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Abstract

Technological innovations often create new markets and this gives incentives to learn

about their associated profitabilities. However, this decision depends not only on the

underlying uncertain profitability, but also on attitudes towards risk. We develop a

decision-support tool that accounts for the impact of learning for a potentially risk-

averse decision maker. The Kalman filter is applied to derive a time-varying estimate

of the process, and the option is valued as dependent on this estimation. We focus

on linear stochastic processes with normally distributed noise. Through a numerical

example, we find that the marginal benefit of learning decreases rapidly over time,

and that the majority of investment times occur early in the option holding period,

after the holder has realized the main benefits of learning, and that risk aversion leads

to earlier adoption. We find that risk-aversion reduces the value of learning and thus

reduces the additional value of waiting and observing noisy signals through time.

1 Introduction

Investment decisions, such as the launch of nascent technologies, or whether to enter

an emerging market, often entail considerable amounts of uncertainty. For example,

the rapid adoption of green hydrogen encompasses both uncertainties regarding tech-

nological potential and the future market size (Financial Times 2021), both of which

a decision maker can learn more about through actively acquiring information over

time. The process of updating a priori expectations when information arrives is known

as learning. However, the learning process is usually not explicitly considered in stan-

dard investment analysis such as net-present value calculations and real options. In

this paper we allow for a more realistic learning process, where a decision maker can
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derive an optimal strategy for irreversible investments, by incorporating noisy signals

to discern the true profitability of a potential investment project.

More specifically, we examine the optimal investment behavior of a firm that has the

option to invest in a project against a fixed sunk cost, and consider a situation in which

the underlying variable of the project value is assumed to be either determined by an

unknown profitability constant or the state of an Ornstein-Uhlenbeck (OU) process.

The initial state is assumed uncertain, and since the process is not perfectly observable,

its value remains uncertain throughout the holding period. The firm may engage in

obtaining noisy observations of the process over time in order to estimate its value, and

consequently, the project’s value. This noise represents a firm-specific uncertainty, and

the firm is assumed to face an incomplete market. We, therefore, resort to maximizing

expected utility, assuming a firm with a known constant rate of relative risk aversion

and rate of time preference.

We begin our analysis by formulating a continuous-time subjective belief of an OU

stochastic process. The resulting estimation procedure is compared with an underlying

process that is constant at the mean value of the OU process. We derive the expected

net present utility of investing in the project, and proceed to discuss properties of the

option value. The optimal investment policy is determined using a simulation-based

method. Finally, we present a case study in order to demonstrate the dynamics of the

model.

The contribution of our work is threefold. First, we develop a utility-based frame-

work in order to analyse how a decision maker can learn from noisy signals to impact

investment decisions under different assumptions regarding the stochastic nature of

the problem. Second, we derive analytical results, where possible, for the optimal

investment strategy and the associated investment rule. Third, we provide managerial

insights for investments with active learning based on a numerical analysis of the

model.

The managerial insights are as follows. Firstly, the value of learning decreases in

the initial estimate of the state process. Intuitively, if the decision maker has a high

initial estimate, its expected value of learning is low, since the investment opportunity

is very likely to be profitable anyway. Secondly, value of learning is increasing in

the standard deviation of the initial estimate of the state process. Hence, reducing

initial parameter uncertainty, through, e.g., market research can significantly reduce

the value of learning over time. Thirdly, we find that most of the learning happens

early in the option’s life-time. Finally, even though the value of learning increases in

the uncertainty over the initial estimate, the means and medians of the investment time

distribution shows the opposite result. We think that this is due to a positive relationship

between the initial uncertainty and the initial marginal benefit of learning.

The remainder of the paper is organized as follows. We proceed by discussing some

related work in Sect. 2, and outline our model in Sect. 3. Finally, a case study is then

introduced and discussed in Sect. 4, followed by concluding remarks in Sect. 5.
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2 Related work

The traditional real options literature address the problem of optimal investment under

uncertainty (Dixit and Pindyck 1994; McDonald and Siegel 1985, 1986), and, recently,

this literature has been extended by the incorporation of learning. This new method-

ology considers information acquisition as a conscious activity by the firm, and not a

passive consequence of waiting to exercise the option. In contrast to traditional models

in which parameters that establish the project value are assumed to be known at the

beginning of the option holding period, a learning firm changes its estimates through-

out this period, either discretely or continuously, based on received information. This

additional benefit of holding the option therefore introduces another quantifiable factor

to consider when deciding whether to exercise.

There are several ways of modeling active learning. One widely applied method

is by Bayesian updating of a parameter’s prior probability distribution when new

observations arrive. Examples of this approach include Singh et al. (2018), who apply

Bayesian updating at discrete observations to estimate the drift and diffusion parame-

ters of an OU process, or Blanke and Bosq (2012) who study a similar problem in both

discrete and continuous time. Although the majority of papers that model learning in

a real options setting do so through Bayesian updating, another equally feasible esti-

mation method is the Kalman filter algorithm, as outlined in, e.g., Øksendal (2013).

Instead of sequentially updating the entire probability distribution of the estimated

parameter, the Kalman filter algorithm is generally applied to only update the con-

ditional expectation, circumventing some of the analytical difficulties with Bayesian

updating. Note that, when the observations are considered to be independent of the

observed parameter, and observation noise is considered to be normally distributed, the

two approaches result in identical estimates, as demonstrated by Barker et al. (1995)

and Soyer (2018).

A familiar result in real options analysis is the non-decreasing relationship between

uncertainty and option value. Incorporating learning in a real options framework often

reduces this uncertainty, and a natural question is whether learning is valuable in this

context. As Martzoukos and Trigeorgis (2001) conclude, the value lost from lower

uncertainty is compensated by the value gained from better information. This may

also be the case if learning is costly, as supported by the results of Harrison and Sunar

(2015) and Bellalah (2001), among others, supporting the notion that incorporating

learning adds additional value to the traditional real options framework. In addition,

the ideas pursued in this paper are applicable not only to optimal stopping problems,

but also models of impulse control, such as, e.g., Dumas (1991) and Peura and Keppo

(2005).

Nevertheless, the work on learning in a real options context is relatively scarce.

Among the existing literature, Kwon and Lippman (2011), Ryan and Lippman (2003),

Kwon et al. (2016) and Thijssen et al. (2004) take a theoretical approach and illustrate

how the optimal investment strategy is influenced by different aspects of learning about

some aspect of future project profitability when the decision maker is assumed to be

able to enter, exit or expand the project, or a combination of the three. Herath and Herath

(2008), Kwon (2014) and Dalby et al. (2018) examine how learning with real options

can be applied to specific situations in industry. More specifically, Herath and Herath
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(2008) consider how learning may help in valuing certain types of information security

systems, and conclude that the incorporation of learning leads to a reduction of upward

bias in estimates, as well as specific implications for security system management.

