed in the solar atmosphere e.g. sunspots and coronal loops, respectively. The equilibrium density profile 

inside the magnetic flux tube ρ0 i ( r ) is denoted by the shaded contours, with a darker shade representing a (locally) more dense plasma. The actual profiles of 

ρ0 i ( r ) investigated in this work for the photospheric case are shown in Fig. 4 and for the coronal case shown in Fig. 7 . Finally a uniform magnetic flux tube with 

a non-uniform internal background plasma flow U 0 i ( r ) shown as 3D Gaussian shape, see panel (c), is considered, with radial profiles as demonstrated in Fig. 12 . 

This case is applicable for some jet-like structures observed in the solar atmosphere. 

Figure 4. Gaussian background density profiles studied in this work for 

a non-uniform magnetic cylinder under photospheric conditions. W = 10 5 

(black), W = 3 (yellow), W = 1.5 (green), and W = 0.9 (red). 

wav e guides observ ed in the solar atmosphere, yet it is reassuring 

that the numerical algorithm obtains the known real eigenvalues 

under the new boundary conditions and geometry imposed in 

Section 2. 

3.2 Magnetic cylinder with steady flow 

It is well known that the addition of a bulk background plasma flow 

introduces new physics into the observed wave modes. Nakariakov & 

Roberts ( 1995 ) conducted an analytical study into the effect that a 

steady plasma flow has on magnetoacoustic waves in a magnetic 

slab. They found that the presence of a background flow introduces 

an observed Doppler shift of the wave frequency. This frequency shift 

alters the physics slightly as wave modes may be shifted into windows 

where they are not permitted to propagate as trapped modes. These 

results were also reco v ered in P aper 1 using the numerical shooting 

method rather than the analytical approach. 

In this section, the analytical results from a previous study (Terra- 

Homem et al. 2003 ) are reco v ered which inv estigate the effect that 

a steady flow has on the MHD wave modes of a magnetic cylinder. 

The authors took a uniform magnetic cylinder model adopted from 

Edwin & Roberts ( 1983 ) and incorporated a steady background 

plasma flow, similar to that done by Nakariakov & Roberts ( 1995 ) 

but in a cylindrical geometry. The authors came to a very similar 

conclusion to that of the magnetic slab with a steady flow counterpart. 

Namely, the inclusion of a steady background plasma flow changes 

the properties of magnetoacoustic waves both qualitatively and 

qualitatively, in the sense that the flow provides an observed Doppler 

shift to the wave modes which may shift the cut-off values and 

propagation speeds in both the short and long wavelength limits. 

Shown in Fig. 2 are the resulting dispersion diagrams obtained using 

the numerical technique for waves under photospheric and coronal 

conditions in a magnetic cylinder with a background steady flow. 

Fig. 2 (a) shows the dispersion diagram for a magnetic cylinder under 

typical photospheric conditions with an internal plasma flow of U 0 i = 

0.2 v Ai . This figure is representative of fig. 10 in Terra-Homem et al. 

( 2003 ). The asymmetry between forward propagating and backward 

propagating waves can be clearly seen by the structure and cut-off 

values of the fast forward and backward surface modes. Under these 

conditions the backward sausage and kink body modes are shifted 

into a region where they no longer exist as trapped modes. Ho we ver, 
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2694 S. J. Skirvin et al. 

Figure 5. Dispersion diagrams for magnetoacoustic waves in a photospheric cylinder with a background plasma density in the form of Gaussian profiles 

shown in Fig. 4 . (a) W = 10 5 corresponding to a uniform flow, (b) W = 3, (c) W = 1.5, and (d) W = 0.9. The red curves denote sausage mode and the blue 

curves show kink mode. The shaded regions represent the non-uniform bands due to the equilibrium inhomogeneity. The slow continuum (blue shaded region), 

inhomogeneous sound speed band (green shaded region), and inhomogeneous kink speed band (orange shaded region) are all shown. 

the background plasma flow is not strong enough to shift the forward 

body and surface modes into the leak y re gime, instead these modes 

are shifted relative to the flow speed. Fig. 2 (b) shows the dispersion 

diagram for magnetoacoustic waves in a coronal magnetic cylinder 

with an internal steady background flow of U 0 i = 0.35 v Ai . Similar to 

the photospheric case, it is clear that all wave modes are shifted by 

a constant frequency due to the background flow. This effect can be 

clearly seen by the cut-off wavenumbers between the forward and 

backward propagating fast body modes. 

