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Abstract: Predicting car ownership patterns at high spatial resolution is key to understanding1

pathways for decarbonisation – via electrification and demand reduction – of the private vehicle2

fleet. As the factors widely understood to influence car ownership are highly interdependent,3

linearised regression models, which dominate previous work on spatially explicit car ownership4

modelling in the UK, have shortcomings in accurately predicting the relationship. This paper5

presents predictions of spatially disaggregated car ownership – and change in car ownership6

over time – in Great Britain (GB) using deep neural networks (NNs) with hyperparameter tuning.7

The inputs to the models are demographic, socioeconomic and geographic datasets compiled at8

the level of Census Lower Super Output Areas (LSOAs) – areas covering between 300 and 6009

households. It was found that when optimal hyperparameters are selected, these neural networks10

can predict car ownership with a mean absolute error up to 29% lower than when formulating the11

same problem as a linear regression; the results from NN regression are also shown to outperform12

three other artificial intelligence (AI)-based methods: random forest, stochastic gradient descent13

and support vector regression. The methods presented in this paper could enhance the capability14

of transport/energy modelling frameworks in predicting the spatial distribution of vehicle fleets,15

particularly as demographics, socio-economics and the built environment – such as public trans-16

port availability and the provision of local amenities – evolve over time. A particularly relevant17

contribution of this method is that by coupling it with a technology dissipation model, it could be18

used to explore the possible effects of changing policy, behaviour and socio-economics on uptake19

pathways for electric vehicles – cited as a vital technology for meeting Net Zero greenhouse gas20

emissions by 2050.21

Keywords: artificial neural networks; car ownership; spatial modelling22

1. Introduction23

Surface transport is the largest contributing sector to UK greenhouse gas emissions,24

of which private cars make up the dominant share [1]. In their legally-binding com-25

mitment to reach Net Zero greenhouse gas emissions by 2050 [2], the UK Government26

must reduce surface transport emissions by 98%, from 116 MtCO2e/year in 2019 to 227

MtCO2e/year in 2050, according to the Climate Change Committee (CCC)’s Further28

Ambition scenario [3]. Much of this abatement will come from banning the sale of pure29

internal combustion engine vehicles from 2030 – with the sale of plug-in hybrids banned30

from 2035 [4]. Given that (as of June 2021) battery electric vehicle (EV) sales contribute31

just 7% of total car sales [5], the rate of increase of EV adoption over the next fourteen32

years will need to accelerate significantly, assuming that the current market dominance33

of battery EVs over other low emission vehicle technologies (e.g. hydrogen fuel cell EVs)34

[6] will continue.35

Wider transport system decarbonisation, however, requires more than a switch36

from internal combustion-powered vehicles to EVs. As part of the pathways released in37
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their 2020 Sixth Carbon Budget recommendation, the CCC states that car miles per person38

must decrease by 17% from 2020 to 2050 [7] for the UK to meet Net Zero. Likewise, all39

three Net Zero-compatible pathways in National Grid ESO’s 2020 Future Energy Scenarios40

[8] show a decline in car ownership in the late-2030s to mid-2040s as private car travel is41

curbed in favour of increased public transport and active travel – which has been shown42

to be effective at replacing car-based trips and abating transport emissions [9]. Therefore,43

the characterisation of the relationship between demographics, socio-economics and the44

built environment (including public transport availability) to the spatial distribution of45

car ownership is an urgent area of research. By establishing which of these independent46

variables can be influenced by transport/energy policy, future pathways for car owner-47

ship – and hence technology shifts in the vehicle fleet – can be explored as a function of48

the changing policy, social and behavioural landscape. Furthermore, while it has long49

been predicted that EVs will present problems to electricity distribution networks with50

respect to their thermal and voltage limits [10–14], they also have the potential to interact51

positively with the grid – by providing flexible demand to utilise renewable generation52

when in surplus [15] and by charging bidirectionally to mitigate impacts on the network53

[16]. However, for these benefits to be realised, involved parties need to know where the54

EVs are likely to be at a given point in the future.55

While car ownership modelling is a well-established field of the academic literature56

(section 2), efforts to model the spatial distribution of car ownership have been few.57

Those that have attempted to do so in a UK context have used linear regression models,58

which are identified as problematic due to significant multicollinearity between the59

independent variables considered. To address these shortcomings, this paper presents60

a method of predicting the spatial variation in car ownership across Great Britain (GB)61

using an artificial neural network (NN) trained on key variables pertaining to these62

factors. A dataset of demographic, socio-economic and built environment variables is63

constructed from several sources (Table 1) for each of the three countries within GB64

(England, Wales and Scotland). NNs are designed and optimised using a hyperparam-65

eter tuning approach; once trained on the datasets, the predictions of car ownership66

are compared to those produced by an ordinary least squares (OLS) linear regression67

technique to highlight the benefit of this approach. Results are given for the base year68

of 2011 and for the prediction of the change in car ownership between 2001 and 2011.69

This approach can be used to predict future changes in the spatial distribution of vehicle70

ownership in GB. The spatial units of analysis in this paper are Lower Super Output71