Kwon (2014) models the optimal decision policy of a firm that has the option to invest

in order to protect a project against disruption and may continuously learn about the

probability of this disruption from trends in the market. His model illustrates the

sensitivity of optimal decision to the probability of disruption. Dalby et al. (2018)

consider a firm which may invest in a renewable energy project, that is subject to an

expected adjustment of the support scheme which is currently present. The firm is

assumed to be able to learn about the arrival rate of the adjustment from a continuous

information stream. The authors illustrate how the optimal investment threshold varies

with the desired learning rate and the corresponding effect on option value, and,

notably, how the relative time to optimal investment decreases with learning rate. A

key contribution of our paper in the context of the aforementioned papers is that we

estimate a stochastic process, and not a parameter that is assumed to be constant in

time.

A factor of interest in relation to active learning is the “rate of learning”, or, “learn-

ing rate”, represented by Kwon et al. (2016) as a parameter that reflects the magnitude

of the difference between the prior and posterior probability distributions when apply-

ing Bayesian updating. With a Kalman filter, the equivalent measure would be the

magnitude of the difference between the prior and posterior conditional expectations.

In both cases, the learning rate may be seen as a function of the volatility of the obser-

vation process. This volatility describes the uncertainty of the estimate, and a higher

rate of learning is intended to translate to a faster decrease in estimator uncertainty.

When learning is considered to be costly, the cost function may be expressed in terms

of this learning rate, as demonstrated in Moscarini and Smith (2001), and the investor

is consequently faced with selecting the optimal learning rate. We consider a fixed

learning rate in this article, but acknowledge the importance of discussing the opti-

mal learning rate when considering practical applications, especially when learning is

costly, as discussed in Hagspiel et al. (2019). We assume costless learning to simplify

the analysis and to illustrate the dynamics of the optimal strategy more clearly. For

further discussion on costly learning within a real options framework, see, e.g., Per-

tile et al. (2014); Harrison and Sunar (2015); Moscarini and Smith (2001); Bellalah

(2001); Bergemann and Välimäki (2008); Keller and Rady (1999) and Thijssen and

Bregantini (2017).

We focus our discussion on a certain class of stochastic processes known as OU

processes. These processes are mean-reverting, and have been applied to model a

wide range of scientific phenomena. Within finance, evidence for mean-reversion is

abundant (Wong and Lo 2009), and the OU process has been used to model commodity

prices, as in Schwartz (1997) and Lucia and Schwartz (2002), exchange rates, as in

Jorion and Sweeney (1996), and interest rates, as in Vasicek (1977). In a real options

framework, Ekström et al. (2011) formulate the problem of when to liquidate a position

in a pairs trade by modeling a mean-reverting price spread with an OU process. Their

model is extended by Leung and Li (2015) with the incorporation of a strategy for

optimal entry into the position. In an industrial context, Näsäkkälä and Fleten (2005)

analyse a real options problem of investment in a power plant when the spread between
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the electricity price and cost of gas is assumed to follow the sum of an arithmetic

Brownian motion and an OU process, similar to the method applied in Lucia and

Schwartz (2002). Overall, if an observable underlying process of a project is an OU,

and the decision maker has derived an expression for the expected value of the project,

our model may be applied to devise an optimal investment strategy. As an example

of current relevance, Gray et al. (2011) demonstrate that the disease transmission

coefficient in an epidemiological SIS-model may be expressed by an OU process. If a

decision maker formulates a project value in terms of this coefficient, our model may

be applied to value the opportunity of investing in it. We introduce a case study that

assumes an industry with mean-reverting prices following an OU model. It should be

noted, however, that our main concern in this paper is to derive a model of general

applicability.

Although the aforementioned literature offers meaningful insights on optimal

investment decisions and learning, it is developed under the assumption of risk neu-

trality, which relies on the assumption that the underlying asset may be spanned or

replicated by assets in the market. It has been pointed out by Hugonnier and Morellec

(2007) that assumptions of risk neutrality or market completeness may be convenient to

characterize investment decisions under uncertainty, they “are not particularly relevant

to most real-world applications”. In particular, corporate executives and entrepreneurs

typically have to make investment decisions in situations where the cash flows from

the project are not spanned by those of existing assets or under other constraints which

make them face incomplete markets. In such environments, we can expect their risk

aversion to affect firms’ investment decisions. In this paper, the stochastic process

underlying the option value consists of a volatility component that changes with time.

If the firm were to attempt to create a replicating portfolio, it would have to continu-

ously update the portfolio composition in order to accurately reproduce the dynamics

of the process. As noted by Leland (1985) and, more recently, Kolm and Ritter (2019),

the presence of transaction costs makes a continuously updated portfolio infinitely

costly in theory. In practice, a dynamically replicating portfolio would be updated

discretely, which limits total transaction costs, at the expense of a lower replication

accuracy. Although there are ways of optimizing this trade-off, as both Leland (1985)

and Kolm and Ritter (2019) show, we have decided on a different modelling approach

that avoids these difficulties altogether. Similar to Henderson and Hobson (2002),

we assume a firm with known, constant relative risk aversion (CRRA), as well as a

constant rate of time preference. Following Hugonnier and Morellec (2007), we con-

sider the firm’s net present utility of investing in the project rather than its expected

net present value of cash flows as the relevant condition for investment decisions.

With this approach, the risk originating from the volatility of the estimated process

is incorporated in the valuation of the investment opportunity. It should be noted that

the utility function may easily be converted to its risk-neutral equivalent by letting

the firm’s risk aversion be equal to zero, in case the estimation is in fact spanned by

existing assets. Our model therefore has wider applicability than one that expresses

its exercise condition in terms of expected NPV.

Since attitudes towards risk and the ability to learn about market conditions impact

the optimal investment policy significantly, we explore their interaction and combined

impact in this paper. Our results show how the main benefits from learning occur
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early in the option lifetime, and that the distribution of exercise times has a positive

relationship with both the mean and variance of the distribution of the initial estimate.

Furthermore, when the unobserved profitability indicator is assumed to be constant,

the decision maker postpones the investment compared to a mean-reverting process.

Although increasing uncertainty about the initial profitability estimate increases the

incentive to learn, risk-aversion decreases the project’s option value and makes it less

attractive to engage in active learning.