The numerical approach has now been tested against two separate 

well-known analytical results in a cylindrical geometry. Therefore, 

it is now appropriate to modify the initial equilibrium to a more 

mathematically complex scenario which cannot be fully investigated 

analytically. 

4  I N H O M O G E N E O U S  PLASMA  DENSITY  

In this section, the equilibrium internal plasma density is considered 

to be inhomogeneous. For all the following case studies considered 

in this section, the spatially non-uniform plasma density is modelled 

as a series of Gaussian profiles. These profiles are modelled using 

the expression: 

ρi ( r) = ρ0 e + ( ρ0 i − ρ0 e ) exp 

(

−
( r − r 0 ) 

2 

W 2 

)

, 

where r 0 is the centre of the Gaussian located at r = 0, W is the 

standard deviation (i.e. the width) of the density distribution, and 

ρ0 i is the internal plasma density at r 0 . A sketch of the non-uniform 

cylinder is shown in Fig. 3 . Total pressure balance is achieved by 

a variation in equilibrium temperature to maintain a constant gas 

pressure across the flux tube. 

4.1 Photospheric conditions 

In this section, a photospheric magnetic flux tube with a non-uniform 

background density profile is considered. Under photospheric condi- 

tions, the non-uniform background density is shown in Fig. 4 . Here, 

the centre of the flux tube is a local minimum for the internal density 

distribution, where the density increases towards the boundary at a 

rate which depends on the width of the Gaussian distribution. In 

all non-uniform cases the density at the boundary tends towards 
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MHD waves in inhomo g eneous flux tubes 2695 

Figure 6. Resulting eigenfunctions for MHD wave modes in a photospheric cylinder with a non-uniform background plasma density given by the distributions 

shown in Fig. 4 where the colour scheme is consistent. (a) Fast sausage surface mode for all cases with ka = 2.7, (b) fast kink surface mode for all cases with 

ka = 1.3, (c) slow sausage body mode with ka = 2.7, (d) slow kink body mode for three cases all with ka = 3.2. No azimuthal component is shown for the 

sausage mode as this wave mode does not produce an azimuthal perturbation. The case for W = 0.9 is not shown in (d) as this wave mode is cut off by the 

inhomogeneity. All plots are normalized to the external boundary value for each eigenfunction. 

Figure 7. Gaussian background density profiles studied in this work for a 

cylinder under coronal conditions. W = 10 5 (black), W = 3 (yellow), W = 

1.5 (green), and W = 0.9 (red). 

the external density. This also introduces bands on the dispersion 

diagrams for all characteristic speeds which depend on the plasma 

density. The internal sound, Alfv ́en and tube speeds all now range 

from the value at the centre of the flux tube to the value at the 

boundary, denoted as c B , v AB , and c TB . The resulting characteristic 

frequencies where the discrete wave modes are resonantly damped 

are shown in the appendix, in Fig. A1 . As would be expected, the 

case for a large Gaussian width, Fig. 5 (a), corresponding to a uniform 

distribution produces the same dispersion diagram as shown for the 

uniform scenario in Fig. 1 (a). As the inhomogeneity is increased, 

the fast sausage and kink modes remains relatively unaffected; 

ho we v er, the y are shifted to slightly slower phase speeds with 

increasing background non-uniformity. Fig. 5 shows the behaviour of 

all wave modes as the inhomogeneity of background plasma density 

is increased. The slow body modes remain trapped between c Ti and 

c i , although they appear to also have slower phase speeds as the 

inhomogeneity is increased. For sufficient non-uniformity certain 

slow body modes can be cut off below c Ti . Similar to Paper 1 , these 
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2696 S. J. Skirvin et al. 

Figure 8. Dispersion diagrams for magnetoacoustic waves in a coronal cylinder with a background plasma density in the form of Gaussian profiles shown in 

Fig. 7 . (a) W = 10 5 corresponding to a uniform flow, (b) W = 3, (c) W = 1.5, and (d) W = 0.9. The red curves denote sausage mode and the blue curves show kink 

mode. The shaded regions represent the non-uniform bands due to the equilibrium inhomogeneity. The slow continuum (blue shaded region), inhomogeneous 

sound speed band (green shaded region), Alfv ́en continuum (pink shaded region), and inhomogeneous kink speed band (orange shaded region) are all shown. 

modes exist within a band shown by the green shaded region but 

this band does not represent a continuum, therefore this is physically 

permittable. Furthermore, as the level of background density non- 

uniformity is increased, the slow surface modes in the photospheric 

case propagate with speeds similar to c TB , which obviously changes 

with the inhomogeneity. At sufficiently large inhomogeneity, these 

modes disappear from the dispersion diagram. It is clear from both 

Figs 5 and 8 that a non-uniform background density has the effect of 

increasing the propagating phase speeds of wave modes in a coronal 

cylinder and decreasing the phase speeds in a photospheric cylinder. 