Areas (LSOAs) for England & Wales, and analogous Data Zones (DZs) for Scotland –72

areas containing, on average, 672 and 340 households respectively.73

2. Previous Work on Car Ownership Modelling74

Car ownership is a major determinant of the modal split of the distance travelled by75

a population, and therefore car ownership forecasting is crucially important in transport76

system modelling [17]. Factors that influence car ownership are widely accepted to77

relate to household structure, socio-economic characteristics and the built environment78

(including the so-called ‘six Ds’ of diversity, density, design, destination accessibility,79

distance to transit, and demand management) [18–20].80

Car ownership models can be broadly categorised into i) longitudinal and ii) cross-81

sectional. In longitudinal models, the evolution of car ownership is modelled year-on-82

year by considering the changing demand for cars. Such models generally follow a83

Sigmoid (S-shaped) curve, typical of the evolution of any technology, in which an initially84

slow rate of uptake increases to a steady linear rate of increase before plateauing at a85

quantity assumed to represent the saturation of car ownership. This approach is used in86

the UK Department for Transport’s National Car Ownership Model (NATCOP) [21] and87

the International Transport Forum’s 2019 car fleet model for France [22]. Conversely,88

cross-sectional models seek to predict car ownership at a point in time based on a89

snapshot of the explanatory variables, or changes in car ownership between two points90
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in time-based on changes in those variables between those points. Cross-sectional models91

have been employed as part of ‘pseudo-panel’ car ownership model (see for example92

[23]), which combines multiple cross-sectional datasets to predict the evolution in car93

ownership over time. Effectively, the model presented in this paper is a pseudo-panel94

model, in that multiple points in time are used to predict the change in car ownership95

over time. Whereas models in [21–23] predict changes in national car ownership (millions96

of vehicles), this paper is concerned with changes in car ownership per Census LSOA/DZ97

(hundreds of vehicles, scaled up to millions).98

Prediction of car ownership given demographic, socioeconomic and built environ-99

ment variables are often based on forms of linear regression – either OLS, if the output of100

the model is treated as a discrete variable (the number of cars in a given area or owned by101

a given household), or logit, if the output is treated as a binary outcome (a household’s102

decision to buy another car or not). Either way, the prediction involves producing a line103

or curve of ‘best fit’ by iteratively estimating a set of coefficients in order to minimise the104

mean squared error (MSE) (in the case of OLS regression) or maximise the likelihood105

function (in the case of logit regression).106

In [24], the authors present a study of the relationship between vehicle energy107

demand in GB and demographic, socio-economic and built environment variables using108

OLS linear regression, though clusters are first formed pertaining to the energy use of109

the households being studied. In [25], OLS linear regression is employed to quantify110

the relationship between CO2 emissions of private vehicle use with demographic, socio-111

economic and built environment variables. In [26], an OLS linear regression model is112

built to predict car ownership in China with a focus on geospatial built environment vari-113

ables (e.g. the ratio of road to pavement in a given area). In [27], an OLS linear regression114

model is used to predict greenhouse gas emissions based on UK households’ socio-115

economic characteristics. In [28], over 300 million records from UK road worthiness tests116

(known as ‘MOTs’) are analysed to provide understanding of how vehicle characteristics117

(vehicle age & type, location), household characteristics (income, energy consumption)118

and geographic characteristics (population density) influence car ownership and use.119

The variables explored and demonstrated to be important when modelling car120

ownership in all of these works [23–28] relate to: demographic variables of the household121

(number of residents, household composition (e.g. 2 adults, 2 children)); socio-economic122

variables (disposable income, social classification, tenure, employment status); and built123

environment variables (means of and distance travelled to work, urbanity, population124

density – which is used as an indicator of i) access to local services within a walkable125

distance or developed public transport and ii) the prevalence of off-street parking). Aside126

from including as input the same variables as listed above, this paper includes detailed127

accessibility data detailing households’ level of access to public transport, services and128

jobs. The hypothesised determinants of car ownership as used for this study are further129

detailed in section 3.1.130

A key problem of formulating these predictors as OLS or logit regression problems131

is that strong multicollinearity exists between demographic, socio-economic and built132

environment variables of individuals and households. For example, if an individual is133

employed, then the probability that they drive to work would be greater than it would134

for an individual who is not employed (for whom the probability is zero). This presents a135

problem, as a fundamental assumption of linear regression is that little or no collinearity136

exists in the predictors [29]. As could be expected, significant multicollinearity between137

the variables used in this study was found (section 3.2).138

Techniques designed to overcome multicollinearity in these problems have been139

deployed in the literature. Studies in [20] and [30] demonstrate the use of multi-level140

Bayesian prediction techniques to enable prediction of car ownership and usage patterns141

given built environment variables. In [31], a negative binomial regression performed on142

input features ranging from population density and demographics to public transport143

& car sharing availability is used to investigate the extent to which the availability144
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of public transport & car sharing can reduce demand for car parking in Melbourne.145

In [32], a Poisson regression formulation is used to examine the statistical relationship146

between demographic data and gasoline pump prices and car ownership among a cohort147

of ‘millennial’ dwellings in Washington D.C. There has also been considerable recent148

interest in using more advanced, non-linear prediction approaches for regression outside149

of car ownership prediction (as further discussed in section 4.1). In [33], the authors150

compare the performance of separate non-linear machine learning approaches – random151

forest, support vector regression and ‘gradient boosting machines’ – to predict household152

energy use from real-time sensor data (e.g. ambient weather conditions). In [34], the153

authors propose a convolutional neural network (CNN): a deep learning technique154

commonly used for image recognition, which flattens multidimensional arrays (such as155

digital images) before being input into the nodes of the neural network (see section 4.3).156

