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Determination of Representative Volume Element Size for a Magnetorheological Elastomer

Sinan Eraslan, Inna M. Gitman, Harm Askes, René de Borst

• A numerically-statistical analysis has been used to determine lower bounds of the RVE size for magnetorhe-

ological elastomers (MRE) material, resulting in different RVE sizes for different phenomena: purely elastic,

purely magnetic, and coupling behaviour in the material. Difference between aforementioned RVE sizes has

been analysed and it was suggested that using the largest determined RVE size can be used in gradient enriched

governing equations to introduce the information from the underlying micro level.

• The formalistic approach showed that the contrast in material properties of the constituents can affect the min-

imum RVE sizes. It has been concluded that for more heterogeneity in material properties, larger sizes of the

associated RVE are obtained.

• While there is a converging trend for purely elastic and purely magnetic RVEs, coupling RVEs show a non-

convergent trend in the range of assumed larger contrast values. Given that the difference between convergent

and non-convergent trends occurs for extremely large contrast, for practical purposes one may assume same

RVE size for all.

• A piezomagnetic continuum model has been developed with gradients of strain, piezomagnetic coupling and

magnetic field whereby the microstructural length scale parameters are expressed in terms of RVE sizes.
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Abstract

Smart composite materials have been an active field of research in the last few decades. Magnetorheological elas-

tomers (MREs) are examples of such smart composites and they show a coupling between magnetism and elasticity.

MREs are heterogeneous materials and they consist of magnetic particles and a silicone-based elastomer. To describe

and predict the behaviour of the macroscopic continuum accurately, microstructural information needs to be taken

into account in the analysis of heterogeneous materials. Therefore, a combined approach called multi-scale analysis

is used to consider various scales of observation simultaneously. The concept of Representative Volume Element

(RVE) is typically employed by multi-scale approaches to describe the micro scale, and thus the size of RVE becomes

a model parameter in such techniques. This has motivated the determination of the RVE size and the derivation of

magnetoelastic constitutive relations in terms of the RVE sizes in our paper. The finite element method and a statis-

tical analysis based on the coefficient of variation have been used to determine the RVE size of MREs. The results

show that it is possible to determine a lower bound of the RVE size for an MRE. Furthermore, a parametric study

has been conducted to examine the sensitivity of the RVE size on the different material properties of the constituents.

It was found that the RVE size is primarily set by the contrast of the different material properties, i.e. the stiffness,

permeability and magnetoelastic coupling coefficients.

Keywords: Magnetorheological elastomers, Representative Volume Element, Finite element, Second-order

homogenisation, Length Scale, Gradient elasticity

1. Introduction

Stimuli-responsive composite materials have been of great interest to the engineering community in the last few

decades due to their controllable/adjustable behaviours and properties. These materials can respond to external ef-

fects such as temperature, light, pH, electric or magnetic field [1, 2]. Magnetorheological elastomers (MREs) are one

type of such smart composites. They are generally manufactured by dispersion of magnetic particles in a silicone-5

based elastomer. These materials show a coupling between magnetism and elasticity via the magnetostriction effect

[1, 2, 3, 4]. Magnetostriction is the ability of ferromagnetic materials to realise a change in material shape when a

magnetic field is applied, which is called the direct magnetostrictive effect. By subjecting a magnetic field to an MRE,

the particles will show magnetostriction, and the polymer matrix may experience forces due to this phenomenon. As

a result, the composite material will deform [4, 5]. This coupling phenomenon opens up a variety of potential appli-10

cations in many engineering fields, including actuators, sensors, vibration isolation and control, sensing of ultrasonic

waves, and dialysis membranes in biomedical field [1, 2, 4, 6, 7, 8]. Various magnetic materials such as Terfenol-D,

cobalt ferrite, certain earth metals and iron alloys can be used as magnetic filler with several alternatives of an elastic

matrix such as natural rubber, silicone rubber or polyurethane [1, 3, 9, 10].
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Depending on the distribution of the particles, on a macro level these materials can be categorised as anisotropic or15

isotropic. Various reviews exist on the fundamentals of MREs, their production, modelling and applications. Thévenot

et al. [1] and Filipcsei et al. [2] have treated magnetic responsive polymer composites (MRPCs) by covering different

types of MRPCs, fabrication methods, detailed examples about the preparation steps and used products. Elhajjar et

al. [4] evaluated the literature on magnetostrictive polymer composites (MPCs) after 2000 and presented progress

and the current state of those materials. Some examples of different compositions (such as cobalt ferrites, Terfenol-D20

alloys and carbonyl iron) and their properties have been given in this review. Lastly, an overview from Ekreem et al.