We now turn our attention to the physical appearance of the 

eigenfunctions of the wave modes in a non-uniform photospheric 

magnetic cylinder. Fig. 6 shows the spatial behaviour of fast surface 

and slow body modes for both the kink and sausage mode in 

a photospheric cylinder under all scenarios displayed in Fig. 4 . 

Similar to Paper 1 , both the kink and sausage fast surface modes 

appear to be unaffected by the background inhomogeneity for ˆ P T 

and ˆ ξr . Ho we ver, Fig. 6 (b) shows that the azimuthal perturbation 
ˆ ξϕ becomes more pronounced at the boundary as the background 

plasma inhomogeneity is increased. The slow body modes for both 

sausage and kink are shown in Figs 6 (c) and (d). Coinciding with 

the previously obtained results for a non-uniform magnetic slab, it 

was found that these modes were most affected by the background 

inhomogeneity; this is again true for a cylindrical waveguide. Both 
ˆ P T and ˆ ξr are greatly affected for both sausage and kink modes and 

show the appearance of extra nodes and points of inflexion as the 

background inhomogeneity is increased. The azimuthal component 
ˆ ξϕ also shows this behaviour for the slow kink mode. Finally, Fig. 6 

highlights the differences that a non-uniform background plasma 

density has on surface modes and body modes. Surface modes 

are defined as having a positive squared radial wavenumber and 

have maximum amplitude at the surface of the wav e guide. Body 

modes have a negative squared radial wavenumber and as such 

exhibit oscillatory behaviour throughout the wav e guide, possessing 

nodes inside the cylinder. Introducing a non-uniform background 

plasma density changes the spatial behaviour of surface modes 

at the boundary, most notably the azimuthal component, with the 

internal structure near the centre remaining locally constant. On the 
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MHD waves in inhomo g eneous flux tubes 2697 

Figure 9. Resulting eigenfunctions for MHD wave modes in a coronal cylinder with a non-uniform background plasma density given by the distributions 

shown in Fig. 7 where the colour scheme is consistent. (a) Fast sausage body mode for all cases with ka = 2.75, (b) fundamental kink body mode for all cases 

with ka = 1.5. No azimuthal component is shown for the sausage mode as this wave mode does not produce an azimuthal perturbation in this case. All plots are 

normalized to the external boundary value for each eigenfunction. 

other hand a non-uniform background plasma density changes the 

local internal structure of the eigenfunctions for body modes, with 

the boundary values remaining unchanged no matter the scale of 

inhomogeneity of background equilibrium. 

4.2 Coronal conditions 

Unlike the similar case studied in Paper 1 for a magnetic slab, 

the characteristic speeds chosen to represent coronal conditions are 

slightly changed in the case of a cylindrical magnetic flux tube. 

This changes the characteristics of the dispersion diagram, namely 

that the slow body modes experience a cut-off at certain values of 

inhomogeneity, which was not present in Paper 1 due to the smaller 

speed of v Ae used in the analysis. The background density profiles 

investigated in this paper are the same as Paper 1 and displayed 

in Fig. 7 for increasing non-uniformity where the internal density 

gradually tends towards the external density at the boundary. The 

resulting characteristic frequencies where the discrete wave modes 

are resonantly damped in the non-uniform coronal cylinder cases 

investigated in this section are shown in the appendix, in Fig. A2 . 

Fig. 8 shows the behaviour of sausage and kink modes in a coronal 

cylinder with a background spatial density profile as a Gaussian 

distribution. The case of a large width if the Gaussian distribution 

is given by W = 10 5 and the resulting dispersion diagram is shown 

in Fig. 8 (a). As expected, this case produces the exact result as the 

uniform investigation by Edwin & Roberts ( 1983 ) and shown in 

this work in Fig. 1 (b). As the inhomogeneity of the background 

plasma density is increased, the density value at the boundary 

becomes smaller (tends towards the external value however is still 

discontinuous across r = a ). As a result, the variables which depend 

on density such as c i , v Ai , and c Ti become a continuous band across 

multiple possible phase speeds; these are shown by the shaded 

regions in Fig. 8 . It is well known that the Alfv ́en and cusp continuum 

are regions in which dissipative processes are possible, such as phase 

mixing and resonant absorption, due to local resonances occurring 

within these bands. The wave frequency becomes complex here 

and as such the real part of the phase speed is cut off on the 

dispersion diagram by v AB and c TB . In a cylinder with a large enough 

inhomogeneity of plasma density, the slow body modes disappear 

from the dispersion diagram as no real band exists in which they can 

propagate, similar to the results discussed in Paper 1 . 