3 Model

We consider a risk-averse decision maker who has a finitely-lived option to make

an irreversible investment in a project for a known and fixed sunk cost k > 0. The

present value of the free cash flows that are thrown off by the project over its life time

are modeled as a stochastic state process X = (X t )t≥0. Uncertainty is modeled on

a probability space (�,F , P), which is endowed with a filtration F = (Ft )t≥0. The

state process X is assumed to take values in R and to be adapted to F. The present value

of the free cash flows (PVFCFs) thrown off by the project are given by a continuous,

and increasing function, F , of the state variable. The utility of the PVFCFs is given

by a continuous, increasing, and concave function U .

Contrary to standard real options models, we assume that the state process X is only

noisily observed. This is a realistic assumption when, e.g., the project represents an

investment in a new market for which future demand is not observed until investment

actually takes place. However, we assume that the decision maker can learn about the

state process through these noisy observations, e.g., through ongoing market research

into noisy signals. In line with Harrison and Sunar (2015), we assume that information

is received by the decision maker frequently enough to be modeled as a continuous

process that generates the information filtration G = (Gt )t≥0.

The decision maker uses the information filtration to form an estimate of the state

of the process at any point in time. We will refer to this estimate as the decision

maker’s estimation process X̂ = (X̂ t )t≥0. At the start of the planning horizon, the

decision maker holds an initial estimate X̂0 with non-zero variance. The decision

maker’s objective then is to solve the optimal stopping problem

F∗(t, X̂ t ) = sup
τ∈[t,T ]

E

[
e−ρ(τ−t)(E[U ◦ F(Xτ )|Gτ ] − k)

∣∣∣Ft

]
, (1)

where ρ > 0 is the decision maker’s time discount rate and the supremum is taken

over all F-stopping times.

3.1 The estimation process

Since the decision maker continuously receives information about the state process,

the value of the estimation process evolves stochastically over time, and consequently

so does the decision maker’s expected value of the project. Hence, the option value

depends on this expectation which is governed by a stochastic differential equation

123



Kalman filter approach to real options with active learning

(SDE) that describes the evolution of the belief process through time.1 We begin by

introducing the underlying process and the data generating process, and proceed to

derive a general SDE for the belief process.

We assume that the state process X is the unique strong solution to the stochastic

differential equation

d X t = μ(X t , t)dt + σ(X t , t)d Bt , (2)

with given (but unobserved) initial value X0, where B = (Bt )t≥0 is a standard Brown-

ian motion. The decision maker’s observations are given by the process H = (Ht )t≥0,

with for all t ≥ 0,

Ht = β(X t , t) + γ (X t , t)Wt , (3)

where W = (Wt )t≥0 is a standard Brownian motion independent of B. By defining

the (cumulative) observation process Z = (Z t )t≥0 as

Z t =
∫ t

0
Hsds, (4)

it follows that (Øksendal 2013, p. 86) the observation process can be represented in

differential form as

d Z t = β(X t , t)dt + γ (X t , t)dVt , (5)

where dVt = Wt dt , so that V = (Vt )t≥0 is a standard Brownian motion independent

of U .

The filtering problem then is: Given observations Zs satisfying Eq. (5) for 0 ≤ s ≤ t ,

what is the best estimate X̂ t of the state X t based on these observations? Here, “best”

is interpreted in the sense of minimizing mean-squared error. That is, the estimation

process X̂ = (X̂ t )t≥0 is such that for all t ≥ 0 it holds that

1. X̂ t is Gt -measurable, where Gt is the σ -algebra generated by observations

(Zs)0≤s≤t ,

2. E
[
(X t − X̂ t )

2
]

= inf
{
E

[
(X t − Y )2

]
: Y ∈ K

}
, where

Kt ≡ {Y : � → R; Y is Gt -measurable} .

The best estimate may be expressed as X̂ t = E [X t | Gt ] (Øksendal 2013, Theo-

rem 6.1.2). In order to obtain an expression for X̂ t we apply the Kalman filter, which

has been applied to a wide range of estimation problems (Grewal 2011). If observations

of a certain state are subject to normally distributed measurement inaccuracies, then

the Kalman filter allows one to identify the estimator with the smallest mean squared

error among candidate estimators. In our model, the noise that arises when measuring

β(s, Xs) at measurement times s ∈ [0, t] is expressed by the term γ (s, Xs)Ws from

1 Our method in this section is largely based on the procedure presented in Øksendal (2013), Chapter 6.
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Eq. (3). Note that, depending on its structure, a measurement of β(s, Xs) may be

transformed to a measurement of Xs .

To keep our analysis as simple as possible, we restrict attention to observations of

a linear dynamical system, in which the aforementioned processes take the form

d X t = F(t)X t dt + C(t)d Bt , and (6)

d Z t = G(t)X t dt + D(t)dVt , (7)

i.e. β(X t , t) = G(t)X t , γ (X t , t) = D(t), μ(X t , t) = F(t)X t , and σ(X t , t) = C(t).

As noted by Soyer (2018), a Kalman filter algorithm applied to linear dynamical

systems with Gaussian noise results in a Gaussian distribution that is identical to the

distribution obtained by application of sequential Bayesian updating. This distribution

may consequently be used to obtain expectations of functions of the observed process

at a given t , either analytically or numerically.

If the linear dynamical system takes the form of Eqs. (6)–(7), (Øksendal 2013,

Theorem 6.2.8) shows that the application of a Kalman filter results in a stochastic

differential equation for X̂ t of the form

d X̂ t =
(

F(t) − G2(t)S(t)

D2(t)

)
X̂ t dt + G2(t)S(t)

D2(t)
d Z t , (8)

where X̂0 = E[X0], and S(t) = E
[
(X t − X̂ t )

2
]
, which satisfies the Ricatti equation

d S(t)

dt
= 2F(t)S(t) − G2(t)

D2(t)
S2(t) + C2(t). (9)

If functions F(t), C(t), G(t) are solvable analytically, we may derive X̂ t explicitly.

In any case, the stochastic differential Eq. (8) is sufficient to derive an option value,

and we will therefore focus our attention on this equation. We simplify Eq. (8) by

introducing coefficient functions L1(t) = F(t) − G2(t)S(t)

D2(t)
and L2(t) = G2(t)S(t)

D2(t)
, so

that

d X̂ t = L1(t)X̂ t dt + L2(t)d Z t . (10)

Using (10), we apply our model to two different situations. In the first, the state process

X is assumed to be constant. In the second, it is assumed to follow a mean-reverting

Ornstein-Uhlenbeck (OU) process. For clarity, we denote the coefficient functions

of the first application as L1,c(t) and L2,c(t) and those of the second application as

L1,o(t) and L2,o(t). In any general discussion we will drop the subscripts.