Such an approach is used in [34] to predict residential energy consumption based on the157

time of day/week/year and output from sensors on the power grid (current and voltage158

readings). In [35], the authors propose an ensemble method – ensembling the results of159

separate NN regressors – to predict household electricity consumption based on a set of160

household characteristics including the number of rooms, the total floor space and the161

number of residents. In [36], car ownership in Thailand is predicted from independent162

variables relating to household socio-economic factors, activities and accessibility using163

both NNs and decision trees. By defining the problem as a classification, in which the164

number of cars per household is classified as either 0, 1 or 2+, it is shown that neural165

networks statistically outperform decision trees.166

The gaps identified in the literature are two-fold: i) there is a lack of spatial res-167

olution in car ownership modelling, and ii) the statistical problems posed by multi-168

collinearity between the independent variables call for the use of advanced statistical169

models. To address these gaps, this paper presents predictions of car ownership in170

small (300-600 household) chunks of GB (i.e. LSOAs and DZs) using NNs, a form of171

non-linear statistical model. The NN hyperparameters are optimised, to demonstrate172

their effectiveness in this context versus other regression techniques.173

3. Data174

3.1. Hypothesised Predictors of Car Ownership175

Data used to form the independent variables for this study were taken from the UK176

Census, the Department for Transport (DfT), Experian, the Office for National Statistics177

(ONS) and the Scottish Government.178

The categories of independent variables used to predict car ownership in this study179

are summarised in Table 1. Within each variable category are several distinct variables,180

each of which is described in this section (below the table). In total, there are up to 169181

independent variables in this study. As shown, data sources were often different for the182

separate constituent countries within GB – England, Wales and Scotland. This meant183

that individual NNs had to be formed for each country.184

All the data in Table 1 are on a level of LSOA (England & Wales) [37] or DZ (Scotland)185

[38].186

2011 is used as the base year, as it is the year of the latest Census in the UK and187

the most recent year from which all datasets in Table 1 are available. In predicting the188

change in car ownership over a period of time, the period 2001-2011 is used, as 2001 is189

the year of the UK Census before that.190
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Table 1: Independent variables used for regression model

Variable category Source Region Years
Demographic & Socioeconomic data

Economic activity UK Census GB 2001; 2011
NSSec social classification UK Census GB 2001; 2011
Household composition UK Census GB 2001; 2011
Tenure UK Census GB 2001; 2011
Means of travel to work UK Census GB 2001; 2011
Distance travelled to work UK Census GB 2001; 2011

Accessibility data
Bus service frequency indicator (1-100) to nearest
amenity s in set of amenities S

DfT England 2007-2013

Travel time by mode t in set of modes T to nearest
s in S

DfT England 2007-2013

Number of users within travel time m in set of
travel timesMs (in minutes) by t in T to nearest
s in S

DfT England 2007-2013

Experian Mosaic Public Sector classification data †
Number of individuals in Mosaic Public Sector
groups (‘A’-‘O’)

Experian GB 2004-2005; 2008-
2011

Gross disposable household income ††
Gross disposable household income per Local
Authority

ONS GB 1997-2017

Geographic data
English region (9 levels; e.g. ’North West’) ONS England -
Urban/rural classification (England & Wales, 8
levels)

ONS England
& Wales

2001; 2011

Urban/rural classification (Scotland, 6 levels) Scottish Govern-
ment

Scotland 2001; 2011

Population density (England & Wales) ONS England
& Wales

2001; 2011

Population density (Scotland) Scottish Govern-
ment

Scotland 2001; 2011

† Used for prediction car ownership 2011.

†† Used for prediction of change in car ownership 2001-2011.

Demographic data were taken from the UK Census [39]. The variable categories191

shown in Table 1 comprise of responses to that Census question. For example, the192

economic activity variable category contains five distinct variables: economically active193

– full-time employee; economically active – part-time employee; economically active –194

self-employed; economically active – unemployed; economically inactive. Each variable195

is the number of individuals within that LSOA with that response.196

Accessibility data were taken from [40]. In Table 1, S , indexed by s, is the set of197

amenities: employment centres, primary schools; secondary schools; further education198

institutions; doctors’ surgeries; hospitals; supermarkets; town centres. T , indexed by t, is199

the set of transport modes: cycle; car; public transport (including walking to/from transit200

stops); composite mode. Ms, indexed by m, is the set of journey durations (minutes)201

applicable for amenity s. This is equal to {15, 30} for primary schools, doctors’ surgeries,202

supermarkets and town centres; {20, 40} for employment centres and secondary schools;203

{30, 60} for further education institutions and hospitals. It should be noted that it would204

also be desirable to have journey time via other modes of public transport besides bus;205

rail in particular provides a major mode of transit in many major population centres in206