In a non-uniform plasma, it is well known that for a smooth 

inhomogeneity such that the density varies linearly from one value 

( ρ1 ) to another ( ρ2 ), the quasi-modes are introduced (Sedl ́a ̌cek 1971 ; 

Tirry & Goossens 1996 ; Priest 2014 ). The real part of the quasi- 

mode phase speed is defined as 
√ 

( ρ1 v 
2 
A 1 + ρ2 v 

2 
A 2 ) / ( ρ1 + ρ2 ) which 

is simply the kink speed between the minimum and maximum value. 

Replacing the smooth linear non-uniform density by an external ρ0 e 

and internal ρ0 i value yields the well-known kink speed for a uniform 

cylinder. Seen in Fig. 8 , the fundamental kink branch does not tend to 

either of these values in the thin-tube limit. Instead, it tends towards 

a value in-between, which is due to the fact that the inhomogeneity 

is not smooth from outside to inside the cylinder; in all cases the 

density is discontinuous across r = a . 

Fig. 9 displays the spatial eigenfunctions for both the fast sausage 

mode and fundamental kink mode in a coronal cylinder with a non- 

uniform background density. Paper 1 concluded that fast modes are 

unaffected by the background inhomogeneity in a magnetic slab, 

ho we ver their behaviour may be different in a magnetic cylinder. It 

can be seen clearly in Fig. 9 that as the plasma density inhomogeneity 

is increased, both the fast sausage mode and fundamental kink mode 

display different spatial characteristics for both ˆ P T and ˆ ξr and also 
ˆ ξϕ for the kink mode. The fundamental kink mode was not present 

in the magnetic slab analysis and this is the mode which is routinely 

observed in the thin-tube limit in the solar atmosphere when a 

cylindrical analytical model is considered. The difference in spatial 

eigenfunction behaviour is also more pronounced for ka < 1 for the 

fundamental kink mode. As the fast sausage mode experiences a cut- 

off around ka = 1.5, it is unlikely that these eigenfunctions would be 

observed for this mode in non-uniform coronal structures. 

A snapshot in time of the resulting velocity field at maximum dis- 

placement for the fundamental kink mode is shown in Fig. 10 for all 

cases of equilibrium Gaussian density. The velocity field corresponds 

to the eigenfunctions shown in Fig. 9 (b) converted into Cartesian 

components to be visualized in a uniform Cartesian grid. The case for 

uniform density retrieves the theoretical kink mode displacement in 

that the velocity field is uniform inside the cylinder and has a dipole 

configuration in the external region as seen in Fig. 10 (a). As the 
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2698 S. J. Skirvin et al. 

Figure 10. Snapshots of the velocity field in time at the moment of maximum displacement for the different Gaussian profiles modelling plasma density for 

the fast fundamental kink mode. (a) W = 10 5 , (b) W = 3, (c) W = 1.5, and (d) W = 0.9. The eigenfunctions shown in Fig. 9 (b) are converted into Cartesian 

components and shown in a Cartesian grid. The same value of ka = 1.5 is chosen in all plots. The colour contour shows the normalized total pressure perturbation 

where blue is ne gativ e and red is positive. The solid blue line outlines the shape of the perturbed boundary. Seen in Fig. 10 (d) is the linear regime of a similar 

case study conducted by Antolin, Yok o yama & Van Doorsselaere ( 2014 ) (see their fig. 1) in which the authors investigate the non-linear Kelvin–Helmholtz 

instability modelling a non-uniform transition layer in a magnetic cylinder. 