[5] explained how magnetostriction occurs. The advantages and disadvantages of the measurement procedures were

compared to conclude the most common and sensitive methods.

After the introduction in the late 1990s, researchers have developed macroscopic and microscopic material models

of ferrogels and elastomers. Camp and Wood [9] presented a microscopic model to study the relationship between25

features of the microstructure and physical properties of the ferrogels by using Monte Carlo computer simulations. It

was shown that the elastic modulus can be controlled by applying a uniform magnetic field to the samples at the gel-

formation stage. A macroscopic model has been proposed by Attaran et al. [11] to capture the mechanical deformation

of ferrogels. The authors have simplified a previously developed continuum model for this reduced form, and it was

reported that this reduced model shows good agreement with the experimental results. Another microscopically30

motivated approach has been proposed by Kalina et al. [12] to study the deformation behaviour of isotropic and

anisotropic MREs. Raikher and Stolbov [13] have followed a continuum approach for MREs by considering them as

a homogeneous elastic and isotropically magnetisable medium. Despite some limitations and drawbacks, the model

is able to reproduce experimental results with acceptable accuracy.

The particle distribution plays a significant role in the magnetostriction of MREs as well as size, shape and volume35

fraction of the particles. On the micro scale a Representative Volume Element (RVE) approach is typically used to

model materials. Here, an RVE is the smallest specimen of a material, which is large enough to be constitutively valid

[14]. Metsch et al. [15] have modelled a range of RVEs based on a microscopically motivated continuum approach

to investigate microstructural interactions. By applying varying amplitudes of the magnetic field, deformation of the

isotropic and anisotropic RVE samples has been analysed for different volume fractions of the magnetic particles.40

This model is capable of describing magnetostriction by showing good agreement with the experimental results in the

literature. Sun et al. [16] have proposed another RVE approach to investigate the effective mechanical properties of

anisotropic MREs under plane stress conditions. The influence of some parameters such as magnetic field intensity,

particle diameter and distance between the particles were examined and resulted in a positive correlation between

shear modulus and field intensity/particle diameter, and inverse proportionality to the distance between the particles.45

In addition to numerical models, experimental studies have been carried out for MREs. Li and Zhang [17] have

proposed an experimental and theoretical model, where an optimum volume fraction was calculated for magnetic

particles that leads to an improvement in magnetorheological effects. Borin et al. [18] have investigated the mechan-

ical stress that results from the magnetostriction of hybrid magneto-elastic materials. In the experimental setup, two

different types of magnetic particles (CI powder and NdFeB) and a polymer host (PDSM silicone) were used. They50

concluded that a measurable strictional reaction can be observed only when the specimens are filled with hard mag-

netic particles. This means that magnetic susceptibility of the constituents has a significant role in striction behaviour.

An innovative fabrication method has been given by Li et al. [10]. They have demonstrated that 3D printing can be

used to create anisotropic MREs without the need to use an external magnetic field. This study presents a new type

of MRE manufacturing method, and it has been observed that some printing parameters, such as feed rate, extrusion55

pressure, and initial height have a significant effect on the properties of the MREs. In the experiments, it has been

shown that damping capacity and dynamic stiffness of the 3D printed MREs could be tuned by applying a moder-

ate external magnetic field. The above overview shows the importance of microstructural properties on the overall

behaviour of MREs and, thus, the importance of capturing these microstructural properties in mechanical models.