GB. Therefore, having access to data on rail services would lead to the production of207

more valuable research in this area.208

The Mosaic Public Sector classification data were taken from Experian [41]. These209

are household counts within each of the 15 Mosaic Public Sector consumer segmentation210

groups (labelled ‘A’ to ‘O’). The classification takes into account income, credit behaviour,211

property value and consumption [42], all of which are deemed to be important indicators212

for individuals’ propensity for car ownership [43,44].213

Gross disposable household income (GDHI) data were taken from [45]. These data214

cover the period 1997-2017 inclusive for the whole of GB, though are only available215
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at a Local Authority (LA) level. Their lack of spatial resolution meant that Mosaic216

classifications were preferable to predict base year car ownership; however, as the latter217

dataset is not available for 2001, the GDHI data were used to predict the change in car218

ownership 2001-2011. To match LSOAs/DZs with GDHI, shapefiles of LA boundaries219

were matched up to shapefiles of LSOA/DZ boundaries, and the corresponding values220

were assigned. Geographic data were taken from the UK and Scottish governments.221

English regions were assigned to each LSOA by matching up LSOA boundaries to222

region boundaries [46]. As these data are categorical, they are transformed into dummy223

variables in order to be used as inputs to the regression models. These were then224

transformed to 9 dummy variables (1 or 0) for each regional classification. Urban/rural225

classifications were taken from [47] for England & Wales and [48] for Scotland. Both226

sets of urban/rural classifications were transformed from their 8 (England & Wales)227

or 6 (Scotland) level categorical form to dummy variables (1 or 0) for each category.228

Population density was calculated from 2011 and 2001 population data for England &229

Wales [49] and Scotland [50] and the area of each LSOA/DZ boundary.230

It should be noted that the LSOA geographies were different for 2001 and 2011.231

In this work, all datasets were aligned to 2011 geographies to allow comparison. This232

was done using the lookup tables provided [51]. As the geographies are changed due233

to population changes, this led to discrepancies in population in given LSOAs between234

2001 and 2011, which in turn leads to extreme ‘increases’ in car ownership. This is further235

discussed in section 5.236

After collation of all predictors and transformation from categorical to dummy237

variables where applicable, England had 169 independent variables, Wales had 69, and238

Scotland had 67.239

To form a dataset of the change in the variables in Table 1 for 2001-2011, only the240

variables common to both years could be used. Therefore, the accessibility statistics241

and, as discussed, Mosaic data were switched for GDHI. A new dataset was created by242

computing the difference between all values in 2011 and all values in 2001. The assigned243

region and urban/rural classification was assumed to be constant between the two years.244

3.2. Multicollinearity245

Figure 1 shows a correlation matrix between 169 variables for the England dataset246

to demonstrate the significant level of multicollinearity in this problem.247
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Figure 1. Correlation matrix showing collinearity of independent variables

Figure 1, which is symmetrical about the line y = −x, shows that many of the248

independent variables are strongly correlated with one another. The appearance of249

Figure 1 resembles four distinct quadrants.250

The bottom-right quadrant highlights how there is a significant correlation between251

the levels of accessibility to each amenity. This could be expected; for example, the252

number of households within 15 minutes’ drive of a primary school would be expected253

to influence the number of households within 30 minutes’ drive. There is also shown254

to be a correlation between access to different amenities, particularly between access to255

employment centres and other amenities.256

The bottom-left and top-right quadrants show some localised strong correlations257

between the accessibility statistics and other data. This is particularly apparent between258

household composition and propensity to live within close access to GP surgeries,259

hospitals, supermarkets and town centres.260

The top-left quadrant shows strong correlations between many of the datasets used261

in this study. In particular, tenure and NS-SEC are heavily correlated with distance and262

means of travel to work, economic activity.263

The strong level of multicollinearity highlighted in Figure 1 calls for non-linear264

statistical modelling. In section 4, the methods used for this study are explained.265

3.3. Dependent Variable266

The dependent variable in this study was the number of cars & vans per LSOA/Data267

Zone, taken from [39]. It is important to note that this does not distinguish between268

different types of car ownership (e.g. leasing or owning outright). Furthermore, the only269

vans included in this dataset are smaller, privately-owned vans rather than delivery vans270

used for business and commerce. In the rest of this paper, ‘cars’ is used synonymously271

with ‘cars & vans’.272
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4. Method273

4.1. Advanced Regression Models and Artificial Intelligence274

Modelling the relationship between independent and dependent data (regression)275

is well-practised in fields including (but not limited to) medicine [52–54], cyber security276

[55], finance [56], scheduling [57,58], vehicle routing [59], data classification [60] and277

multi-objective optimisation [61,62]. The task of regression – the prediction of this278

relationship – can be done via any one of a variety of methods, including heuristics279

[55,59], nature-inspired algorithms [52,56,57,60–62] and non-linear statistical models280

[53,54,58].281

In this study, the potential for NNs – a non-linear statistical model – to estimate282

the relationship between car ownership and the independent variables in Table 1 is283

investigated. In selection of the regression method used, four advanced regression284

methods were chosen: NNs, random forest (RF), stochastic gradient descent (SGD) and285

support vector regression (SVR). Due to their significantly higher accuracy compared to286

the other three advanced regression methods and OLS regression (as shown in Table 2),287

NNs have been used to present results from this study. In the interest of conciseness, RF,288

