
This is a repository copy of Geometrically nonlinear extended isogeometric analysis for 
cohesive fracture with applications to delamination in composites.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181913/

Version: Accepted Version

Article:

Fathi, F. orcid.org/0000-0003-0789-3203 and de Borst, R. orcid.org/0000-0002-3457-3574 
(2021) Geometrically nonlinear extended isogeometric analysis for cohesive fracture with 
applications to delamination in composites. Finite Elements in Analysis and Design, 191. 
103527. ISSN 0168-874X 

https://doi.org/10.1016/j.finel.2021.103527

© 2021 Elsevier B.V. This is an author produced version of a paper subsequently 
published in Finite Elements in Analysis and Design. Uploaded in accordance with the 
publisher's self-archiving policy. Article available under the terms of the CC-BY-NC-ND 
licence (https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A geometrically nonlinear extended isogeometric

analysis for cohesive fracture: Application in

delamination of composites
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Abstract

The objective of this study is to provide a geometrically nonlinear extended

isogeometric analysis for cohesive fracture, with an application to delamination

in composite. Employing superior features of isogeometric analysis, namely

higher-order inter-element continuity, renders the difference between this ap-

proach and the customary Lagrangian interpolation, making the former ideal

for stress estimation across element boundaries. Also, the higher-order conti-

nuity provided by isogeometric analysis can effectively deal with higher-order

differential equations, i.e. a scene is set for potential future studies whose anal-

ysis requires higher-order continuity. Bézier extraction is employed to cast the

formulation in a finite element datastructure. Use of a sign function for the en-

hanced field lessens the assumptions taken for governing equations compared to

a step function, and subsequently yields a new discretised formulation presented

here. Next, the role of the geometric contribution of the linearised interface

tangent and its implications on the convergence are studied. Several practical

examples in industry are exploited to illustrate the viability of such approach

compared to the conventional finite element counterpart.
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1. Introduction

In the contemporary industry, for instance dealing with slender plies of lam-

inated composites which are prone to delamination, large deformations and

rotations occur inevitably complicating the production of a sound material. A

priori knowledge of the critical failure mode facilitate industrial procedure to5

lessen the try and error attempts, a costly approach to understand fracture

mechanism. Accordingly, to numerically analyse a problem entailing such is-

sues, a geometrically nonlinear continuum is equipped with fracture mechanics.

It is noted that the application is not limited to industrial composites, but also

has dragged into a variety of disciplines, e.g. fluid flow in progressively fractur-10

ing porous medium [1], or damage analyses in ductile fracture [2] and biological

composites [3].

From a mathematical modelling point of view, presence of a discontinuity

elevates the complexity of the analysis since a combination of nonlinear contin-

uum and fracture mechanics is required. This has already been investigated in15

[4] with interface elements and in [5] as a partition of unity method [6] which

allows for modelling and propagating an arbitrary discontinuity free of the un-

derlying mesh lay-out [7, 8, 9], which is also known as eXtended Finite Element

Method (XFEM). Though robust in results, [5] has employed a step function to

extract the formulation, necessitating an additional assumption for the vector20

normal to the crack profile. This assumption has been relaxed here using a sign

function to define normal vectors for sides and the profile of the crack sepa-

rately. Next, similar to other customary finite element approaches, Lagrange

interpolation has been utilised in [5] which provides C0-continuity across element

boundaries. By way of contrast, B-splines guarantee higher-order inter-element25

continuity within IsoGeometric Analysis (IGA) which can be applied in higher-

order differential equations, e.g. fluid flow in porous media. Moreover, IGA

facilitates exact parametrisation of the geometry, a significant feature required

in the industry for a precise outcome.

In order to successfully capture any stress concentration stemmed from a30
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discontinuity, such as a crack, an additional displacement field could be utilised

to distinctly capture this gradient. In other words, the first displacement field

would capture the regular deformation while gradient estimation underlying the

discontinuity would be achieved by the second one [7, 8, 9]. This method was

coined as Extended finite element method since it was first built on the custom-35

ary finite element platform. Recently, eXtended IsoGeometric Analysis (XIGA)

was developed for cohesive fracture, an attempt to incorporate the interesting

features of IGA into the extended method. The absence of a proper compati-

bility between the aforementioned two fields and, unlike Linear Elastic Fracture

Mechanics (LEFM) [10], complexities risen from enrichment of individual con-40

trol points in cohesive fracture necessitated developing such method [11]. Now

this method has been put into test within the geometric nonlinearity.

Herein, we propose XIGA for the geometric nonlinearity. Similar to [11]

shifting technique will be utilised to enforce compatibility in the direction per-

pendicular to the crack path. The inter-element share of control points gov-45

erning B-splines or Non-Uniform Rational B-Splines (NURBS) complicates this

technique, as a price paid for higher-order continuity at element boundaries.

In other words, the lack of Kronecker-delta property in IGA extends the dis-

continuous domain to multiple element rows perpendicular to the crack path,

which is unalike to the single element row containing crack profile in Lagrange50

interpolation-based approaches [11], namely XFEM. Also, to remove the effect

of discontinuity in front of the crack and to avoid ultra-fine meshes ahead of

the crack tip needed for the cohesive fracture [11], a blending technique has

been adopted. Finally, Bézier extraction has been exploited to cast XIGA in

an element-wise format compatible with finite element datastructure. Isotropic55

linear elasticity governs a rate independent hyperelastic bulk, while NURBS has

been utilised as the basis functions.