equilibrium inhomogeneity is increased, the resulting velocity field 

inside the cylinder becomes curved and the azimuthal component 

dominates. For the case of maximum inhomogeneity given by W = 

0.9 shown in Fig. 10 (d), this increasing azimuthal component results 

in the boundary of the cylinder becoming distorted. This result can be 

understood by looking at the azimuthal component of the eigenfunc- 

tion in Fig. 9 (b) where the magnitude of discontinuity at the boundary 

increases with increasing inhomogeneity. The nature of the azimuthal 

displacement component for the kink mode can be understood by 

examining equation (15) when the location r = 1 is crossed. At 

this position, ω 
2 − k 2 v 2 A changes sign discontinuously, whereas the 

total pressure perturbation ˆ P T remains continuous. Furthermore, in 

the case for maximum inhomogeneity, the frequency ω approaches 

the local resonant Alfv ́en frequency k 2 v 2 A which results in the large 

amplitude for ̂  ξϕ . The increased discontinuity in displacement creates 

counter-streaming flows that can generate the Kelvin–Helmholtz 

instability. These results can be compared to the linear stage of 

Antolin et al. ( 2014 ) (see their fig. 1) in which similar behaviour of 

the boundary is seen but in the case of a thinner boundary layer with 

a non-uniform density profile. This behaviour has also been detected 

in previous numerical studies investigating straight cylinders with 

a non-uniform density layer in the radial direction (Terradas et al. 
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MHD waves in inhomo g eneous flux tubes 2699 

Figure 11. 3D visualization of ˆ P T and the perturbed velocity vector field in the presence of a uniform and non-uniform background plasma density for the 

fundamental kink mode with eigenfunctions shown in Fig. 9 (b). These correspond to the 2D velocity field vectors shown in Figs 10 (a) and (d), respectively. (a) 

Case for uniform plasma density (b) case with Gaussian density with W = 0.9. Movies of these 3D visualizations can be found online at the PDG visualizations 

web-page. 

Figure 12. Gaussian flow profiles inside an otherwise uniform coronal 

magnetic cylinder. W = 10 5 (black), W = 3 (yellow), W = 1.5 (blue), W = 1 

(magenta), and W = 0.6 (red). 

2008 ) including non-ideal MHD (Howson, De Moortel & Antolin 

2017 ) and also an analytic study with a velocity shear in the azimuthal 

component across the boundary (Soler et al. 2010 ). Fig. 11 shows 

a 3D representation of the 2D velocity fields seen in Fig. 10 for 

a propagating wave in vertical coordinate z. It can be clearly seen 

in Fig. 11 (b) that at maximum displacement for the kink mode, 

the boundary becomes distorted due to the non-uniform equilibrium 

plasma density. This perturbation of the boundary propagates with the 

wav e v ertically through the magnetic flux tube, unlike the uniform 

scenario shown in Fig. 11 (a) which maintains the structure of the 

tube. It was suggested that the fundamental kink mode in a non- 

uniform plasma should actually be called a surface Alfv ́en wave 

due to the mixed properties and increased vorticity, which is not a 

property associated with magnetoacoustic waves (Goossens et al. 

2012 ). The results presented in this section further strengthen this 

debate as the kink mode does not display traditional properties when 

the equilibrium plasma is non-uniform. 

5  I N H O M O G E N E O U S  FIELD  A L I G N E D  FLOW  

In this section, a magnetic cylinder of uniform plasma is modelled 

with a vertical straight magnetic field with a field aligned and radially 

non-uniform internal background plasma flow embedded in a coronal 

environment. A cartoon of this equilibrium configuration is shown by 

panel (c) in Fig. 3 . A similar case study was investigated in Paper 1 

in a Cartesian geometry. The flow magnitude is chosen to be small in 

comparison with the internal sound speed, U 0 i = 0.05 c i . This allows a 

clearer investigation into the physical effects of the spatial flow to be 

undertaken as a large flow magnitude will shift certain wave modes 

into the leaky regime, which is not analysed in this work. Adopting a 

small magnitude of the background plasma flow speed also a v oids the 

possibility of the onset of flow-related instabilities such as Kelvin–

Helmholtz. Similar to the previous investigation of a non-uniform 

plasma density, the background plasma flow in this section is also 

modelled as a series of Gaussian profiles. These profiles use the 

expression: 

U 0 i ( r) = U 0 e + ( U 0 i − U 0 e ) exp 

(

−
( r − r 0 ) 

2 

W 2 

)

, 

where U 0 e is the flow outside the wav e guide, assumed to be 0. 

These inhomogeneous flow profiles investigated are shown in 

Fig. 12 . The case of a large width (i.e W = 10 5 ) corresponds to 

a uniform steady flow which is well known to create an observed 

Doppler shift to the waves in the direction of flow (Nakariakov & 

Roberts 1995 ). Due to the small amplitude of flow chosen, it is found 

that there is very little effect on the fast modes in the dispersion 

diagram; there is a more observable effect on the slow body modes. 

A zoom-in region of the resulting dispersion diagrams are shown in 

Fig. 13 for the forward and backward propagating slow body modes. 

It can be seen that as expected, these waves are shifted with respect to 

the maximum flow speed. As the non-uniformity of flow is increased, 

the branches of the forward and backward slow body modes are 

shifted with a clear asymmetry between the forward and backward 

propagating modes. With increasing spatial non-uniformity of the 

background plasma flow, the permittable backward propagating kink 
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2700 S. J. Skirvin et al. 