3.1.1 Application 1: A constant process

Consider a filtering problem in which the state process X is constant, so that d X t = 0

and X t = X0, a.s. At time t = 0 the decision maker has a prior estimate X̂0 = E [X0]
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with variance V [X0] = a2. Observations are assumed to be of the form

Ht = X t + mWt , (11)

for some m ∈ R \ {0}, so that

d Z t = X t dt + mdVt . (12)

Following the same steps as for the general case, we obtain the following stochastic

differential equation for the best estimate of X t :
2

d X̂ t = L1,c(t)X̂ t dt + L2,c(t)d Z t . (13)

In this case,

L1,c(t) = − a2

m2 + a2t
, and L2,c(t) = a2

m2 + a2t
. (14)

By expanding d Z t the process X̂ can be expressed in terms of the Brownian motion

differential, i.e.

d X̂ t = mL2,c(t)dVt . (15)

3.1.2 Application 2: An OU process

Here we consider a filtering problem in which the state process X follows an OU

process, with d X t = −pX t dt + qdUt , for p > q > 0. As before, the observer holds

an estimate of X0 with a mean of X̂0 = E [X0] and variance V [X0] = a2. Following

the same steps as in Sect. 3.1.1, we get the following coefficients:3

L1,o(t) = −

(
p + a2

m2

) √
p2 + q2

m2 +
(

p2 + q2

m2

)
tanh

(
t

√
p2 + q2

m2

)

√
p2 + q2

m2 +
(

a2

m2 + p
)

tanh

(
t

√
p2 + q2

m2

) , and (16)

L2,o(t) = a2

m2

√
p2 + q2

m2 −
(

p − q2

a2

)
tanh

(
t

√
p2 + q2

m2

)

√
p2 + q2

m2 +
(

a2

m2 + p
)

tanh

(
t

√
p2 + q2

m2

) . (17)

By expanding d Z t , the process X̂ can be expressed in terms of the Brownian motion

differential, i.e.

d X̂ t = −pX̂ t dt + mL2,o(t)dVt . (18)

2 All derivations are given in Appendix 1.
3 Derivations are given in Appendix 2.
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This shows that the estimation process X̂ takes the same form as the state process X ,

albeit with a different diffusion term.

We have so far assumed that the process reverts to zero. However, certain appli-

cations require the process to revert to a specific constant μ. Following Hull (2015,

Sect. 31.7), without loss of generality, we may shift the process by μ and analyze

X̂ t +μ, while still modeling X̂ t as an OU process reverting to zero. Note that by shift-

ing the OU in such a way, it effectively becomes structurally equivalent to the model

in Vasicek (1977), which allows for mean reversion to a nonzero constant. Further-

more, it is worth noting that by allowing μ to be time dependent such that μ = μ(t),

we may model observations of processes that are assumed to have a time-dependent

long-run mean as the sum of μ(t) and a non-shifted OU model. This may for example

be applicable to situations in which the process is influenced by seasonal effects.

3.1.3 Comparisons

As is evident from Eqs. (15) and (18), the function L2 plays a crucial role in how

the estimates evolve with time. The component has similar characteristics for both

processes. Specifically,

i. L2(0) = a2

m2 ,

ii. 0 ≤ lim
t→∞

L2(t) < ∞,

iii. L2(t) > 0 and L ′
2(t) < 0 when t > 0,

iv. L2 is increasing in a, and

v. L2 is decreasing in m.

This implies that the uncertainty in the initial estimate is equally large for both pro-

cesses, and decreases strictly towards zero. The negative gradient illustrates how

learning affects the estimate, by allowing for greater certainty as time passes. Since

L2(t) is strictly positive as well as strictly decreasing, the gradient must decrease

in absolute magnitude with increasing t , which may be interpreted as a decreasing

marginal benefit of additional observations.

Furthermore, it can be shown that there exists t ′ ≥ 0 such that L2,c(t) ≥ L2,o(t) if,

and only if, 0 ≤ t ≤ t ′. The intercept t ′ exists due a non-zero limiting value of L2,o.

Specifically,

lim
t→∞

L2,c(t) = 0, and (19)

lim
t→∞

L2,o(t) = a2

m2

√
p2 + q2

m2 −
(

p − q2

a2

)

√
p2 + q2

m2 +
(

a2

m2 + p
) > 0. (20)

The latter result follows from the observation that the uncertainty in the estimation

process can never be completely eliminated if the state process is stochastic. Note

that if q = 0, then L2,o(t) does in fact converge to zero. However, we only consider

p > q > 0, and the uncertainty in the estimation process is, therefore, initially higher

for the constant process than for the OU process. This is reversed at time t ′, after
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which the uncertainty in the estimation process is higher for the OU process than for

the constant process. Note that whether t ′ < T depends on parameters, so that it is

possible that uncertainty in estimating the constant process is higher than uncertainty

in estimating the OU process over the project’s entire life-time .

Considering the fact that m can be thought of as representing the volatility of

individual observations, the fact that L2 decreases in m may be surprising. However,

when the estimation process is expressed in terms of the Brownian motion differential,

the volatility is given by mL2(t), and it becomes apparent that the estimation process

has a volatility that is increasing in m.

3.2 The option to invest

Recall that the decision maker’s objective is to solve the optimal stopping problem 1,

F∗(t, X̂ t ) = sup
τ∈[t,T ]

E

[
e−ρτ (E[U ◦ F(Xτ )|Gτ ] − k)

∣∣∣Ft

]
,

where U : R → R is an increasing and concave Bernoulli utility function, ρ > 0 is the

decision maker’s time discount rate, k > 0 is the sunk cost of investment, and T < ∞
is the option’s life time. The estimation process represents, at any time t ∈ [0, T ], the

decision maker’s best estimate X̂ t (in terms of minimized mean-squared error) of the

present value of the project’s future stream of free cash flows, X t .