In the analysis of heterogeneous materials such as MREs, capturing microstructural information in the macro-60

scopic continuum has a significant role in accurately describing and predicting the response of the materials. For

this reason, various scales need to be studied simultaneously through a combined approach, known as multi-scale

analysis [19]. Homogenisation is a multi-scale approach in which a heterogeneous material model is described at

the lower scale (micro-level). In analytical homogenisation approaches, the unit cell (RVE) is considered as model

input; thus, the RVE size becomes a model parameter. As it has already been shown in [20, 21, 14], there is a link65

between the RVE size on the micro-scale and additional length scale parameters employed in nonlocal continua on the
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macro-scale. Nonlocal continuum theories have been proposed by several authors to include the information from the

micro-scale to the macroscopic continuum via additional material constants such as length scale parameters or time

scale parameters (for dynamic analysis) [8, 20, 21]. However, these studies dealt with a purely mechanical response,

and the extension to coupled physics (such as magnetoelasticity) was not addressed.70

This study seeks to determine the RVE size for an MRE, by analysing the influence of the constituents’ properties

on this model parameter. In section 2, a finite element implementation will be adopted to obtain a microscopic

boundary value problem to be used in the statistical analysis for RVE size determination. In section 3, numerical

results and discussions of two-dimensional magnetoelastic RVEs will be given by covering the RVE size dependence

on the material properties of the constituents. In section 4, macro-level magnetoelastic constitutive relation with75

internal length scale parameters will be derived by considering the RVE approach and second-order homogenisation

scheme. Finally, some closing remarks are presented in section 5.

2. Formulation and Introduction of Methodology

Magnetostrictive materials show non-linear material behaviour, but they are biased by applying a magnetic field

and mechanical compressive stress in most applications. This bias allows to describe the material behaviour by using80

linear piezomagnetic equations. By assuming a static magnetic field (curl-free), the constitutive equations of a linear

piezomagnetic medium in classical continuum theory can be written as [8, 22, 23, 24]

σi j = Ci jklεkl − Qni jHn

Bi = Qiklεkl + µinHn

(1)

where σ and B are the stress tensor and magnetic induction, C and Q are the stiffness tensor and piezomagnetic

coupling tensor, µ is the magnetic permeability, and ε and H are strain and magnetic field respectively.

In a multi-scale approach, micro and macro scales link to each other by model parameters. This approach con-85

siders material on the microscopic level to reflect the real structure of heterogeneous material by considering each

component’s configuration and constitutive properties explicitly. Conversely, material is modelled as homogeneous

with effective properties and model parameters on the macroscopic level. At this point, the concept of RVE is typically

used to describe the micro scale. The RVE must be satisfactorily smaller than macroscopic dimensions, but it must

have sufficient information about the microstructure [21, 14]. Thus, the size of RVE becomes a model parameter in90

the multi-scale approach. This approach brings the advantage of computational efficiency with an accurate description

of the material behaviour on the macro-level.

In the multi-scale analysis, the macroscopic stress and induction can be defined as the volume average of the

microscopic counterparts in the RVE and denoted as

σM
i j =

1

VRVE

∫

VRVE

σm
i jdV =

1

VRVE1

∫

VRVE1

Cm
i jklε

m
kldV −

1

VRVE2

∫

VRVE2

Qm
ni jH

m
n dV

BM
i =

1

VRVE

∫

VRVE

Bm
i dV =

1

VRVE3

∫

VRVE3

Qm
iklε

m
kldV +

1

VRVE4

∫

VRVE4

µm
inHm

n dV

(2)

Here, it is assumed that an MRE has different RVEs depending on the considered phenomenon. Thus, VRVE1
and95

VRVE4
represent the volumes of the RVEs for a purely mechanical and purely magnetic phenomenon, while VRVE2

and VRVE3
are the RVEs for coupling phenomenon. The superscripts m and M denote the micro and macro level,

respectively.

2.1. Microscopic Characterisation of MRE

As discussed above, the MRE is modelled as a heterogeneous material on the micro-scale. The constitutive100

equations of the components can be written in the same form as Eqs. (1) above:

σm
i j = Cm

i jklε
m
kl − Qm

ni jH
m
n

Bm
i = Qm

iklε
m
kl + µ

m
inHm

n

(3)
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In this study, 2D MREs will be investigated on the micro-level, indicated with superscript m, to determine the RVE

size. It is assumed that the RVE is polarized along the z-direction, and all internal forces act on the xz-plane. Adopting

a plane stress assumption as well as matrix-vector notation, the stiffness, piezomagnetic coupling and permeability

matrices of the transversely isotropic material read105

Cm =





















C11 C13 0

C13 C33 0

0 0 C55





















, Qm =





















0 q31

0 q33

q15 0





















, µm =

[

µ11 0

0 µ33

]

(4)

Similarly, the kinematic relations, balance equations and governing equations can be written as

ε
m = Luum and Hm = −Lϕϕ

m (5)

LT
uσ

m = 0 and LT
ϕB

m = 0 (6)

LT
u CmLuum + LT

u QmLϕϕ
m = 0

LT
ϕQ

mT
Luum

− LT
ϕµ

mLϕϕ
m = 0

(7)

where Lϕ = ∇ and Lu is the usual strain-displacement derivative operator.