Figure 13. Zoom in on dispersion diagrams for forward and backward propagating slow body modes in a coronal cylinder with a background plasma flow in 

the form of Gaussian profiles shown in Fig. 12 . (a) W = 10 5 corresponding to a uniform flow, (b) W = 3, (c) W = 1.5, and (d) W = 0.6. The red curves denote 

sausage mode and the blue curves show kink mode. The red shaded bands indicate the flow continuum where the modes become resonantly damped. 

and sausage slow body modes propagate in the thin tube limit, 

whereas the opposite is true for forward propagating slow body 

modes. This effect is due to the flow speed at the boundary U B which 

depends on the initial non-uniformity of the background plasma 

flow, therefore a non-uniform background plasma flow may further 

shift some wave modes into possible propagation windows. The red 

shaded bands in Fig. 13 indicate the Doppler-shifted continua given 

by equation (17) where the wave modes become resonantly damped. 

It can be seen that as the inhomogeneity of the background flow is 

increased, these continuum bands become wider, providing a larger 

frequency domain for resonant processes to occur. 

The resulting eigenfunctions of ˆ P T , ˆ ξr , and ˆ ξϕ are shown in 

Fig. 14 . It can be seen that fast modes are not heavily affected by the 

inhomogeneity of the equilibrium background plasma flow. This is 

mainly down to the before-mentioned amplitude of the non-uniform 

flow. The background plasma flow has the effect of Doppler shifting 

the waves which is much less clear for the dispersive fast waves. 

Unlike in Section 4.2, where the amplitude of plasma density non- 

uniformity was large, here the equilibrium plasma is uniform. Slow 

body modes, ho we ver, feel the non-uniformity much more greatly. 

The local perturbation amplitude for all eigenfunctions is increased 

with the non-uniformity of the background flow and extra nodes and 

points of inflexion become visible. Furthermore the maximum local 

azimuthal perturbation ˆ ξϕ is increased with a more inhomogeneous 

background plasma flow. 

Another quantity which can be investigated is vorticity defined 

in this work as the curl of the velocity field, ∇ × v . Vorticity 

plays an important role in the dynamics of the solar atmosphere. 

Granular motions in the photosphere produce a ubiquitous number 

of observed vortices in intergranular lanes. These vortices can have 

the effect of twisting the magnetic field lines which are rooted into 

the photosphere and exciting torsional Alfv ́en waves (Fedun et al. 

2011a , b ; Moll, Cameron & Sch ̈ussler 2012 ; Vigeesh et al. 2012 ; 

Shelyag et al. 2013 ; Silva et al. 2020 ). The background vorticity 

field, perturbed velocity field, and the background plus perturbed 

vorticity field are plotted in Fig. 15 for the slow body kink mode with 

eigenfunctions shown in Fig. 14 (d). The left-hand side column shows 

the background vorticity due to the equilibrium background plasma 

flow . Obviously , with a uniform bulk flow, there is no inhomogeneity 

and as a result, no associated vorticity. As the background plasma 
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MHD waves in inhomo g eneous flux tubes 2701 

Figure 14. Eigenfunctions for a coronal cylinder with a background Gaussian flow as shown in Fig. 12 where the colour scheme is consistent with the 

equilibrium profiles. (a) Fast sausage body mode with ka = 3, (b) fast kink body mode with ka = 3, (c) slow sausage body mode with ka = 1, (d) slow kink 

body mode with ka = 2. 

flow becomes more non-uniform in the radial direction, the curl 

of the velocity field now has components perpendicular to the 

direction of the flow. The background vorticity is localized to the 

interior of the magnetic cylinder, where the non-uniform plasma 

flow is located. The centre column in Fig. 15 shows the perturbed 

velocity field for the slow body kink mode in the presence of a 

non-uniform flow. The uniform case on the top row has two clear 

nodes as predicted by uniform theory. As the background plasma 

flow becomes more non-uniform, these nodes shift closer together 

and a resulting vortical motion becomes clearer around the centre 

of the wav e guide, where the magnitude of the background flow is 

greatest. It can be seen in all plots that the boundary of the wav e guide, 

plotted as a blue line, is unaffected in all cases of non-uniform flow. 