Since the value of the option depends on the estimation process X̂ and if the utility

function U is differentiable, then it follows from the general theory of optimal stopping

(Krylov 1980) that the optimal investment policy will be characterized by a continuous

exercise boundary t �→ X̂∗
t , in the sense that the optimal time to invest is the first exit

time from the continuation set

C =
{(

t, X̂ t

)
∈ [0, T ] × R : X̂ t < X̂∗

t

}
. (21)

Note that computing the option’s exercise value,

�
(
t, X̂ t

)
:= E[U ◦ F(Xτ )|Gt ] − k, (22)

requires knowledge about the distribution of X t . We use a simulation procedure to

estimate this distribution, based on realizations of the estimation process.4 For further

reference we define a belief process of the form

d X̂ t = L1(t)X̂ t dt + L2(t)d Z t , (23)

4 Further details are given in Appendix 3.
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Fig. 1 Domain of the option value function f (X̂ t , t)

the characteristic operator on C2 as

A f (t, x) = ∂ f (t, X̂ t )

∂t
+ [L1(t) + L2(t)]X̂ t

∂ f (t, X̂ t )

∂x
+ 1

2
m2L2

2(t)
∂2 f (t, X̂ t )

∂x2
.

(24)

From the general theory of optimal stopping (Peskir and Shiryaev 2006) it follows

that the value function V should be C1, C2 a.e., and solve the variational inequalities

max{�(X̂ t , t) − F∗(X̂ t , t),AF∗(X̂ t , t) − ρF∗(X̂ t , t)} = 0, for all (t, X̂ t ) ∈ [0, T ] × R.

(25)

The corresponding continuation region is given by

C = {(t, X̂ t ) ∈ [0, T ] × R : F∗(X̂ t , t) > �(X̂ t , t)}.

Note that (25) implies that on C it should hold that

AF∗(t, X̂ t ) − ρF∗(t, X̂ t ) = 0. (26)

This is generally referred to as the Bellman equation.5

5 An intuitive derivation of the Bellman equation can be found in Appendix 4.
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Figure 1 summarizes the boundary value problem. Since the free boundary t �→ X̂∗
t

is initially unknown, it must be identified together with the option value function

F∗(t, X̂ t ) in the solution procedure. The variation inequalities (25) apply across the

entire domain of V . Hence, we seek to identify a free boundary t �→ X̂∗
t that satisfies

�(t, X̂ t ) − F∗(t, X̂ t ) = 0 when X̂ t ≥ X̂∗
t , and (27)

AF∗(t, X̂ t ) − ρF∗(t, X̂ t ) = 0 when X̂ t < X̂∗
t , (28)

for all t ∈ [0, T ]. These constraints, together with the boundary Conditions (29)–(32)

below, are sufficient to identify the free boundary and the option value function.

lim
X̂ t →−∞

F∗(t, X̂ t ) = 0, (29)

F∗(T , X̂T ) = �(T , X̂T ), (30)

F∗(t, X̂∗
t ) = �(t, X̂∗

t ) and (31)

∂ F∗(t, X̂∗
t )

∂ X̂ t

= ∂�(t, X̂∗
t )

∂ X̂ t

. (32)

Condition (29) is a standard “no bubble” condition that states that the option is worth-

less if the estimation process becomes unboundedly negative. The estimation process

giving, at any time t , an unbiased estimator with a finite variance, the limit implies

that the observed process also approaches negative infinity in expectation. Due to

the strictly increasing nature of the exercise value, the option value consequently

approaches its minimum value, zero. Condition (30) states that the decision maker

makes a now-or-never investment decision at the expiration time T of the option. See

Dixit and Pindyck (1994, Chapter 3) for intuitive motivations why the value-matching

Condition (31) and smooth-pasting Condition (32) are necessary to ensure an optimal

free boundary.

4 Results

This section presents an illustration of the model described in Sects. 3. In particular,

model the PV of FCFs as

F (x) = Q (x + μ) , (33)

where Q > 0 is the quantity sold, x is the per-unit free cash flow, and μ is the

deterministic long run mean of the price process. We assume that the decision maker’s

preferences exhibit constant relative risk aversion (CRRA) and are represented by the

utility function

U (w) =
{

w1−γ

1−γ
when 0 ≤ γ < 1, and

ln(w) when γ = 1,
(34)
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where γ is the Arrow-Pratt coefficient of relative risk aversion. Note that U is strictly

concave in w for any γ > 0, and linear for the case γ = 0 where the decision maker

is risk neutral.

The free-boundary problem described there is solved by using the simulation-based

approach introduced in Longstaff and Schwartz (2001), in which various American

options are valued by first simulating a series of trials of the underlying stochastic

process, then obtaining stopping rules for each trial, and finally averaging over the

discounted exercise values. We start by calculating the exercise values at the terminal

boundary T , and thereafter stepping backwards in time, using previously computed

exercise values as regressands, and current estimation process values as regressors, in

order to obtain least-squares coefficients of a conditional expectation function for the

continuation value of the option at the given point in time, which is then compared to

the value of immediate exercise. As a useful comparison, this method may be viewed

as analogous to the decision problem presented by the Bellman equation in Sect. 3, in

which the expected continuation value is compared to the exercise value in continuous

time. As noted by Longstaff and Schwartz (2001), the functions used in the regression

need to form an orthonormal basis. By increasing the number of these orthonormal

basis functions, the accuracy of the procedure can be improved.

If we denote the magnitude and number of time-steps by 
t and N = ⌊T /
t⌋,

respectively, then the regression equation at time-step j ∈ {1, . . . , N − 1} can be

written as

Y (ωi , j
t) =
B∑

k=0

an, jLn(X̂ j ), (35)

where ωi indicates the sample path of the i-th trial, Y indicates the regressand, B

denotes the number of basis functions, {an, j } the regression coefficients and Ln the

nth order basis function.6

More specifically, we simulate S sample paths of the estimation process by the

Euler method, discretizing the expanded SDE (23), such that

X̂ j = X̂ j−1 + [L1(t − 
t) + L2(t − 
t)]X̂ j−1
t + mL2(t − 
t)
√


t ζ j ,

(36)

where j = {1, . . . , N } and ζ j ∼ N (0, 1). All sample paths begin at the initial belief

X̂0. In order to reduce the computational cost of the algorithm, we apply antithetic

variates when sampling the standard normal distribution. For each trial i with a given

vector of realized standard normal variables {ζi, j } j we design a second trial i ′ with

antithetical realizations {−ζi ′, j } j . This results in a negative covariance between path

values of trials i and i ′ at any given j , which, when applied to all trials, reduces the

variance across all path values at j , resulting in a lower required number of trials for

a desired level of accuracy.

6 Further details are provided in Appendix 5.
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Table 1 Base parameter values under risk neutrality and parameters under risk aversion in parenthesis when
different. (NOK stands for Norwegian Kroner.)