2.2. Finite Element Equations

To obtain the finite element formulation, the weak form of Eq. (7) can be written for domain Ω and boundary Γ110

after integration by parts as follows:

∫

Ω

(Luwu)TCmLuumdΩ +

∫

Ω

(Luwu)TQmLϕϕ
mdΩ =

∫

Γ

wT
u tdΓ

∫

Ω

(Lϕwϕ)
TQmT

LuumdΩ −

∫

Ω

(Lϕwϕ)
TµmLϕϕ

mdΩ =

∫

Γ

wT
ϕB⊥dΓ

(8)

where wu and wϕ are the test functions, t are the boundary tractions, and B⊥ is the magnetic traction on the boundary.

Thus, the following system of equations is obtained:

[

Kuu Kuϕ

Kϕu −Kϕϕ

] [

dm

Ψ
m

]

=

[

F

Φ

]

(9)

where dm and Ψm are micro-scale nodal displacement and nodal scalar magnetic potential vectors via um = Nudm

and ϕm = NϕΨ
m. Moreover, F and Φ are nodal mechanical force and nodal magnetic flux vectors. Lastly, stiffness115

matrices are given by

Kuu =

∫

Ω

BT
u CmBudΩ Kuϕ =

∫

Ω

BT
u QmBϕdΩ

Kϕu =

∫

Ω

BT
ϕQ

mT
BudΩ Kϕϕ =

∫

Ω

BT
ϕµ

mBϕdΩ

(10)

with Bu = LuNu, Bϕ = LϕNϕ. The matrices Nu and Nϕ contains the relevant shape functions.

After obtaining the nodal degrees of freedom, stress and magnetic induction in Eq. (3) can be calculated by

following standard FE post-processing methods to be used for statistical analysis in the next section.
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2.3. Determination of RVE Size120

As it has been argued earlier in section 2, it is essential to determine the size of the RVE since it becomes a model

parameter in the constitutive equations on the macro scale. This connection of RVE size and macroscopic constitutive

equations will be explored and discussed in detail in section 4. In this section, the aim is to determine the RVE size

by following the statistical method proposed by Gitman et al.[14]. As described in section 2.1, Eqs. (3-7) have been

used to solve the RVE boundary value problem. The steps shown below are followed in this procedure to determine a125

lower bound of the RVE size.

The methodology consists of:

1. Creation of different realisations for the tested unit cell size with fixed inclusion diameter (Normal distribution

of 100–300 µm in diameter is assumed) and volume fraction (Vf = 30%) as seen in Figure 1. In our study, for

an accurate statistical analysis, we created 200 realisations.130

Figure 1: Different realisations of the unit cell (size 1x1 mm2 and Vf = 30%)

2. Application of loading conditions such as a tension test or magnetic loading as shown in Figure 2. The load is

applied via prescribed nodal values of displacement U on the two corners on the left and right of the sample

and/or magnetic potentials ϕ on the left and right edges. Here, periodicity in boundary conditions has been

implemented via penalty functions as given in [25].

z

U

x

U

φrφl

Figure 2: An RVE under external loadings

3. Performing the FE analysis and obtaining the parameter of interest, that is the averaged stress or the averaged135

magnetic induction along the z direction over the RVE. At this point, the z components of averaged stress and

magnetic induction are evaluated since the maximum magnetostriction response is expected in this direction.

Here, the different RVE sizes L1, L2, L3 and L4 are assessed separately as discussed in the introduction to section

2. In particular, L1, which is the RVE size for purely mechanical terms in Eq. (22), is determined by applying

the tension test and calculating the averaged stress in z direction due to this loading. Similarly, the RVE size for140

a purely magnetic response, L4, is assessed by calculating the averaged magnetic induction in z direction due to

the external magnetic loading. Lastly, the RVE sizes for coupling terms L2 and L3 are evaluated by obtaining the

averaged stress results from external magnetic loading, and obtaining the averaged magnetic induction results

from tension test respectively.