This contribution starts with kinematics of displacement discontinuity, fol-

lowed by equilibrium equations governing the bulk and the discontinuity. Next

are variational formulations to achieve the governing weak forms and discrete60

equations for XIGA using a Bézier extraction-based NURBS. Also, aspects of
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compatibility and implementation are studied as a separate section. The paper

concludes with case studies assessing the delamination and its propagation, en-

sued by geometric nonlinearity issues realised of instabilities and contribution

role of linearised interface tangent.65

2. Nonlinear displacement field and constitutive equations

A body undergoing the geometrical nonlinearity is shown in Figure 1. The

equation of motion Φ(X, t) maps a point X in the reference (material) config-

uration onto the corresponding point x in the spatial (current) one (t > 0). In

order to establish a discontinuous geometrically non-linear approach, displace-70

ment discontinuity is cast within an extended approach. Next is the description

of the governing equations at the bulk and the discontinuity to set the scene for

a variational formulation.

Figure 1: Boundary value problem with cohesive tractions. Reference configuration (left) is

mapped onto the spatial one (right) through the motion Φ(X, t). Also, mapping of a vector

from the material to current configuration is illustrated in the figure, where u and u+du are

functions of the regular displacement û and the displacement jump ũ.
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2.1. Kinematics of the displacement discontinuity

Based on the partition of unity, non-linear kinematic relations can be cast75

in an extended approach,

Φ(X, t) := x(X, t) = X+ û(X, t) +HΓd,0
(X)ũ(X, t) (1)

Figure 2: Signed distance function in the material description. The point X
∗ is the closest

projection of the point X onto the discontinuity Γd,0

.

where û(X, t) = N(X)a(X, t) and ũ(X, t) = N(X)b(X, t), while N denotes the

set of finite element shape functions. a and b indicate the regular and enhanced

degrees of freedom, respectively. The Heaviside function in the reference con-

figuration HΓd,0
is defined on the signed distance function ϕ(x) [11] (see Figure80

2),

HΓd,0
(X) := sign(ϕ(X)) =



















−1 if ϕ(X) < 0

0 if ϕ(X) = 0

+1 if ϕ(X) > 0

(2)

Note that the step function used in Wells et al. [5] is substituted for the sign

function here, whose implications will be discussed in the remainder of the

manuscript. Taking the gradient of the equation of motion in Equation (1) the

deformation gradient results [5],85

F := ∇XΦ = F̂+HΓd,0
(X)F̃+ 2δΓd,0

(ũ⊗ nΓd,0
). (3)
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F̂ = 1 + ∇Xû and F̃ = ∇Xũ, while nΓd,0
being the vector normal to the

discontinuity in the reference configuration and 1 denoting the identity matrix.

As observed in Figure 1, vectors normal to crack path and sides will differ

naturally from one another within geometrical nonlinearity. Note that, with a

step function (0 and 1 values), vectors normal to the sides of the crack are defined90

on the Nanson’s relation [5], and the mean of the step function values (0.5) would

be utilised for the crack path exclusively [5]. By way of contrast, exploiting a

sign function as the Heaviside function precludes manipulative definition of the

normal vector for the crack path,

n−

Γd
= det(F̂− F̃)((F̂− F̃)T)−1nΓd,0

dΓd,0

dΓ−

d

(4a)

n∗

Γd
= det(F̂)((F̂)T)−1nΓd,0

dΓd,0

dΓ∗

d

(4b)

n+
Γd

= det(F̂+ F̃)((F̂+ F̃)T)−1nΓd,0

dΓd,0

dΓ+
d

(4c)

with ∗ denoting the crack path, see Figure 1.95

2.2. Governing equations at the bulk

In general, elasticity can be expressed as a constitutive equation dependent

on the current state of deformation. From a continuum mechanics perspective,

the stress measure of any arbitrary point in material description X is only

a function of the deformation gradient, P = P(F(X),X) [12]. Note that P100

denotes the first Piola-Kirchhoff (nominal) stress which is the work conjugate

of the deformation gradient F. Hyperelasticity denotes the condition when the

material behaviour is path-independent, i.e. it is only a function of the initial

and current states. Accordingly, the stored strain energy function reads [12],

Ψ(F(X),X) =
∫ t

t0
P(F(X),X) : Ḟdt, Ψ̇ = P : Ḟ. (5)

A Neo-Hookean material Ψ = µ
2
(I1 − 3) − µ lnJ + λ

2
(lnJ)

2
has been adopted105

in this manuscript, where µ and λ are Lamé’s coefficients, J = detF, and
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I1 = trace(C) denotes an invariant where C = FTF is the right Cauchy tensor

[12]. Derivatives of invariants and strain energy function can be found in [3, 12].

In the absence of the acceleration and body forces, the strong form of the

equilibrium equation in the reference configuration reads:110































∇X · P = 0 X ∈ Ω0

u = u0 X ∈ Γu,0

n0 · P = t0 X ∈ Γt,0

nΓd,0
· P = td,0 X ∈ Γd,0

, (6)

u0 and t0 indicate the prescribed displacement and traction respectively. The

strong form has been presented in terms of the nominal stress P as the work

conjugate of the deformation gradient F to set the scene for the imposition of

displacement field through a variational formulation. The strong form can also

be rewritten in terms of the Cauchy (true) stress in the current configuration:115































∇x · σσσ = 0 x ∈ Ω

u = u x ∈ Γu

n · σσσ = t x ∈ Γt

nΓd
· σσσ = td x ∈ Γd

, (7)

where n is the vector normal to the external traction surface, see Figure 1.