Parameter Value Unit Description

T 5 Years Option lifetime

k 5000 MNOK Investment cost

Q 100 MQ Proportionality of project value function

γ 0 (0.1) – Relative risk aversion

ρ 0.05 – Rate of time preference (discount rate)

X̂0 40 NOK/Q Initial belief

a 60 NOK/Q Volatility of initial belief

m 20 NOK/Q Volatility of observations

p 0.05 Years−1 Mean reversion of observed process

q 0.02 NOK/Q Volatility of observed process

μ 40 NOK/Q Mean of observed process

ǭ 0.1% – Error tolerance


t 0.05 Years Magnitude of time discretizations


x 0.2 NOK/Q Magnitude of integral eval. discretizations

S 500,000 – Number of trials

B 5 (6) – Number of Laguerre basis functions

η 16 (10) – Order of polynomial smoothing function

We use the parameter values in Table 1 as a base case, and proceed to look at how

different properties change with variations of specific parameters.7 We separate our

discussion into a risk-neutral and risk-averse case, respectively. The risk-neutral case

removes a layer of complexity by allowing for a simpler exercise value function, and

is included to better illustrate the properties of the model. The risk-averse case is then

discussed in terms of deviations from the risk-neutral case. We focus our attention on

the free boundary, the value of learning, and expected exercise times.

4.1 Under risk neutrality

Risk neutrality, i.e. γ = 0, simplifies the structure of the exercise value function and

clarifies certain characteristics of the option. Specifically,

�(t, X̂ t ) = Q
(
X̂ t + μ

)
− k, (37)

which is simply the expected net present value of investing.

In order to estimate the option value, we begin with selecting the number of Laguerre

basis functions B to regress on by analyzing the relative changes in option values for

increasing B. Selecting B = 5 ensures that the simulated option value changes by

7 For comparability, we have used the same random number generator seed in all sections, specifically,
rng(1108) in MATLAB v. R2020a.
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Fig. 2 Exercise thresholds (left panel) and the value of learning against X̂0 − μ (right panel)

less than ǭ = 0.1% when B = 6, which we have deemed a high enough accuracy for

the purpose of this case study (see Appendix 7). It should be noted that computational

limitations such as the number of trials S and the magnitude of discrete time steps


t naturally also affect the accuracy of the results. We have consequently selected M

iteratively, such that for 
t = 0.05 and 
x = 0.2, S = 500,000 trials also gives an

option value that changes by less than ǭ = 0.1% when using S + 1 trials.

Figure 2 illustrates the free boundary for both the shifted OU process and the con-

stant process, with initial values X̂0 equal to the long-term average μ of the processes.

The discrete points have been smoothed by a polynomial function.8 As both cases

illustrates, the lower optimal investment threshold indicates a diminishing value of

learning. This is because as the decision maker obtains better estimates of the under-

lying process as time goes by, as is also shown analytically by the decreasing marginal

benefit of new observations in Sect. 3.1.3.9

Interestingly, the shifted OU process has a lower free boundary than the constant

process. This may seem counter intuitive since one the constant process seems less

risky, which, in turn, would suggest an earlier adoption due to the reduced value of

waiting. However, the OU process reverts back to a known value, and, therefore, will

not stray too far away from its true value over time, whereas the constant process has

no such convergence. This has crucial implications for a decision maker considering to

enter a market. For example, some markets, such as shipping and commodity markets,

8 We have selected a polynomial order of η = 16 for the smoothing function in the risk neutral case. The
discrete points will be included in the initial free boundary plot to illustrate the fit, but will be omitted for
convenience in later sections.
9 There are some numerical issues close to the option’s maturity, which are due to a discontinuity of the
exercise boundary at time T . Intuitively, this happens because at time T − there is still a positive value of
learning that is not converging to zero. This is why we report results up to time 4.5 only.
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Fig. 3 value of learning for different values of a

can have persistent imbalances between supply and demand creating so called super

cycles. Here an OU process will be more appropriate, and the decision maker can learn

the true state of the market relatively quickly which results in an earlier investment.

In contrast, markets where supply gluts are likely to be satisfied promptly due to new

entrants, a constant model is a better assumption. This can be applicable for decision

makers considering a nascent-online market where barriers to entry are weak.

A quantity of managerial interest is the value of learning as opposed to investing

immediately. We can measure this as the difference between the option value F∗(0, X̂0)

and the exercise value �(0, X̂0) at the beginning of the starting time. The left panel

of Fig. 3 shows the expected value of learning for an increasing difference between

the estimated initial values X̂0 and μ, with the latter held constant. The negative

relationship implies that the value of learning decreases with a higher initial estimate of

the underlying process. Note that, the option value alone has an increasing relationship

with X̂0, but as the figure shows, this trend is offset by an increase in the value of

immediate exercise. Intuitively, if the firm has a high initial estimate, its expected

value of learning is low, since the investment opportunity seems likely to be profitable

in many circumstances. The vertical gap between the constant and OU case is thought

to arise because of the difference in magnitude between the volatilities of the processes,

as discussed in Sect. 3.1.3. The constant process has a higher volatility than the OU

process throughout the holding period, and the value of learning is consequently higher.

The right panel of Fig. 3 shows the expected value of learning against the standard

deviation of the initial estimate, a. This parameter measures the uncertainty around the

initial estimate. As the graph illustrates, greater initial uncertainty leads to a greater

option value. Hence, reducing initial parameter uncertainty, through for example mar-

ket research, can significantly reduce the value of learning over time and, thus, lead

to earlier investment. In fact, this property can be established analytically. The proof

can be found in Appendix 6.

Proposition 1 Suppose that ã > a and denote the optimal value functions under a

and ã by F∗ and F̃∗, respectively. Then F̃∗ ≥ F∗.

The left panel of Fig. 4 shows the distribution of exercise times conditioned on the

trial having been exercised before option termination. The histogram shows a clear
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Fig. 4 Distribution of exercise times in the risk-neutral case, conditional on exercise before T , with corre-
sponding medians and means (left panel). Means and medians of exercise times, conditional on exercise
before T , against a (right panel)

trend towards early exercise, with medians 0.25 and 0.30. This result is more intuitive

when viewed together with the discussion in Sect. 3.1.3, which examines the properties

of the volatilities of the observation processes. Due to the structure of the volatilities,

we can conclude that most of the learning happens early in the holding period. The

remaining benefit of waiting, as opposed to exercising, is therefore generally at its

highest early in the holding period. Notice that the histograms do not start out at

their maximum values, but rather increase after some time has passed since t = 0.

This illustrates how the investor is generally too uncertain at the outset of the holding

period to forego the option to wait and learn for the base parameter values. With a

high initial marginal benefit of learning, however, the estimations improve quickly, and

the remaining benefit of waiting decreases, which is thought to explain the skewness.