4. Finding the coefficient of variation value for the FE results.145

5. Comparison of statistical analysis accuracy with the desired accuracy (which was taken 97% here).

6. Defining the tested size as the RVE size if the desired accuracy is obtained. Otherwise, increasing the unit cell

size (Figure 3) and repeating the process.
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Figure 3: Different sizes of unit cells (from left to right: 0.5x0.5 mm2, 1x1 mm2, 1.5x1.5 mm2, 2x2 mm2 and Vf = 30%)

3. Numerical Results and Discussion

The numerical experiments were conducted with a MATLAB code developed in-house. The material proper-150

ties have been adopted from [26, 27] and are given in Table 1. In the calculation of the material constants for the

magnetic particles, the procedure given by [24] was followed. Here, the matrix (polymer) is assumed as a non-

magnetisable material. Because of this assumption, piezomagnetic constants were taken as zero to represent this

behaviour. Also, the magnetic permeability of the matrix has been assumed to equal the magnetic permeability of the

free space (µ0 = 4π10−6N/A2) due to the same assumption.155

C11 C13 C33 C55 q31 q33 q15 µ11 µ33

Terfenol-D [26] 35 23 46 4 -32.5 195 68.75 8.9 1.8

Polymer [27] 7.8 4.7 7.8 1.6 0 0 0 µ0 µ0

Ci j in GPa, qi j in N/Am, µi j in 10−6N/A2

Table 1: Material properties

Two hundred different realisations of each RVE size (from 0.5 to 2.5 mm) have been considered, and the responses

of the RVEs have been obtained via finite element analysis by using three-node triangular elements. Following nu-

merical analysis of all realisations, coefficients of variation have been calculated for each sample size to investigate

the convergence of the results. This is a statistical measure of relative variability, and it is a useful statistic for com-

paring the degree of variation between data series. A lower value of the coefficient of variation means a more precise160

estimation. By comparing the coefficients of variation of computed parameters (σzz or Bz) with the desired value, i.e.

is 0.03 for 97% accuracy, a lower bound of the RVE can be defined as seen in Figure 4. As seen in the figure, once

the desired accuracy and the results from the numerical tests have been plotted on the same graph, the intersection of

the obtained values and chosen variability can be evaluated to define the RVE size.

165
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Figure 4: Convergence of the results
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Realisations of each cell size (e.g. Figure 2) were subjected to mechanical and magnetic loading separately, and

the steps given in section 2.3 were followed. Figure 4 shows converging trends around different values for predefined

RVE sizes L1, L2, L3 and L4. It can be seen that the lower bound of the RVE can be considered as 1 mm for L1, 0.9

mm for L4, and 2.3 mm for L2 and L3. Furthermore, it is remarkable how small the difference between L2 and L3 is.

This confirms the thermodynamic consistency requirements discussed later in section 4.170

As shown above, it is possible to define an RVE size for an MRE material, and it is worthwhile to conduct a

parametric study to investigate the effect of parameters on the RVE sizes such as contrast in stiffness, coupling and

permeability properties of the constituents. It has already been shown for purely elastic material that the lower bound

of the RVE size is affected by the stiffness ratio of the constituents [14]. Notably, changing the stiffness ratio, which

also means increased heterogeneity, causes an increase in the lower bound of RVE. For this reason, a formalistic175

approach was established, and theoretical test specimens were created.

3.1. Contrast in Elastic Properties

We now define the stiffness ratio βc, as a ratio between inclusions and matrix stiffnesses, see Eq. (11). βc ranges

(5, 25, 100) introduce a change in heterogeneity. This setup ensures that there will be factors of 5, 25 and 100 between

the components’ stiffness properties.180

βc =
Cinclusion

Cmatrix

(11)

Figure 5 shows the effect of the elastic stiffness ratios on the RVE sizes. It can be seen that there is a positive

correlation between the contrast and the lower bound of the RVE size up to a certain value of L1 that represents the

purely mechanical RVE size. When the contrast ratio is increased from 5 to 25, the lower bound of RVE size has

values of around 1 and 1.4 mm, respectively. However, increasing the stiffness contrast to more than 25 does not lead

a notable further change. Furthermore, it was found that different contrast values in stiffness result in near identical185

RVE sizes for the coupling and purely magnetic RVE sizes L2, L3 and L4, which means that the stiffness contrast does

not affect those RVE sizes.
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Figure 5: RVE sizes for different stiffness contrast values. L1 (top left), L2 (bottom left), L3 (bottom right) and L4 (top right).
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3.2. Contrast in Magnetic Properties

Similarly, the contrast in piezomagnetic and magnetic permeability can be obtained via the ratios βq and βµ.