2.3. Cohesive-zone model at the discontinuity

A mode-I fracture governs this paper. Tractions normal to a discontinuity

can be cast as an exponential decay function of the corresponding crack opening.

tlocn = ftexp

(

−
ft
Gf

κ

)

. (8)

κ denotes the history parameter, ft indicate the fracture strength and Gf is120

the fracture toughness. A Kuhn-Tucker condition governs the loading policy to

render the opening irreversible.

f (JunK, κ) = JunK − κ ≤ 0 κ̇ ≥ 0 κ̇f = 0 (9)
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where JunK is the normal displacement jump. Use of the traction-separation

relationship in a Newton-Raphson iterative scheme necessitates linearision of

such formulation after a transfer to the global coordinates by:125

tn = Q · tlocn (10)

where Q is the rotation matrix transforming the local to the global coordi-

nate system. Also, to obtain a symmetric tangent, shear stiffness ought to be

neglected. Interested reader is referred to [11] for the linearised formulation.

3. Variational formulation and linearised weak form

Herein, the scene is set for the discretisation at the hands of the variational130

formulation and the linearisation technique.

3.1. Variational formulation

Adopting the principle of virtual work, the weak form of Equation (6) in the

reference configuration reads,

∫

Ω0

∇Xηηη : PdΩ−

∫

Γt,0

ηηη · t̄dΓ = 0 (11)

which must hold for all admissible variations, including ηηη which is comprised135

of continuous and discontinuous components, η̂ηη and η̃ηη respectively [5, 11]. The

test function and its gradient read,

ηηη = η̂ηη +HΓd,0
η̃ηη (12a)

∇Xηηη = ∇Xη̂ηη +HΓd,0
(∇Xη̃ηη) + 2δΓd,0

(η̃ηη ⊗ nΓd,0
) (12b)

Inserting Equations (12a) and (12b) into Equation (11) and utilising the

identity
∫

Ω
δΓd

(x)φ(x)dΩ =
∫

Γ
φ(x)dΓ leads to separate weak forms for contin-

uous and discontinuous equations:140

∫

Ω0

∇Xη̂ηη : PdΩ0 =

∫

Γt,0

η̂ηη · t̄0dΓ0 (13a)
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∫

Ω0

HΓd,0
(∇Xη̃ηη) : PdΩ0 + 2

∫

Γd,0

η̃ηη · td,0dΓ0 =

∫

Γt

HΓd,0
η̃ηη · t̄0dΓ0. (13b)

It is noted that the nominal stress P is asymmetric, partially defined on the

current configuration (load vector in the current configuration applied to the

reference surface). To obtain a symmetric stress matrix defined entirely on the

material configuration, second Piola-Kirchhoff stress is utilised by pulling back

the spatial force of the first Piola-Kirchhoff [12], ΣΣΣ = F−1
P. Substituting such145

relation in the weak forms in Equation (13) yields,

∫

Ω0

∇Xη̂ηη : (FΣΣΣ)dΩ0 =

∫

Γt,0

η̂ηη · t̄0dΓ0 (14a)

∫

Ω0

HΓd,0
(∇Xη̃ηη) : (FΣΣΣ)dΩ0 + 2

∫

Γd,0

η̃ηη · (FΣΣΣnΓd,0
)dΓ0 =

∫

Γt,0

HΓd,0
η̃ηη · t̄0dΓ0.

(14b)

The relationship between the true stress and the second Piola-Kirchhoff

stress reads,

σ :=
1

det(F)
FΣΣΣFT. (15)

Next, incoporating the Nanson’s relation and the push forward operation into

Equation (13) [5], we can derive the weak forms for true stresses:150

∫

Ω

∇xη̂ηη : σσσdΩ =

∫

Γt

η̂ηη · t̄dΓ (16a)

∫

Ω

HΓd
(∇xη̃ηη) : σσσdΩ + 2

∫

Γd

η̃ηη · tdΓ =

∫

Γt

HΓd
η̃ηη · t̄dΓ. (16b)

Equations (14) and (16) set the scene for Total and Updated Lagrangian (TL

and UL) approaches to solve a geometrically nonlinear problem, respectively.

Adopting either TL or UL leads to a slight dissimilarity in general, while they

are identical for hyperelasticity [13, 14]. Even though both formulations are

presented in the manuscript we have adopted a TL formulation for our calcula-155

tions.
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3.2. Linearisation of the constitutive equations

To provide the matrix notation of the governing equations, weak forms

should be linearised first. Defined on the reference configuration, the rate of

the internal virtual work in the left hand side of Equation (14) reads,160

δẆ a

int =

∫

Ω0

∇Xη̂ηη : (ḞΣΣΣ)dΩ0 +

∫

Ω0

∇Xη̂ηη : (FΣ̇ΣΣ)dΩ0 (17a)