With such a heavy skewness there is a significant distance between the means and

medians. This can be an important observation to an institution that makes policy

decisions based on market trends, for example, to not only consider the mean time to

investment.

Note that, with base parameter values, approximately 40.7% and 44.0% of the trials

were exercised for the constant process and OU process, respectively. Intuitively, the

decision-maker quickly obtains the necessary parameter certainty and then decides

whether to invest or to postpone.

In the right panel of Fig. 4, we show the effects of increasing uncertainty in the

initial estimate on the means and medians of the distribution of investment times.

Interestingly, even though the value of learning increases with higher a (as discussed

in relation to Fig. 3), the means and medians show the opposite trend. This shows

that there is increasing skewness to the left with higher a. This is potentially due to

the the positive relationship between the initial uncertainty and the initial marginal

benefit of learning. With a higher initial uncertainty, the firm is more likely to change

its estimate and, thus, has a steeper gradient in the volatility of the estimation process.

We therefore expect the remaining value of learning to decrease faster over time with

higher a, and consequently result in earlier exercise times.

123



Kalman filter approach to real options with active learning

Fig. 5 Distribution of exercise times in the risk-averse case, conditional on exercise before T , with corre-
sponding medians and means (left panel). Means and medians of exercise times, conditional on exercise
before T , against a (right panel)

4.2 Under risk aversion

Next, we consider a risk-averse decision maker with the same investment opportunity

as previously analyzed. However, here the number of necessary basis functions to

approximate the value function is 6 to satisfy ǭ, as illustrated in Appendix 7.10

To facilitate comparisons, Fig. 5 depicts the same features of the distribution of

exercise times as Fig. 4 for the risk-neutral case. Again, we observe skewness in the

distribution, slightly lower means and similar medians. This shows that the distribution

under risk-aversion is somewhat more skewed under risk-aversion than under risk-

neutrality. The intuition for this result is that a more risk-averse decision maker is more

willing to “resolve” the uncertainty by investing. This effect is particularly visible for

higher values of uncertainty around the initial estimate. This makes intuitive sense:

the more uncertainty there is around the estimate of the project’s value, the more eager

a risk-averse investor is to remove the uncertainty.

In order to investigate these issues further we simulate 50 scenarios where we

choose q, p, γ , and a uniformly and independently from the intervals [0.01, 0.1],
[q, 1.25], [0, 0.5], and [60, 180], respectively. The other parameter values are chosen

as in Table 1. We then simulate the invest-time distribution and regress the ratio of

the third centralized moment and the cubed standard deviation of this distribution

on the parameters q, p, γ , a, and a constant. The R2 of this regression is 0.8339

and the coefficient belonging to a is 0.0275 with a t-value of 31.48, from which we

conclude that the skewness of the investment-time distribution is, indeed, increasing

in the volatility of the initial estimate, a. Also note that the coefficient of γ is 2.3075

with a t-value of 14.17, from which we conclude that the skewness of the invest-time

distribution is increasing in risk aversion.

Figure 6 illustrates the investment thresholds under risk neutrality and risk aversion

in the left panel, while the right panel illustrates the value of learning under risk

10 Note that the value function, �(·), under risk aversion now has a direct time dependence, as opposed to
the risk neutral case, due to the time dependence of the variance in the probability distribution as detailed
in Appendix 3.

123



S. Sund et al.

0 1 2 3 4

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140
Constant process,  = 0

OU process,  = 0

Constant process,  = 0.1

OU process,  = 0.1

10 15 20 25 30

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

V
a
lu

e

Constant process,  = 0

OU process,  = 0

Constant process,  = 0.1

OU process,  = 0.1

Fig. 6 Exercise thresholds (left panel), and values of waiting to learn against X̂0 − μ (right panel)

aversion, defined as F∗ (
0, X̂0

)
−�

(
0, X̂0

)
. According to the left panel, risk aversion

induces earlier investment compared to the risk neutral case. This is in contrast to

traditional results, such as Hugonnier and Morellec (2007), who show the opposite

result under risk aversion. However, they consider price uncertainty and not active

learning. Thus, we conclude that the impact of risk aversion is ambiguous depending

on the source of underlying uncertainty.11

The right panel of 6 illustrates that the initial value of learning is in fact less

valuable under risk aversion than under risk neutrality in our case study. Intuitively,

greater risk-aversion decreases the value of the option to learn by more than the current

now-or-never investment opportunity, and, thus, reduce the value of learning. Hence,

risk aversion may induce earlier investments since the decision maker is less willing

to learn and update their prior belief.

4.3 Robustness

To show (numerically) that our results are robust against parameter values, we consider

some further numerical experiments in Appendix 8. These show that our qualitative

conclusions are not due to the specific parameter values of our base case.

5 Conclusion

This article extends real options literature by introducing the ability to learn about

a stochastic process underlying the project value with a risk averse decision maker.

We analyse how risk aversion interacts with the incentive to learn to impact decisions

under both a constant and mean reverting noisy profitability signal. The analysis is

motivated by three main features of the modern economic environment: (i) a persistent

need to innovate and enter new markets to sustain profitability; (ii) market incomplete-

ness and attitudes towards risk; (iii) parameter uncertainty of investment decisions in

11 The free boundary in the risk averse case shows some fluctuations for t � 1.We have applied a polynomial
order of η = 10 for the smoothing function under risk aversion. This is can be a result of inaccuracies arising
from the approximation of the exercise value function.
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emerging technologies. We incorporate these features into a utility-based real-options

framework, where a decision maker decides when to invest. Specifically, we assume

that the decision maker can learn about the underlying profitability, and, consequently,

make a more informed investment decision by actively updating her belief.

We demonstrate how the exercise threshold changes with the marginal value of

learning, and how the marginal value of learning is consistently higher for a constant

process than an OU process. Numerical results indicate that the value of learning has a

negative relationship with the initial process estimate, and a positive relationship with

the uncertainty of its distribution. We also show how the value of learning seemingly

decreases when the investor is assumed to be risk averse as opposed to risk neutral.

These results are robust against changes in the specific parameter values of our base-

case scenario.

Furthermore, we identify three potential areas of further research. The first is to relax

the continuity assumption of observations, allowing the decision maker to incorporate

observations at discrete times. This allows the model to be applied to settings in which

observations happen less frequently. The second is to let the project value depend on

multiple stochastic processes, all subject to noisy observations. This opens a range

of possible extensions such as, for example, a stochastic investment cost that is not

directly observable. A third suggestion is to apply the model to a logarithmic transform

of a geometric Brownian motion. This allows for a greater range of applications, as

geometric Brownian motion is applied extensively within finance, notably to model

the behaviour of stock prices. Such a model would, however, not be stationary and

would, therefore, require some careful re-calibration of the functions L1 and L2 (cf.