βq =
Qinclusion

Qmatrix

, βµ =
µinclusion

µmatrix

(12)

Figure 6 shows the influence of the piezomagnetic coupling contrast. Here, the stiffness contrast was chosen as 5190

and the magnetic permeability contrasts were kept constant (βµ11
= 8.9, βµ33

= 1.8, see Table 1). It has been observed

that more contrast in coupling properties of the constituents leads to larger RVE sizes L2 and L3 only, with minimal

effects on L1 and L4.

0

0.1

0.2

0.5 1 1.5 2 2.5

C
o

e
ff

ic
e

in
t 

o
f 

v
a

ri
a

ti
o

n

Sample size (mm)

βq=5

βq=25

βq=100

3% of variabil ity

0

0.1

0.2

0.5 1 1.5 2 2.5

Sample size (mm)

βq=5

βq=25

βq=100

3% of variabil ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5

C
o

e
ff

ic
e

in
t 

o
f 

v
a

ri
a

ti
o

n

Sample size (mm)

βq=5

βq=25

βq=100

3% of variabil ity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 1 1.5 2 2.5

Sample size (mm)

βq=5

βq=25

βq=100

3% of variabil ity

Figure 6: RVE sizes for different piezomagnetic contrast values. L1 (top left), L2 (bottom left), L3 (bottom right) and L4 (top right).

The contrast in magnetic permeability is the basis of the next test setup and Figure 7 presents the result of this

configuration. Analogous to the previous case, piezomagnetic coupling contrast was kept constant at the values given195

in Table 1, and the stiffness contrast was assumed as 5 to study only the effect of the permeability. Similarly, the

results show that contrast in magnetic permeability has an effect on the RVE size L4, and this trend is similar to

stiffness contrast for L1.
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Figure 7: RVE sizes for different permeability contrast values. L1 (top left), L2 (bottom left), L3 (bottom right) and L4 (top right).

In addition to contrasts of 5, 25 and 100, it is relevant to investigate larger contrast values to understand the

influence better. As seen in Figure 8, more contrasts have been introduced to stiffness, coupling and permeability.200

The pattern in the coupling contrast increase for L2 and L3 is different and it shows a continuously increasing RVE

size. However, the difference between the RVE sizes for larger permeability and stiffness contrasts for L4 and L1 is

relatively insignificant compared to other cases beyond a value of 100. Here, it can be concluded that RVE sizes are

dependent on the stiffness, coupling and permeability contrast of the constituents which means heterogeneity in these

properties is an effective parameter for the related RVE size.205
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Figure 8: RVE sizes for larger contrast values
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Overall, separately considered RVE sizes for an MRE material can be determined by following the statistical anal-

ysis as given in this section. Moreover, it has been shown that the contrast between the elastic and magnetic properties

of the constituents is an effective parameter for the related RVE sizes. However, the pattern of this effectiveness is

different for coupling and purely elastic/magnetic RVEs.

4. Homogenisation and Macroscopic Length Scale Parameter210

In contrast to heterogeneous micro-level, MRE is considered as a homogeneous piezomagnetic material with

effective material properties on the macro-level. Besides, the relation between the macroscopic stress/induction and

microscopic counterparts has been defined in Eq. (2). After determining and analysing the properties of the RVE sizes

as presented in previous section, it is now possible to derive the macroscopic constitutive and governing equations by

using Eq. (2) and the secon-order homogenisation scheme. Consequently, the formulation of a fully coupled magneto-215

mechanical model with gradients in terms of RVE size can be obtained to introduce the micro structural information

to the macro scale.