δẆb

int =

∫

Ω0

HΓd,0
(∇Xη̃ηη) : (ḞΣΣΣ)dΩ0 +

∫

Ω0

HΓd,0
(∇Xη̃ηη) : (FΣ̇ΣΣ)dΩ0

+ 2

∫

Γd,0

η̃ηη · (ḞΣΣΣnΓd,0
)dΓ0 + 2

∫

Γd,0

η̃ηη · (FΣ̇ΣΣnΓd,0
)dΓ0

(17b)

while superscripts a and b denote the standard and enhanced fields correspond-

ing to the continuous and discontinuous fields respectively. The rate of the

deformation gradient reads,

Ḟ =
∂v

∂X
=

∂v

∂x

∂x

∂X
= lF (18)

where v is the velocity and l is the velocity gradient. To present the linearised

formulation in the spatial configuration, Equation (17) becomes,165

δẆ a

int =

∫

Ω0

(∇xη̂ηη)F : (lFΣΣΣ)dΩ0 +

∫

Ω0

(∇xη̂ηη)F : (FΣ̇ΣΣ)dΩ0 (19a)

δẆb

int =

∫

Ω0

HΓd,0
(∇xη̃ηη)F : (lFΣΣΣ)dΩ0 +

∫

Ω0

HΓd,0
(∇xη̃ηη)F : (FΣ̇ΣΣ)dΩ0

+ 2

∫

Γd,0

η̃ηη ·

(

lFΣΣΣ
1

det(F)
FTnΓd

dΓ

dΓ0

)

dΓ0

+ 2

∫

Γd,0

η̃ηη ·

(

FΣ̇ΣΣ
1

det(F)
FTnΓd

dΓ

dΓ0

)

dΓ0

(19b)

leading to,

δẆ a

int =

∫

Ω

∇xη̂ηη : (lσσσ)dΩ +

∫

Ω

∇xη̂ηη :
◦

σσσdΩ (20a)

10



δẆb

int =

∫

Ω

HΓd
(∇xη̃ηη) : (lσσσ)dΩ +

∫

Ω0

HΓd
∇xη̃ηη :

◦

σσσdΩ

+ 2

∫

Γd

η̃ηη · (lσσσnΓd
)dΓ + 2

∫

Γd

η̃ηη · (
◦

σσσnΓd
)dΓ

(20b)

with
◦

σσσ the Trusdell rate of the Cauchy stress which can be expressed in terms

of the rate of deformation tensor d = (l+ lT)/2,

◦

σσσ =
1

det(F)
FΣ̇ΣΣFT (21a)

◦

σσσ = ✁c : d. (21b)

It is also noted that, for the reference configuration, the rate of the second

Piola-Kirchhoff stress reads,170

Σ̇ΣΣ =��C : Ė. (22)

while ✁c and��C being the fourth-order spatial and reference constitutive tensors

respectively. Ė denotes the rate of the Green-Lagrange strain tensor [12].

4. Discrete equations for XIGA

Now, we can cast the linearised formulation in the discrete matrix notation

format. First, we need to define Non-Uniform Rational B-Splines (NURBS) as175

the set of basis function utilised here for IGA. Using such bases, the position

field, i.e. Equation (1), can be expressed in terms of NURBS in a discrete

format.

4.1. Bézier extraction based NURBS

Using the tensor product, a NURBS surface can be cast in terms of the180

control points p,

S(ξ, η) =

n
∑

k=1

m
∑

l=1

Rp,q
k,l (ξ, η)pk,l (23)

11



with the bivariate NURBS basis function [15]:

Rp,q
k,l (ξ, η) =

Ml,q(η)Nk,p(ξ)wk,l
∑n

k̂

∑m

l̂
M

k̂,q
(η)N

l̂,p
(ξ)w

k̂,l̂

. (24)

wk is the weight of the corresponding knot. N and M are B-spline basis func-

tions defined on the Bézier extraction [15, 16] as an element-wise framework to

comply with the finite element data structure (see Figure 3):

Ne = CeBBB (25)

where superscript e indicates the element index and C is reffered to as Bézier185

extraction operator. BBB denotes the bivariate Bernstein polynomial, see Equation

(26), whose input domain is defined on [-1 1] in Equation (27) to facilitate the

integration [15].

B
p,q
k,l (ξ, η) = Bk,p(ξ)⊗ Bl,q(η). (26)

Bk,p(ξ) =
1

2
(1− ξ)Bk,p−1(ξ) +

1

2
(1 + ξ)Bk−1,p−1(ξ) (27a)

B1,0(ξ) ≡ 1 (27b)

Bk,p(ξ) ≡ 0 if k < 1 or k > p+ 1. (27c)

For a comprehensive study on the formulation and derivatives [11] is referred.

4.2. Discretised equations190

Herein, discrete equations will be cast in terms of NURBS for a Total La-

grangian approach. Updated Lagrangian formulation is presented in the ap-

pendix. The position field presented in Equation (1) can be rewritten for

NURBS as,

x = X+Ra+HΓd,0
Rb. (28)

12



Figure 3: Bézier integration scheme developed on the Bézier extraction operator C. A compar-

ison has been made between classical integration and the Bézier extraction-based integration

scheme.