This result is expected from the eigenfunctions shown in Fig. 14 (d) 

which are locally unchanged at the boundary for all background 

flow profiles. The right-hand column of Fig. 15 shows the resulting 

background plus perturbed vorticity field. It can be seen that as 

the non-uniformity of background plasma flow is increased (further 

down the figure column) the vorticity is spread out o v er the whole 

region of inhomogeneity. Vortical motions become more apparent 

with increasing non-uniform flow which may act as a driver for other 

forms of MHD waves. Fig. 16 again displays the 3D representation 

of the 2D velocity field seen in Fig. 15 . Locations of the nodes in 

the slow body kink eigenfunctions can be seen in Fig. 16 (a) in the 

v elocity field v ector for the uniform flo w case. Ho we v er, as e xpected 

the locations of these nodes are pushed together when the background 

plasma flow is modelled as a Gaussian profile, and is transported up 

through the tube with the propagation of the wave seen in Fig. 16 (b). 

6  C O N C L U S I O N S  

In this paper, a previously developed numerical technique described 

in Paper 1 has been employed to obtain the eigenvalues for trapped 

MHD waves in possible cylindrical environments representing some 

cases observed in the solar atmosphere. The algorithm has been tested 

against well-known analytical results in a simple uniform cylindrical 

geometry and a more complex scenario that takes into account a 

steady field aligned flow. For both case studies the correct eigenvalues 

were obtained compared to those found in previous analytical studies 

that derive and solve the corresponding dispersion relation not 

required in this work. The tool was then applied to investigate 

the properties of MHD waves in non-uniform magnetic cylinders 
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2702 S. J. Skirvin et al. 

Figure 15. Background x − y vorticity field (left), perturbed x − y velocity field (middle), and background plus perturbed x − y vorticity field (right) plots for 

all cases of Gaussian plasma flow shown in Fig. 12 . These snapshots all correspond to the slow body kink mode with eigenfunctions shown in Fig. 14 (d). The 

top row corresponds to W = 10 5 with inhomogeneity increasing down the plot through W = 3 (second row), W = 1.5 (third row), W = 1 (fourth row) to bottom 

row where W = 0.6. The colour contour in centre plots shows the total pressure perturbation, whereas the colour contours in the right column plots denote the 

vorticity component perpendicular to the x − y plane. 
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MHD waves in inhomo g eneous flux tubes 2703 

Figure 16. 3D visualization of ˆ P T and the perturbed velocity vector field in the presence of a uniform and non-uniform background plasma flow for the slow 

body kink mode with eigenfunctions shown in Fig. 14 (d). These correspond to the 2D velocity field vectors shown in the middle panel of Fig. 15 . (a) Case for 

uniform plasma flow ( W = 10 5 ) (b) case with Gaussian flow with W = 0.6. Movies of these 3D visualizations can be found online on the PDG visualizations 

web-page. 

modelled by an inhomogeneous equilibrium plasma density and also 

an inhomogeneous background plasma flow. When the equilibrium 

plasma density is modelled as a series of Gaussian profiles with 

varying widths the spatial eigenfunctions are changed under both 

photospheric and coronal conditions. First, under photospheric con- 

ditions, slow surf ace w av es e xperience a cut-off when the background 

density is sufficiently non-uniform. For our studies, a width ( W ≈

0.9) that corresponds to the internal density at the boundary being 

halfway between ρ0 i and ρ0 e is sufficient enough to absorb these 

modes into the slow continuum. Furthermore, in the thin tube limit 

the fundamental kink branch no longer tends to the kink speed but 

instead fa v ours an a veraged value between c k and c kB due to the 

discontinuous nature of the density profile at the boundary . Finally , 

as the non-uniformity is increased, the frequency of magnetoacoustic 

waves decreases such that the band of body modes is also absorbed 

into the slow continuum at larger inhomogeneities. Comparisons of 

the spatial eigenfunctions for different wave modes revealed that the 

fast axisymemtric modes are not affected by the radial equilibrium 

inhomogeneity. The fast non-axisymmetric (kink) modes ho we ver 

experience an increase in the azimuthal displacement at the boundary 

as the equilibrium plasma density becomes more non-uniform. The 

internal spatial structure of the slow body sausage and kink modes 

is greatly affected. Similar to the results found in Paper 1 , additional 

nodes and points of inflexion appear as the background plasma 

density is modelled with a profile that is increasingly non-uniform. 