SGD and SVR are not described in detail in this paper.289

4.2. Comparison to Other Regression Techniques290

RF, SGD, SVR and NN regression models were designed and optimised using291

grid search techniques on key hyperparameters1 given the same dataset to return the292

minimum possible mean absolute error (MAE); each model was tested with an 80%:20%293

training:testing split.294

Table 2 shows a comparison of the performance (given by the MAE of prediction)295

of the RF, SGD, SVR and NN regression models compared to that of an OLS linear296

regression model2 on the same dataset with the same training:testing split. In Table 2,297

the values in brackets are the MAE values as a percentage of the average number of cars298

per LSOA/DZ, or the average change in cars per LSOA/DZ. As previously stated, there299

were 776 cars per LSOA in England, 830 cars per LSOA in Wales and 353 cars per DZ in300

Scotland on average. The average change in cars per LSOA/DZ between 2001 and 2011301

was a positive gain of 86 cars.302

As shown, significant improvements of up to 28.8% versus the OLS baseline are re-303

alised by using the NN method presented in this paper. The improvement, in percentage304

terms, is shown to be lower for the prediction of change in cars than for the prediction of305

the number of cars.306

Table 2: Comparative results for mean absolute error (MAE) and MAE as a percentage
of the mean number of cars per LSOA/DZ – ordinary least squares (OLS) regression;
random forest (RF); stochastic gradient descent (SGD); support vector regression (SVR);
artificial neural networks (NN) with optimal hyperparameters

Regression OLS RF SGD SVR NN
Cars per LSOA, England 24.66

(3.18%)
30.17
(3.89%)

48.89
(6.30%)

72.83
(9.39%)

17.55
(2.23%)

Cars per LSOA, Wales 21.06
(2.54%)

33.62
(4.05%)

22.39
(2.70%)

154.21
(18.59%)

17.03
(2.05%)

Cars per LSOA, Scotland 13.27
(3.76%)

16.71
(4.73%)

13.43
(3.81%)

34.07
(9.65%)

10.38
(2.94%)

Change in cars per LSOA, England &
Wales

21.54
(25.08%)

23.37
(27.21%)

21.78
(25.36%)

36.38
(42.36%)

19.62
(22.85%)

1 The hyperparameters optimised for the NNs are described in detail in section 4.5. For the RF regression model, the number of trees and the size
of trees (depth; nodes per tree) were altered. For the SGD regression model, the loss function and penalty parameters were altered. For the SVR
regression model, the kernel functions, and parameters C, γ – the decision surface ‘smoothness’ and significance of each training sample respectively
– were altered. More detail on hyperparameter optimisation for RF, SGD and SVR regressors can be found at [63].

2 Backwards elimination was used to avoid overfitting with a cut-off P-value of 0.05.
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The clear out-performance of NNs versus other techniques resounds with results307

found in a review of machine learning studies applied to problems in the energy sector308

in [64].309

4.3. Artificial Neural Network310

NNs are non-linear statistical models that can be used both in regression and311

classification tasks in machine learning applications. A linear combination of the inputs312

x1...xD (Equation 1) creates features, and a target variable is modelled as a function of313

linear combinations of the features.314

aj =
D

∑
i=1

w(1)
ji xi + w(1)

j0 (1)

Equation 1 shows the first layer of the network (as indicated by superscript 1) where315

j = 1, ..., M, with M being the number of linear combinations. The parameters are wji316

and the parameters wj0 are biases. The quantities aj are known as activations. Each of317

them is then transformed using a differentiable, non-linear activation function h to yield318

the hidden units z as shown in Equation 2.319

zj = h(aj) (2)

h functions vary by network design. Two of the most popular are Sigmoid and320

rectified linear units (ReLU) [65,66], which are both trialled in this study (section 4.5).321

ak =
M

∑
j=1

w(2)
kj zj + w(2)

k0 (3)

A linear combination in the next layer gives output unit activations, as shown322

in Equation 3, where j = 1, ..., K, with K being the total number of outputs. Finally,323

assuming that the network has one hidden layer for simplicity reasons but without324

loss of generality, the output unit activations are transformed through an activation325

function, giving a set of network outputs yk. The neural network is, therefore, a non-326

linear function, mapping the input variables xj to the output variables yk, which depend327

on the inputs, and a vector w that is composed by the weights and biases. A simple328

neural network for regression with one hidden layer can be shown in Figure 2. This329

configuration can be generalised by considering additional layers – ‘deep’ networks are330

defined as those with more than one hidden layer. Each layer consists of a weighted331

linear combination as in Equation 3 followed by an element-wise transformation using a332

non-linear activation function.333
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Figure 2. Neural network diagram. The input, hidden, and output variables are represented by
nodes. Arrows show the direction of information during forward propagation.Each hidden and
output unit has an associated bias parameter (omitted for clarity).