Next, we define differential operators which will be utilised for derivation of195

the strain-displacement relationship and the stiffness matrix,

LT

0 = F





∂
∂X1

0 ∂
∂X2

0 ∂
∂X2

∂
∂X1



 =





F11
∂

∂x1
F12

∂
∂x2

F11
∂

∂x2
+ F12

∂
∂x1

F21
∂

∂x1
F22

∂
∂x2

F21
∂

∂x2
+ F22

∂
∂x1



 ,

(29a)

L̄T

0 =





∂
∂X1

∂
∂X2

0 0

0 0 ∂
∂X1

∂
∂X2



 , (29b)

where F is the deformation gradient. Descritised matrix notation of the lin-

earised weak forms reads,

[Kmat +Kgeo]





∆a

∆b



 =





fexta

fextb



−





finta

fintb



. (30)
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To express discrete equations in the reference configuration, Equation (17)

is considered. Defining BN and BG,200

BN = L0N, (31a)

BG = L̄0N. (31b)

External and internal forces in Equation (30) can be defined in the reference

configuration,

f exta =

∫

Γt,0

RTt̄0 dΓ0 (32a)

f extb =

∫

Γt,0

HΓd,0
RTt̄0 dΓ0 (32b)

f inta =

∫

Ω0

BT
NΣΣΣdΩ (32c)

f intb =

∫

Ω0

HΓd,0
BT

NΣΣΣdΩ0 + 2

∫

Γd,0

RTtd,0 dΓ0 (32d)

and the material and geometric parts of the stiffness matrice become:

Kmat :=





Kaa
mat Kab

mat

Kba
mat Kbb

mat



 (33a)

Kaa
mat =

∫

Ω0

BT

N :��C : BN dΩ0 (33b)

Kab
mat =

∫

Ω0

HΓd,0
BT

N :��C : BN dΩ0 (33c)

Kba
mat =

∫

Ω0

HΓd,0
BT

N :��C : BN dΩ0 (33d)

Kbb
mat =

∫

Ω0

BT

N :��C : BNdΩ0 + 4

∫

Γd,0

RTQT : Td : QR dΓ0 (33e)
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Kgeo :=





Kaa
geo Kab

geo

Kba
geo Kbb

geo



 (34a)

Kaa
geo =

∫

Ω0

BT

G Σ̄ΣΣBG dΩ0 (34b)

Kab
geo =

∫

Ω0

HΓd,0
BT

G Σ̄ΣΣBG dΩ0 (34c)

Kba
geo =

∫

Ω0

HΓd,0
BT

G Σ̄ΣΣBG dΩ0 + 2

∫

Γd,0

R̄T t̄d,0 BG dΓ0 (34d)

Kbb
geo =

∫

Ω0

BT

G Σ̄ΣΣBG dΩ0 + 2

∫

Γd,0

HΓd,0
R̄T t̄d,0 BG dΓ0 (34e)

with Q denoting the rotation matrix. Also,

Σ̄ΣΣ :=

















Σ11 Σ12 0 0

Σ21 Σ22 0 0

0 0 Σ11 Σ12

0 0 Σ21 Σ22

















(35a)

R̄ :=





R1 · · · Rm 0 · · · 0

0 · · · 0 R1 · · · Rm



 . (35b)

t̄d,0 :=





t̄d,0
1

t̄d,0
2

0 0

0 0 t̄d,0
1

t̄d,0
2



 . (35c)

where m is the number of enriched control points within the element under205

consideration.

5. Implementation aspects

To cast the aforementioned formulation in a finite element datastructure

some numerical aspects have to be considered. Specially, dealing with IGA, the

shared inter-element control points complicate the enrichment and the compat-210

ibility imposition between multiple displacement fields which are adopted for
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XIGA. Though this has been comprehensively studied in [11], key points are

briefly re-stated here to fulfill the uniformity of the current manuscript.

Figure 4: Compatibility enforcement for a quadratic interpolation under mode-I fracture: (a)

Shifting technique is defined on the sign function in Equation (2), while a step function is

adopted for the blending technique where the element is fully cracked. The blending technique

is illustrated for a partially cracked element in (b). Crack tip governs the enrichment scheme

while real crack tip shows the last location where fracture criterion is satisfied [11].

5.1. Compatibility enforcement

Shifting and blending techniques [11] are utilised to enforce compatibility.215

Unlike extended finite element analysis whose Lagrange interpolation localises

the shifted Heaviside function inside the cracked elements, shifting narrows this

effect to the adjacent elements perpendicular to the crack path for B-splines,

see Figure 4. This stems from the C0-continuity used in FEM and a higher
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interpolation-order in IGA at element boundaries. The latter leads to a stretch220

of the discontinuity effect over multiple rows of elements compared to the single

row of cracked elements in XFEM. Shifting should be applied to discontinuous

terms, i.e. all the Heaviside terms in discritised equations have to be shifted.

Owing to the same reason, the effect of Heaviside function which redundantly

appears in front of the crack tip ought to be removed. Therefore, a step function225

has been utilised as the blending technique, which has been elaborated on in

[11]. Shifted basis functions are illustrated for a univariate and bivariate NURBS

bases in Figure 5, where it is realised of intact and cracked media.

Figure 5: Shifted basis functions for a quadratic interpolation under mode-I fracture: univari-

ate NURBS basis functions are shown for intact (a) and shifted discontinuous medium (b).

Adopting the tensor product concept to elevate the dimension, bivariate surfaces of intact (c)

and shifted discontinuous medium (d) are illustrated for the control point in the middle of the

medium, i.e. tensor product of the yellow curves in (a) and (b).