In both cases for the slow body modes of a non-uniform photospheric 

cylinder, the local amplitude of the eigenfunctions at the boundary is 

unaffected. Under coronal conditions, similar behaviour is observed 

with regards to the eigenfunctions. The fundamental kink mode tends 

to an averaged value between c k and c kB in the thin tube limit as the 

background plasma density becomes more inhomogeneous. The slow 

body modes are absorbed into the slow continuum with increasing 

non-uniform equilibria and these modes are no longer trapped 

solutions. Comparison between the eigenfunctions for the fast body 

sausage and kink modes reveals similar results to the photospheric 

cylinder. The local maximum amplitude of perturbation for the fast 

body sausage mode increases with increasing non-uniform plasma 

density, although this is not a significant change. The boundary value 

of the azimuthal displacement perturbation for the fundamental kink 

mode increases as the background plasma density is modelled as a 

clear Gaussian profile. To aid understanding in observations, a visual 

representation of this effect was provided. It is shown that as the 

background plasma density is increased, the boundary shape of the 

fundamental kink mode becomes distorted, possibly due to the linear 

regime of the onset of Kelvin–Helmholtz instability (Antolin et al. 

2014 ). 

The second case study analysed in this work investigated the 

behaviour of magnetoacoustic MHD wave modes in a coronal 

magnetic cylinder with a non-uniform background plasma flow. The 

plasma flow was again modelled as a series of Gaussian profiles with 

differing widths, and the amplitude was kept small so as to a v oid any 

af fects of flo w-related instabilities. The inhomogeneous plasma flo w 

affected the forward and backward propagating slow body modes 

more than any other wave mode. Similar to the results found in Paper 

1 , we have found that the non-uniform flow creates an asymmetry 

between the phase speeds of forward and backward propagating 

slow body modes. Furthermore, like the case study investigating a 

background inhomogeneous density, the spatial eigenfunctions for 

slow kink and sausage body modes are affected due to the background 

flow. The eigenfunctions do not exhibit any changes at the boundary, 

similar to the behaviour of slow body modes in a photospheric cylin- 

der with a non-uniform density. This is because body modes, unlike 

f ast surf ace modes, propagate throughout the internal structure of the 

wav e guide and not just amplified at the boundary. The background 

plasma flow introduces extra nodes into the spatial eigenfunctions 

at sufficient inhomogeneity and also changes the location of the 

local maximum in the spatial eigenfunction. Further investigation 

of vorticity due to the presence of a non-uniform background flow 

reveals that as the inhomogeneity of the background flow is increased, 

the resulting vorticity associated with the velocity perturbation also 

increases. It has been shown in this work that while the background 

vorticity increases with increasing equilibrium non-uniformity, the 
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perturbed vorticity also increases. This is an important note to realize 

because it suggests that a non-uniform flow can produce a rotational 

perturbation. This motion may act as a driver to excite other forms 

of MHD waves e.g. Alfv ́en waves. Therefore, MHD modes in an 

inhomogeneous equilibrium can possibly self-excite other MHD 

wave modes within the solar atmosphere. 

The tool introduced in Paper 1 and further applied in this work 

has endless possible applications. Future work can extend that 

presented in this study to consider the leaky regime, which will 

provide information about wave damping and other wave phenom- 

ena including resonant absorption. Modelling the wav e guide as a 

magnetic cylinder also allows a greater choice in the structure of the 

equilibrium plasma. Realistic models can be investigated that include 

individual investigations or combinations of radially non-uniform 

plasma, magnetic twist, rotational flow, non-linear equilibria etc. 

The numerical code, Sheffield Dispersion Diagram Code (SDDC), 

introduced and applied in this work is available on the Plasma 

Dynamics Group (PDG) website 1 along with the user manual 

which explains some cases shown in this work. This code and the 

accompanying tools have been developed using Python – an open- 

source and community-developed programming language. 
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APP ENDIX  A :  ALFV  ́EN  A N D  SLOW  

C O N T I N U U M  IN  A  N O N - U N I F O R M  DENSITY  

C Y L I N D E R  

The underdense photospheric flux tube with a non-uniform internal 

density profile discussed in Section 4.1 has characteristic frequencies 

ω A and ω c which depend on spatial variable r . Here, it may be 

instructive to plot the characteristic frequencies as a function of r for 

dif ferent v alues of wavenumber k , in which it is linear. These plots 

are shown in Fig. A1 for the photospheric case and Fig. A2 for the 

coronal case considered in Section 4.2. 

Figure A1. The Alfv ́en (blue line) and slow continua (green line) are shown as a function of spatial variable r for a non-uniform cylinder under photospheric 

conditions. For frequencies lying inside this range, the discrete wave modes are swallowed by the continua. These continua are shown for different wavenumber 

k . (a) The continua for the uniform density case, (b) W = 3, (c) W = 1.5, (d) W = 0.9. 
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Figure A2. Same as Fig. A1 but for the case of a non-uniform density cylinder under coronal conditions. 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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