While training the network, given a set of input vectors and a corresponding set of334

target variables, the aim is to minimise an error function E(w). This requires an iterative335

optimisation process; a weight vector w which minimises the chosen error function must336

be found. This involves choosing some initial value w0 for the weight vector and then337

moving through weight space in a succession of steps, as in Equation 4 where τ is the338

iteration step. The process by which w0 is chosen varies by what distribution the values339

are selected from. In this study, normal and uniform distributions are trialled.340

w(τ+1) = wτ + ∆w(τ) (4)

The choice of the vector update ∆w(τ) depends on the algorithm. Many algorithms3
341

make use of gradient information and therefore require that, after each update, the value342

of ∇E(w) is evaluated at the new weight vector w(τ+1). The learning rate α determines343

the step size at each iteration while moving towards a minimum of the error loss function,344

as shown in Equation 5.345

w(τ+1) = wτ − α∇E(wτ) (5)

For computational reasons, it is common practice to divide the data into smaller346

datasets and update the weights of the neural networks at the end of every step to fit it347

to the data given. The batch size is the total number of training examples present in a348

single batch; this is further discussed in section 4.5.349

Model parameters are internal to the neural network – for example, neuron weights350

w. They are estimated from the training samples and specify how to transform the input351

data into the desired output. On the other hand, a hyperparameter is one whose value352

is set before the learning process begins. Hyperparameters are not updated during the353

learning and are used to configure either the model (e.g. number of neurons) or the354

algorithm used to find the minimum error solution (e.g. the learning rate).355

Hyperparameter tuning is choosing a set of optimal hyperparameters for a learning356

algorithm. This is carried out in this study via a grid search approach, in which a357

specified subset of hyperparameters is searched exhaustively to produce the best (i.e. the358

one that returns the lowest MSE) configuration. This is further discussed in section 4.5.359

3 The algorithm used in this paper was the Adam optimiser [67], based on stochastic gradient descent.
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4.4. Preprocessing – Normalisation360

Before being put into the networks, the data were normalised as per a Gaussian361

distribution (Equation 6).362

X̂ =
X− µX

σX
(6)

where each X ∈ X is one of the set of independent variables, with corresponding mean363

µX and standard deviation σX .364

4.5. Hyperparameter Tuning365

As discussed in section 4.3, hyperparameter tuning is undertaken to find the NN366

configuration that returns the smallest error of prediction. In this study, the hyperpa-367

rameters tuned were the number of hidden layers, the number of neurons in each layer,368

the activation function used for each layer, the batch size, the learning rate and the369

parameter initialisation functions.370

4.5.1. Network Depth and Number of Neurons per Layer371

The number of neurons in the input layer was fixed by the number of independent372

variables. This was 169 for England, 69 for Wales and 67 for Scotland. The difference is373

due to the presence of the accessibility statistics for England (see Table 1) and the 6-level374

urban/rural classification for Scotland (compared to an 8-level classification for England375

& Wales).376

As this is a regression problem, the number of neurons in the output layer was fixed377

to 1.378

The number of hidden layers (i.e. not including the input and output layers) trialled379

was 1 to 4 inclusive. The number of neurons Nn in the nth hidden layer was trialled380

exhaustively from the set Nn (Equation 7), where 10Z represents the set of integer381

multiples of 10.382

Nn = {ν ∈ 10Z , 0 < ν ≤ Nn−1} (7)

4.5.2. Learning Rate, Weightings Estimator, Batch Size, Activation Function383

Learning rates trialled were 0.01 and 0.001. Batch sizes trialled were 1% and 10%384

of the training dataset (see section 4.5.3). ReLU and Sigmoid activation functions are385

trialled for all layers. Weighting estimators for all layers trialled were of normal and386

uniform distributions.387

4.5.3. Training388

The dataset was split into training, a set of data for fitting the model, validation, a set389

of data with which to continually evaluate the model’s performance as hyperparameter390

tuning was undertaken, and testing, a set of data that the model had never seen before to391

evaluate the performance once the hyperparameters had been fixed. The proportions of392

these sets were 64%, 16% and 20% respectively.393

For each combination, the network was trained for up to 10,000 epochs (this was394

cut short if the reported MSE did not reduce substantially over 50 epochs).395

The building and training of NNs in this paper was done using the Keras library in396

Python [68].397

4.5.4. Optimal configurations398

The sets of optimal hyperparameters out of those trialled for each regression prob-399

lem are shown in Table 3.400
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Table 3: Optimal configurations for artificial neural networks used to predict number of
cars per LSOA and change in cars per LSOA

Regression Hidden
layers

Hidden
layer di-
mensions

Weightings
estimator

Activation
function

Batch size
(% of in-
put data)

Learning
rate

Cars per LSOA - Eng-
land

2 [100,60] Normal ReLU 1 0.001

Cars per LSOA -
Wales

2 [40,30] Normal ReLU 10 0.001

Cars per LSOA - Scot-
land

2 [50,50] Normal ReLU 10 0.001

Change in cars per
LSOA - England &
Wales

2 [40,40] Normal ReLU 1 0.001

Table 3 shows that certain hyperparameter values were consistently found to be401

the best performing: a learning rate of 0.001, Normal weightings estimators and ReLU402

activation functions were consistently better performing than their alternatives. The403

minimum MSE values were reported for networks with 2 hidden layers for all regression404

problems, though the number of neurons in each layer differed. The batch size differed405

depending on the input dataset. For regressions involving the England dataset (32,802406