Remark 1. A plate with 7 equally distanced elements has been illustrated in

Figure 6. The crack is located in the middle of the plate, inside the 4th ele-230

ment, whose enhanced control points are illustrated in red asterisks. Updated

17



Lagrangian formulation necessitates the position field, Equation (28), to be up-

dated in each iteration. As mentioned previously, compatibility enforcement

aims to localise the effect of the Heaviside function to the cracked element, but

fails to do so within the use of B-splines owing to the inter-element share of235

control points. Figure 6 illustrates the shifted Heaviside function values for the

enhanced points (red asterisks), which are supposed to be zero. For the aster-

isks above and below crack path, however, these values render the undesired

enhanced field to become non-zero at the location of the control points, see the

last term in Equation (28). Our observations suggest exempting this undesired240

term during the position field update. Otherwise, it slows down the convergence

rate and/or subsequently diverges the solution. This suggests that the compat-

ibility between the two fields has not fully enforced (otherwise, enhanced term

would become zero at the location of control points), though it has significantly

improved previous attempts within XIGA contributions [11].245

Remark 2. Based on remark 1 and the need to update the crack profile for

cohesive traction integration in UL, TL seems to be a more convenient choice

within XIGA from an implementation perspective since it merely affects the

stiffness matrix and internal force. Therefore, no extra action, such as any

update, is required in each iteration.250

Remark 3. Although the Heaviside value at crack path Γd,0 equals zero, the

last term presented in Equation (34e) will remain owing to the compatibility

enforcement. It is important to recall that the discretised formulation concluded

from the variational formulation are not shifted, and shifting affects only after

discretisation [11]. Accordingly, the Heaviside integrand in Equation (34e) be-255

comes HΓd,0
− HB

0 , where HB

0 denote the Heveaside value for control points in

the reference configuration. Therefore, based on the Heaviside sign function,

HΓd,0
becomes zero but HB

0 will contain a value (-1, 0 or 1) which preserves this

term in Equation (34e). This is exempted in [5].
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Figure 6: Domain excess of the shifted Heaviside from the cracked element. Red asterisks

denote the enhanced control points, where shifted Heaviside value differs from zero. Hgp and

HB denote Heaviside values for Gauss points and control points respectively.

5.2. Other implementation aspects260

Herein, we tend to succinctly enumerate necessary implementation aspects.

The interested reader is referred to [11] for a detailed discussion.

Crack extension. Several factors must be considered when propagating a crack,

e.g. crack extension direction, propagation criterion and the geometry of the

extension. Similar to XFEM [5, 17] and XIGA [11], a non-local approach is265

adopted here to mitigate inaccurate local estimation of stresses, though im-

proved by IGA yet insufficient when cracks are confronted [11]. Once crack path

is found, stresses along the path are being compared to the fracture strength.

In this manuscript, propagation occurs when half of the Gauss points along the

crack path satisfy σloc
y ≥ ft. Next, crack propagates as a straight line through-270

out the element and the crack tip will be defined at the intesection of crack

path and the edge of the element, see Figure 4b. It is noted that some sections

of the new crack path might not have met the fracture criterion yet. Adopting

a blending technique, these sections will be neglected from the integration pro-

cess [11]. Hence, the real crack tip can be defined on the location where fracture275

criterion has been lastly satisfied, see Figure 4b.
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Individual control points enhancement. As mentioned previously, crack crosses

the element entirely in the form of a straight line, and finishes at the edge of

the element to pinpoint the crack tip. Enrichment of the element follows the

crack tip, and not the real crack tip: points at or in front of the crack tip will280

be precluded since the crack tip is closed in cohesive fracture. It is important

to invoke that inter-element sharing of the control points in XIGA causes such

complication, while the C0-continuity which underlies the Lagrangian interpo-

lation in XFEM changes this enrichment prescription into a mere exemption of

the points at the location of the crack tip.285

Intergration scheme and point projection. Gauss integration scheme is adopted

for any integration operation in this manuscript. Sub-triangulation technique is

utilised for elements crossed by the crack path to guarantee adequate number

of Gauss points at each side of the crack. To impose the cohesive tractions

on the crack path, line integration is required. Exploiting interface elements290

[4, 18, 19, 20], degrees of freedom are defined explicitly for the crack path,

i.e. there exists a physical definition of the discontinuity. In an extended ap-

proach, however, discontinuity is embedded inside the element in an arbitrary

mesh lay-out, where degrees of freedom belong to the element and not to the

discontinuity. Hence, in order to integrate the line on the element’s degrees295

of freedom, natural coordinates on the parent line should be mapped onto the

parent square while the location of crack inside the element being considered.

This requires point projection scheme, which is comprehensively studied in [11]

with adequate mathematical background.

6. Numerical examples300

In this section some numerical examples are presented to validate the afore-

mentioned method and implementation aspects. These examples each aim to

verify a specific objective, one at a time. Results are compared with XFEM [5].
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Figure 7: Double Cantilever Beam with a traction-free initial slit. Propagation is prevented.

F and δ are the force and displacement here, and in the remainder of manuscript.

6.1. Explicit and enhanced discontinuity modelling: Double Cantilever Beam

The first example assesses the geometric nonlinearity in the presence of a305

discontinuity. It is fulfilled in two ways, by means of a non-progressive explicit

interface and a peel test. A Double Cantilever Beam (DCB) is exploited for

both cases.