The associated local coordinate systems are assumed to have their origin at the centre of the RVE. Before applying

second-order homogenisation, linearisations of spatially dependent stiffness, strain, coupling, permeability and mag-

netic field can be presented as220

Cm
i jkl = CM

i jkl +CM
i jkl,oδxo

εm
kl = ε

M
kl + ε

M
kl,pδxp

Qm
ni j = QM

ni j + QM
ni j,oδxo

Hm
n = HM

n + HM
n,pδxp

µm
in = µ

M
in + µ

M
in,oδxo

(13)

It is noted that first-order homogenisation can be obtained if only the first terms on the right hand-sides of Eq. (13)

are considered. This yields Xm = XM, where X is stiffness, strain, coupling, permeability or magnetic field. However,

second-order homogenisation requires the introduction of second-order terms with δx. Now the constitutive relation

for the macroscopic stress and magnetic induction (Eq. (2)) can be rewritten as225

σM
i j =

1

VRVE1

∫

VRVE1

(CM
i jklε

M
kl +CM

i jklε
M
kl,pδxp +CM

i jkl,oε
M
kl δxo +CM

i jkl,oε
M
kl,pδxoδxp)

−
1

VRVE2

∫

VRVE2

(QM
ni jH

M
n + QM

ni jH
M
n,pδxp + QM

ni j,oHM
n δxo + QM

ni j,oHM
n,pδxoδxp)

BM
i =

1

VRVE3

∫

VRVE3

(QM
iklε

M
kl + QM

iklε
M
kl,pδxp + QM

ikl,oε
M
kl δxo + QM

ikl,oε
M
kl,pδxoδxp)

+
1

VRVE4

∫

VRVE4

(µM
in HM

n + µ
M
in HM

n,pδxp + µ
M
in,oHM

n δxo + µ
M
in,oHM

n,pδxoδxp)

(14)

In Eq. (14), CM
i jkl
, εM

kl
,QM

ni j
,QM

ikl
,µM

in
and HM

n can be taken out of the integral since they are the values at the centre of

the RVEs. Assuming a square RVE with its centre acting as origin of a Cartesian coordinate system, the linear terms

of δx cancel as they consist of odd functions integrated over a symmetric domain. The quadratic terms are integrated

by parts as follows230
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∫

VRVE1

CM
i jkl,oε

M
kl,pδxoδxp =

∫

S

CM
i jklε

M
kl,pnoδxoδxpdS −

∫

VRVE1

(CM
i jklε

M
kl,opδxoδxp

+CM
i jklε

M
kl,pδxo,oδxp +CM

i jklε
M
kl,pδxoδxp,o)dV

∫

VRVE2

QM
ni j,oHM

n,pδxoδxp =

∫

S

QM
ni jH

M
n,pnoδxoδxpdS −

∫

VRVE2

(QM
ni jH

M
n,opδxoδxp

+ QM
ni jH

M
n,pδxo,oδxp + QM

ni jH
M
n,pδxoδxp,o)dV

∫

VRVE3

QM
ikl,oε

M
kl,pδxoδxp =

∫

S

QM
iklε

M
kl,pnoδxoδxpdS −

∫

VRVE3

(QM
iklε

M
kl,opδxoδxp

+ QM
iklε

M
kl,pδxo,oδxp + QM

iklε
M
kl,pδxoδxp,o)dV

∫

VRVE4

µM
in,oHM

n,pδxoδxp =

∫

S

µM
in HM

n,pnoδxoδxpdS −

∫

VRVE4

(µM
in HM

n,opδxoδxp

+ µM
in HM

n,pδxo,oδxp + µ
M
in HM

n,pδxoδxp,o)dV

(15)

Assuming periodic boundary conditions, the boundary integrals vanish and the last two terms in each of Eq. (15)

vanish since they consist of odd functions. Furthermore, the integrals with δxoδxp can be evaluated as

∫

VRVEi

δxoδxpdV =

Li
2
∫

−
Li
2

Li
2
∫

−
Li
2

Li
2
∫

−
Li
2

δxoδxpdx1dx2dx3 =
1

12
L5

i δop (i = 1, 2, 3, 4) (16)

where δop is the kronecker delta, VRVEi
= L3

i
and Li is the size of the ith RVE.