LSOAs), the optimum batch size was 1%. For the considerably smaller Wales and407

Scotland datasets (1,909 LSOAs and 6,976 DZs respectively), a 10% batch size produced408

a lower MSE.409

5. Results & Discussion410

This section presents the results of car ownership prediction in the base year (2011)411

and change in car ownership between 2001 and 2011 by LSOA/DZ. For background,412

the mean number of cars per LSOA/DZ was 776 for England, 830 for Wales and 353 for413

Scotland (this is lower due to the smaller number of households per Scottish DZ than414

English or Welsh LSOA). The average change in cars per LSOA/DZ between 2001 and415

2011 was a positive gain of 86 cars.416

5.1. Base Year (2011)417

Figure 3 shows predicted and actual cars per LSOA in England & Wales; Figure 4418

shows the same result per DZ for Scotland.419
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Figure 3. Predicted (left) and actual (right) cars per LSOA (2011), England & Wales – detail shown
of Greater London region
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Figure 4. Predicted (left) and actual (right) cars per DZ (2011), Scotland – detail shown of Greater
Glasgow region

Figures 3 and 4 exhibit a good prediction of the number of cars per LSOA in420

England & Wales and per DZ in Scotland. It is shown that generally, car ownership421

is higher in rural areas than urban areas (recall that LSOAs/DZs are sized on number422

of households) – this is a trend that has been generally observed, including in the UK423

[69]. While the error in prediction is difficult to make out by eye in Figures 3 and 4, the424

error in prediction is quantified, first as a histogram and density plot in Figure 5, then425

displayed per LSOA/DZ for the whole of GB in Figures 6 and 7.426
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Figure 5. Error of prediction of cars per LSOA/DZ shown through (left) histogram of percentage
error by LSOA/DZ (2011) across GB and (right) density plot of predicted vs. actual cars per
LSOA/DZ (2011) across GB

Figure 6. Error of prediction of number of cars (2011) by LSOA/DZ across GB – detail shown of
Greater London and Greater Glasgow regions
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Figure 7. Percentage error of prediction of number of cars (2011) by LSOA/DZ across GB – detail
shown of Greater London and Greater Glasgow regions

Figure 5 displays a broad goodness of fit between the actual number of cars and427

the predicted number of cars across GB. Half of the LSOAs/DZs are predicted within428

-0.7% and +3.2%, corresponding to an absolute error of -5 to +20 cars per LSOA/DZ –429

compared to a weighted mean of 709 cars per LSOA/DZ – across GB. The positive skew430

of the histogram shows that the model tends to overpredict than underpredict. This is431

found to be in common with the Department for Transport’s NATCOP model [21].432

Figures 6 and 7 show the limited correlation between prediction error and location.433

Though there are clearly under-and over-predictions throughout GB, it is apparent that in434

Greater London car ownership is generally over-predicted. This trend is also evident in435

other UK fleet models; for example, the aforementioned NATCOP model [21], in which436

it is discussed how the distinctive travel behaviours of the Greater London region lead to437

difficulty in predicting car ownership there. However, to this model’s credit, the errors438

appear to be small: whereas [21] gives an over-prediction of the total number of cars in439

London to be 12% (compared to over-predictions of metropolitan and non-metropolitan440

districts in the rest of GB to be 2% and 3% respectively), the average percentage error441

for this model was found to be 3.04% in London, versus a GB-wide rate of 1.35%. The442

mean percentage error is given for all nine English regions and the other non-English443

constituent countries of GB in Table 4.444

Table 4: Mean percentage error for prediction in number of cars (2011), English regions,
Scotland and Wales

Region/country Mean error (%)
London +3.05
North West +1.99
Yorkshire & The Humber +1.39
North East +1.96
West Midlands +2.22
South East +1.03
East of England +0.97
East Midlands +0.98
South West +1.37
Scotland +0.11
Wales +0.02

5.2. Change in Car Ownership from 2001 to 2011445

Figure 8 shows predicted and actual change in cars per LSOA in England & Wales.446
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Figure 8. Predicted (left) and actual (right) change in cars (2001-2011) per LSOA, England & Wales

Figure 8 shows a generally good match between the predicted and actual change in447

number of cars per LSOA between 2001 and 2011 in England & Wales. Extreme values448

in excess of +/-1000 are shown on the axis; these are due to the boundary changes in449

Census geography between 2001 and 2011. As discussed in section 3.1, 2011 boundaries450

were used for both datasets to allow comparison; however, for a small proportion (<0.5%)451

of boundaries, the change in boundaries lead to drastic changes in population – and452

hence vehicle ownership. In general, the error appears to be small; it is difficult to tell the453

difference between the predicted and actual plots in Figure 8. It is shown that generally,454

car ownership has reduced in Greater London in the period 2001-2011 and increased455

virtually everywhere else. This is in agreement with UK Department for Transport456

statistics [69].457

The error in prediction of the change in cars is quantified, first as a histogram and458

density plot in Figure 9, then displayed per LSOA for England & Wales in Figures 10459

and 11 (for the error in number of cars and in percentage terms respectively).460
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Figure 9. Error of prediction of change in cars (2001-2011) shown through (left) histogram of
percentage error by LSOA in England & Wales and (right) density plot of predicted vs. actual cars
per LSOA in England & Wales – detail shown of Greater London region