Figure 8: Results of the explicitly modelled fixed interface for a DCB.
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6.1.1. Explicit interface

A traction-free slit is modelled within a DCB problem, see Figure 7, while310

any further propagation is prevented. Young’s modulus and Poisson’s ratio

are taken E = 100 MPa and ν = 0.3 respectively. The analysis comprises

two approaches, interface elements and the extended scheme, while results are

compared to the finite element analysis counterparts.

Results show an excellent agreement between XIGA and XFEM, while there315

exists a negligible difference between IGA and FEM interface elements at the

last few loading steps. The reason lies in the use of dummy stiffness (or penalty

parameter) to keep the the delamination closed after the slit. Owing to the

reason that control points are shared between elements in IGA, use of dummy

stiffness renders the last delaminated interface element semi-open (because of320

the last control point of this element being shared with the first intact element

after delamination). This results in a stiffer response from IGA interface ele-

ment approach when the opening reaches the end of the delamination, which

happens at the last few loading steps. By the way of contrast, dummy stiffness

is not needed in an extended approach, and this is the reason no dissimilarity325

is observed between XFEM and XIGA.

Figure 9: Crack propagation for a DCB under mode-I loading.
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6.1.2. Peel test

Now the assumption of propagation prevention is released. The initial slit is

shortened to 1mm, see the geometry in Figure 9. Same material properties from

the previous section are used here, while the tensile stress and fracture energy330

read ft = 1 MPa and Gf = 0.05 N · mm−1 respectively. It is noted that only

the extended approach is employed here.

Figure 10: Results of the peel test for a DCB.

Results are presented in Figure 10. We can see a convergence trend for

XIGA, concluded with the finest mesh (blue dashed line with 2100 elements)

which is much less than finest mesh utilised in XFEM (black dashed line with335

2896 elements). Also for the red dashed line (XIGA 1080 elements) is smoother

than the yellow one (XFEM 781 elements). Though they share the same peak,

responses are slightly different. The coarsest mesh (540 elements shown with the

green line) for XIGA illustrates a disparity compared to other data due to the

super coarse mesh used, i.e. the same mesh utilised in small displacement [11]340

is adopted here whose cohesive interface propagation is much bigger than the

small deformation case. Therefore, this discretisation is uncapable of yielding

the correct result, and the effect of the mesh refinement on achieving the correct
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solution [21], especially for a cohesive crack propagation test [11], is apparent.

As also mentioned in [5], interface linearisation requires severe rotations and345

consequently dissimilar normal vectors for the profile and sides of the crack,

as observed in Figure 1. This becomes more interesting when sign function is

adopted here compared to the step function used in [5], rendering a difference on

explicit definition of the normal vector for the crack path and the integration

of Gauss points located on this path. Therefore, new examples have to be350

examined for a full assessment of the linearised formulation.

Figure 11: Compression applied to a DCB to reneder the buckling failure mode.

6.2. Geometric instability: buckling in composites

To challenge the capability of the proposed formulation to handle geometric

instabilities, a buckling test is examined. A DCB , the geometry is given in

Figure 11, is subjected to compression and a negligible perturbation (small355

lateral loads) to trigger the buckling. This phenomenon happens frequently

in laminated composites, where layers are slender and prone to this failure

mode. Instead of modelling a peel test, it is assumed that the delamination has

already happened throughout the beam (illustrated with the solid black line).

Therefore, no cohesive traction exists on the interface. Similar to previous360

examples, Young’s modulus is taken as E = 100MPa, while two values are

adopted for Poisson’s ratio, ν = 0 and ν = 0.3.

An excellent agreement is observed between XIGA and XFEM results for

both values of poisson’s ratio, see Figure 12. Another noteworthy aspect is the

fewer number of elements used in XIGA (355 elements) compared to XFEM (781365
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Figure 12: Results of the XIGA buckling test compared with XFEM.

elements), which is legitimate given the fact that the inter-element higher-order

continuity allows for a decrease in the number of elements (and consequently

a decrease in degrees of freedom) in XIGA. The critical load for a single beam

(current results indicate two beams) for ν = 0 matches the Euler buckling load:

Pcrit =
4π2EI

L2
≈ 0.4112 (36)

Figure 13: Deformed shape of the buckling test. Colours indicate the deformation in the

Y-direction, and numbers in the colour bar are given in millimeters.

which has been mentioned in [5] as well. Unmagnified deformed configuration370

of the buckling test is illustrated in Figure 13.
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Figure 14: A DCB subjected to a peel test from a stiff substrate.

6.3. Effect of the linearised interface tangent: Peel test from a stiff substrate

Finally, our last example is dedicated to the linearised terms of the interface

tangent. For this purpose, one of the layers of the DCB is peeled from the other

one, providing a severe rotation which is ideal for our objective. An initial slit of375

1 mm exists in the medium, see Figure 14 for the geometry, followed by a path

(dotted line) for a peel test. Unlike the cohesive-zone model section where an

exponential decay was recommended, here a constant value equal to the fracture

strength is assumed in order to fully maintain the geometric contribution of

cohesive tractions and their linearised tangent terms. Therefore, at the onset of380

the peeling the normal tractions equal ft and the material contribution of the

interface tangent T on the stiffness matrix becomes zero [5]. Material properties

read: Young’s modulus E = 100MPa, Poisson’s ratio ν = 0.3 and fracture

strenght ft = 2MPa.