With these elaborations, the piezomagnetic macroscopic constitutive equations with gradients of strain, magnetic

field, and magneto-mechanical coupling terms can be expressed as235

σM
i j = CM

i jkl

(

εM
kl −

L2
1

12
εM

kl,pp

)

− QM
ni j

(

HM
n −

L2
2

12
HM

n,pp

)

BM
i = QM

ikl

(

εM
kl −

L2
3

12
εM

kl,pp

)

+ µM
in

(

HM
n −

L2
4

12
HM

n,pp

)

(17)

In addition to the material coefficients of macroscopic constitutive equations Eq. (17), there are length scale

parameters (in terms of RVEi size Li). It must be pointed out that Eqs. (2,13-17) have been derived to motivate and

present the application of the determined RVE sizes in the previous section. As the aim of this study, the parameters

Li (i=1,2,3,4) were determined by a statistical analysis of a boundary value problem on the micro-level as shown in

section 3.240

Note that Eq. (17) follows the structure of the gradient enriched piezomagnetic model proposed by Xu et. al [8],

e.g.

σi j = Ci jkl(εkl − ℓ
2
1εkl,mm) − qi jk(Hk − ℓ

2
2Hk,mm)

Bi = qi jk(ε jk − ℓ
2
3ε jk,mm) + µi j(H j − ℓ

2
4H j,mm) (18)

Comparing eq. (17) and eq. (18), it can be seen that the link between phenomenological parameters, representing

internal length scales ℓi and RVE sizes Li can be established.
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ℓ2i =
L2

i

12
(19)

The authors of [8] followed a variational formulation, which led to L2 = L3 for reasons of thermodynamic consis-245

tency. Here, this issue has been explored in section 3 by determining the same size for the coupling RVEs L2 and L3.

As following section 3, it can be seen that L2 and L3 typically are larger than L1 and L4, for practical purposes, it may

be assumed that L1 = L2 = L3 = L4 = L, which satisfies all test setups according to numerical results.

Eventually, the field equations of the problem on the macro scale can be obtained by combining the usual kinematic

relations, balance equations and constitutive equations:250

εM
i j =

1

2
(u

M4pt

i, j
+ u

M4pt

j,i
) and H

M4pt

i
= −ϕ

M4pt

,i
(20)

σM
i j, j = 0 and BM

i,i = 0 (21)

where u
M4pt

i
is the displacement field and ϕM4pt is the scalar magnetic potential on the macro-level; and the governing

equations are

CM
i jkl

(

u
M4pt

k, jl
−

L2

12
u

M4pt

k, jlpp

)

+ QM
ni j

(

ϕ
M4pt

, jn
−

L2

12
ϕ

M4pt

, jnpp

)

= 0

QM
ikl

(

u
M4pt

k,il
−

L2

12
u

M4pt

k,ilpp

)

− µM
in

(

ϕ
M4pt

,in
−

L2

12
ϕ

M4pt

,inpp

)

= 0

(22)

with L chosen the largest of the four RVEs sizes.

5. Conclusions

In this study, a piezomagnetic continuum model has been developed with gradients of strain, piezo-magnetic255

coupling and magnetic field whereby the microstructural length scale parameters are expressed in terms of RVE sizes.

To determine the RVE size, the method proposed by Gitman et al. [14] has been followed for an MRE model on

the micro level, and the influence of the some parameters such as contrast in stiffness, coupling and permeability

properties of the constituents have been studied.

The proposed statistical analysis can be used to determine lower bounds of the RVE size for an MRE material.260

Here, four different RVE sizes were postulated for different phenomena namely L1 for purely elastic, L4 for purely

magnetic, and L2 and L3 for coupling behaviour in the material. In line with thermodynamic consistency, the difference

between the lower bound of L2 and L3 was found to be negligible, however the determined RVE sizes for L1 and L4

are clearly smaller and different. It may be suggested that using the largest determined RVE sizes for L2 or L3 also

covers the lower bound condition of the other RVE sizes and only this size can be used in gradient enriched governing265

equations (Eq. 22) to introduce the information from the micro level.

The formalistic approach showed that the contrast in material properties of the constituents can affect the minimum

RVE sizes. It was found that the increase in stiffness contrast leads to larger values of L1, whereas there is no influence

on the others. Similarly, the same trend was observed for an increase in coupling and permeability contrasts for the

RVE sizes L2 or L3, and L4 respectively. It can be concluded that for more heterogeneity in these material properties,270

larger sizes of the associated RVE are obtained.

Finally, there is a converging trend for L1 and L4, but L2 and L3 show a non-convergent trend in the range of

assumed larger contrast values. Given that the difference between convergent L1 and L4 and non-convergent L2 and

L3 occurs for extremely large contrast, for practical purposes one may assume L1 = L2 = L3 = L4.
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