Figure 10. Absolute error of prediction of change in cars (2001-2011) by LSOA across England &
Wales – detail shown of Greater London, Northwest England and Mid-Wales regions
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Figure 11. Percentage error of prediction of change in cars (2001-2011) by LSOA across England &
Wales – detail shown of Greater London, Northwest England and Mid-Wales regions

Though Figure 9 shows a steep-sided Gaussian distribution – as was the case in461

Figure 5 – the percentage errors are notably larger: this time, 50% of the predictions are462

between -22.4% and 15.9% of the actual values, corresponding to an absolute error of463

-19 to +14 cars per LSOA (compared to, as already mentioned, an average increase in464

cars per LSOA/DZ between 2001 and 2011 of 86). Whereas the Gaussian distribution465

in Figure 5 was positively skewed, the distribution in Figure 9 is negatively skewed,466

meaning that the model tends to under-predict the (positive) change in cars. This is467

heavily impacted by the ‘special case’ presented by Greater London (see Table 5). The468

right-hand side plot in Figure 9 shows the significant range of changes in cars by LSOA469

in 10 years. By comparison to the dashed green line (showing the line y = x), a generally470

strong prediction of change in cars is shown.471

Figures 10 and 5 show less correlation between prediction and geographical location472

than was shown in Figures 6 and 7. Figure 11 especially highlights the extremity of the473

under-predictions within Greater London (shown by the dark blue). This is reflected474

in Table 5, which shows the mean percentage error for the predicted change in cars475

(2001-2011) per LSOA for England & Wales, by English region and non-English GB476

constituent country (in this case, Wales). It is shown that whereas non-London English477

regions have a mean percentage error between -2.29% and +3.95%, Greater London’s478

corresponding value is -15.29%.479

Table 5: Mean percentage error for prediction in change in cars (2001-2011), English
regions and Wales

Region/country Mean error (%)
London -15.29
North West -0.12
Yorkshire & The Humber +1.26
North East +3.95
West Midlands -1.10
South East -2.15
East of England -2.29
East Midlands +1.50
South West +2.26
Wales +5.12

As detailed in section 3, the set of predictors used for the change in car ownership480

is less comprehensive than the set used for base year car ownership (due to lack of data481

collection in 2001). This is likely to be a key reason for the greater errors in the change in482

car ownership model compared with the base year car ownership model.483
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Clearly, predicting car ownership patterns in Greater London is more difficult than484

doing so for the rest of GB (as has been found – as previously mentioned – in [21]).485

This may be due to the relative scarcity of off-street parking, advanced public transport486

networks and high quality cycling infrastructure in the capital when compared to the rest487

of GB. Further work is recommended to investigate methods of improving prediction of488

car ownership in this region.489

6. Conclusion & Future Work490

This paper has presented predictions of car ownership based on demographic, socio-491

economic and built environment variables in a base year (2011), and over the course492

of 10 years (2001-2011), by using and tuning a set of deep NNs. It was shown that this493

method offers significant improvements in prediction accuracy (up to a 29% reduction494

in MAE) versus an OLS regression technique and further improvements compared495

to other advanced regression techniques using the same dataset, and that the model496

offers significant improvements in accuracy predicting car ownership in Greater London497

compared to the UK Department for Transport’s NATCOP model [21].498

The method presented in this paper can be used to improve the accuracy of car499

ownership models and hence allow for enhanced modelling of the spatial distribution of500

car ownership. As previously mentioned, while the model does offer improvements in501

prediction of car ownership in London, the region still suffers worse predictions than the502

rest of GB. It is proposed that further work be done to investigate methods of improving503

predictions within London using NN methods.504

The approach demonstrated could be relevant to transport and electricity system505

planners. Exploring the effect of changing demographics, socio-economics and the built506

environment on the number of cars per LSOA is useful for transport planners as it507

indicates the pressure cars will put on local transport infrastructure; furthermore, by508

using these methods to explore credible futures for the dissipation of electric vehicles,509

the results could be invaluable to electricity network operators – who will be given510

an impression of the electrical demand they can expect at the relevant pieces of infras-511

tructure. The method allows for scenario-based modelling of how the car ownership512

predicting variables may change in the future, and analysis of how this could affect513

car ownership. Several of the predictors used – most readily the accessibility statistics,514

but to a certain extent economic activity, means of travel to work, distance travelled to515

work and disposable household income – could be influenced by policy and planning516

decisions.517

This paper lays the foundation for more detailed technology-aware fleet modelling,518

which would form a crucial part of analysis available to decision makers as the transport519

sector strives to meet Net Zero targets as part of Paris Agreement goals. Though this520

paper has focused on car ownership in GB, methods presented in this paper could readily521

be applied to other nations. To enhance the method’s applicability to potential disruptive522

patterns in the transport sector, further work is recommended to include distinction523

of cars by ownership type: while private owned cars dominate the UK car fleet, this524

may change with new business models, car clubs and other technologies – including525

autonomous vehicles – that may facilitate shared mobility. Of particular relevance in526

the future of mobility is the effect of the COVID-19 recovery on society’s willingness to527

use public transport [70] and the potential for the continuation of remote working [71],528

both of which have the potential to disrupt the future pathway of the transport-energy529

system.530
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