Table 1: Energy residuals including/excluding the Linearised Interface Tangent (LIT).

i XIGA with LIT XIGA without LIT XFEM with LIT XFEM without LIT

0 7.64× 10−2 8.40× 10−2 3.13× 100 3.04× 100

1 6.08× 10−5 4.30× 10−4 5.62× 10−2 3.58× 10−2

2 1.13× 10−6 2.53× 10−7 4.13× 10−5 4.72× 10−4

3 3.72× 10−10 2.05× 10−13 4.38× 10−8 3.00× 10−6

4 5.56× 10−11 1.06× 10−8

5 4.35× 10−11

The deformed shape is illustrated in Figure 15. The convergence of the last385
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Figure 15: Unmagnified deformed shape of a peel test from a stiff substrate at u = 4 mm.

Values of the colour bar are given in millimeters, and colours denote the displacement in the

Y-direction.

loading step (20th step) is peresented in Table 1. Energy residuals illustrated

in the table are similar to the ones defined in [5] for the sake of a comparison

between XIGA and XFEM:

Ei :=
(

dui
)T

f ires (37)

where dui is the incremental displacement vector at iteration i and f ires is the

residual of force vector at the same iteration [5]. The tolerance for the residual390

to converge is set Ei/E0 < 1 × 10−9. From Table 1, it is evident that XIGA

converges faster than XFEM. Though the number of elements used for XFEM

in [5] has not been reported, fewer elements seems to be used in XIGA (540

elements) by a comparison with the deformed configuration figure presented

there. Accounting linearisation of interface tangent or not is the source of395

contradiction between XFEM and XIGA, since the interface linearised term

accelerates the convergence in XFEM. In XIGA, however, though it follows the

same trend at the onset of the solution (the first two iterations), linearisation of

interface tangent slows down afterwards, i.e. the absence of linearisation speeds

up at the third and fourth iterations of XIGA. The reason might be the errors of400

the compatibility enforcement in linearised interface tangent terms (mentioned

in remarks 1 and 3) which aggravate the convergence after a certain iteration

onward, see the Heaviside term in Equations 34d and e. Nevertheless, both
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cases in XIGA converge at the same number of iterations and excel XFEM.

7. Conclusion405

In this manuscript, XIGA has been realised of geometric nonlinearity for

cohesive fracture. The application targeted has been the delamination for lam-

inated composites. A variety of examples has been examined to challenge every

aspect of the geometrically nonlinear formulation. A sign function has been

substituted for the step functions utilised in the literature, leading to an ex-410

plicit definition of the crack path to avoid additional manipulation to define the

normal vector for the crack path. Variational formulation has been developed

accordingly to achieve discretised formulation. Next, Compatibility enforcement

and implementation aspects have been described in details, including extra cares

taken exclusively for the case of geometric nonlinearity. It has been shown that415

XIGA Excels XFEM in terms of the fewer degrees of freedom required and

the convergence rate, rendering it an ideal choice to model the delamination in

laminated composite undergone geometric nonlinearity.
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Appendix

Updated Lagrangian description

Similar to the Total Lagrangian approach, we can define the matrix notation

governing the Updated Lagrangian formulation,425

LT

t =





∂
∂x1

0 ∂
∂x2

0 ∂
∂x2

∂
∂x1



 ,

L̄T

t =





∂
∂x1

∂
∂x2

0 0

0 0 ∂
∂x1

∂
∂x2



 .
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BN = Lt N,

BG = L̄t N.

Recalling Equation (30) we can define the matrices for Updated Lagrangian

description,

f exta =

∫

Γt

RTt̄ dΓ

f extb =

∫

Γt

HΓd
RTt̄ dΓ

f inta =

∫

Ω

BT
N σσσ dΩ

f intb =

∫

Ω

HΓd
BT

N σσσ dΩ + 2

∫

Γd

RTtd dΓ

Kmat :=





Kaa
mat Kab

mat

Kba
mat Kbb

mat





Kaa
mat =

∫

Ω0

BT

N : ✁c : BN dΩ

Kab
mat =

∫

Ω

HΓd
BT

N : ✁c : BN dΩ

Kba
mat =

∫

Ω

HΓd,0
BT

N : ✁c : BN dΩ

Kbb
mat =

∫

Ω

BT

N : ✁c : BNdΩ + 4

∫

Γd

RTQT : Td : QR dΓ

Kgeo :=





Kaa
geo Kab

geo

Kba
geo Kbb

geo





Kaa
geo =

∫

Ω

BT

G σ̄σσBG dΩ

Kab
geo =

∫

Ω

HΓd
BT

G σ̄σσBG dΩ

Kba
geo =

∫

Ω

HΓd
BT

G σ̄σσBG dΩ + 2

∫

Γd

RT t̄d BG dΓ
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Kbb
geo =

∫

Ω

BT

G σ̄σσBG dΩ + 2

∫

Γd

HΓd
RT t̄d BG dΓ

where,

σ̄σσ :=

















σ11 σ12 0 0

σ21 σ22 0 0

0 0 σ11 σ12

0 0 σ21 σ22

















t̄d :=





t̄d1
t̄d2

0 0

0 0 t̄d1
t̄d2



 .

σ is the Cauchy stress. It is noted that , for Updated Lagrangian, location of

control points and the crack profile needs to be updated in every iterations.430
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