Eqs. 14–17). In fact, in such models it is possible that L ′
2 > 0, which implies that the

observed system diverges from the “true” system.12

A final interesting future application for our approach is the recent Covid-19 out-

break. For example, the ratio between infected and fatalities might be expected to

be constant in an unvaccinated population, yet unknown. Hence, a decision maker

can learn more about the true ratio through several studies as done by (O’Driscoll

et al. 2021), and, consequently, adopt appropriate costly measures to limit the impact

of Covid-19. Furthermore, the reproduction number of infectious diseases, i.e. how

many one infected person will infect, can be considered mean reverting (Gray et al.

2011; Wang et al. 2018). Hence, our framework lends itself well to several other novel

applications.
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Appendix

A Deriving the belief process for a constant parameter

We first solve the ordinary differential equation (ODE) of S(t) given in Eq. (9) with

substitutions F(t) = C(t) = 0, G(t) = 1 and D(t) = m, which simplifies to

d S(t) = − 1

m2
S2(t)dt, where S(0) = a2, (38)

resulting in

S(t) = m2a2

m2 + a2t
. (39)

Building on Eq. (8), we obtain

L1,c(t) = − a2

m2 + a2t
and (40)

L2,c(t) = a2

m2 + a2t
. (41)

B Deriving the belief process for a parameter following an OU process

We first solve differential Eq. (9) with substitutions F(t) = −p, C(t) = q, G(t) = 1

and D(t) = m. This results in

d S(t)

dt
= −2pS(t) − 1

m2
S2(t) + q2, where S(0) = a2, (42)

which gives

S(t) = a2

√
p2 + q2

m2 −
(

p − q2

a2

)
tanh

(
t

√
p2 + q2

m2

)

√
p2 + q2

m2 +
(

a2

m2 + p
)

tanh

(
t

√
p2 + q2

m2

) . (43)

Building on Eq. (8), we obtain

L1,o(t) = −

(
p + a2

m2

) √
p2 + q2

m2 +
(

p2 + q2

m2

)
tanh

(
t

√
p2 + q2

m2

)

√
p2 + q2

m2 +
(

a2

m2 − p
)

tanh

(
t

√
p2 + q2

m2

) and (44)

123

http://creativecommons.org/licenses/by/4.0/


Kalman filter approach to real options with active learning

L2,o(t) = a2

m2

√
p2 + q2

m2 −
(

p − q2

a2

)
tanh

(
t

√
p2 + q2

m2

)

√
p2 + q2

m2 +
(

a2

m2 + p
)

tanh

(
t

√
p2 + q2

m2

) . (45)

C The expected value function

As noted in Sect. 3, when the Kalman filter is applied to a system of linear state

and observation processes with Gaussian sources of uncertainty, the best estimators

have a Gaussian distribution that is equivalent to the distribution of the observed

process conditional on historic observations. Hence, we seek the expectation and

variance of this distribution at time t , given previous observations, for each of the

model applications.

The expected value of the estimation process is already established as E[X t |Gt ] =
X̂ t . For both observation processes, regardless of the initial X̂0, the variance equals

the integrated volatility of the process since observations began. This is equivalent to

the variance of the observed process conditioned on previous observations. For the

constant process, we first integrate (15) to obtain

X̂ t =
∫ t

0
mL2,c(τ )dUτ + X̂0. (46)

The variance may then be found by

V[X t |Gt ] = E

[(∫ t

0
mL2,c(τ )dUτ + X̂0

)2 ∣∣∣∣ Gt

]
− X̂2

0

=
[∫ t

0
mL2,c(τ )dUτ

]2

= m2

∫ t

0
L2

2,c(τ )dτ,

(47)

where the third equality is derived by application of Itô isometry. Similarly, for the

OU process, using Eq. (18),

X̂ t = X̂0e−pt +
∫ t

0
mL2,ce−p(t−τ)dUτ , (48)

using a variable substitution Ŷt = X̂ t e
pt . Variance can then be found by

V[X t |Gt ] = E

[(
X̂0e−pt +

∫ t

0
mL2,ce−p(t−τ)dUτ

)2 ∣∣∣∣ Gt

]
−

(
X̂0e−pt

)2

=
[∫ t

0
mL2,o(τ )e−p(t−τ)dUτ

]2

= m2

∫ t

0
L2

2,o(τ )e−2p(t−τ)dτ (49)
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again by Itô isometry. Since both observation processes are Gaussian for all t , we now

have all the elements necessary to describe the distributions at a given point in time.

The integral in (47) is easily solvable, but this is not the case with the integral in

Eq. (49), due to the complexity of L2,o(t). We have therefore used simulated trials of

the observation process to estimate the probability distribution variances. Specifically,

if P denotes the Gaussian probability distribution of X t given previous observations

at t , we may denote the equivalent distribution using a simulated variance as P̂. By

total probability,

E

[
V 1−γ (X t )

]
≈

∫

R

V 1−γ (x) P̂(X t = x | Gt ) dx, (50)

where

P̂ ∼ N
(
X̂ t , V̂

)
, (51)

and V̂ is the sample variance of the trial data {X̂ t,i }i for i = 1, . . . , M given previous

observations at t , where M is the number of trials such that lim
M→∞

P̂ = P by the central

limit theorem.13

The expectation of Eq. (50) assumes that the entire project value is received at the

time of investment. As noted in the introductory paragraph of Sect. 3, our model may

be extended to allow for profit streams that arrive over time. The utility function in

Eq. (34) would then be applied over the profit stream function, and the expectation

would be taken over the integral of discounted utilities of profits. This would simplify

to an integral over expectations of utilities of profits. However, the expectation is

taken at time t for profits that arrive in the future, so we would have to derive the

future distribution conditioned on a starting point at the current process estimate in

order to apply total probability once again. This is not an issue, however, since for

our applications, the time dependent distribution of the processes may be derived if

an initial value is specified.

DThe Bellman equation

The idea behind the Bellman principle is that, in the continuation region, the project’s

value, f , should, at any point in time, be equal to the expected discounted value of the

project a small amount of time dt later. That is,

f (t, X̂ t ) = E

[
e−ρdt f (t + dt, X̂ t+dt )

∣∣∣Ft

]

= (1 − ρdt)E[ f (t + dt, X̂ t+dt )Ft ] + o(dt),

13 We calculate the integral of Eq. (50) numerically, using the function integral in MATLAB v. R2020a,
and evaluate the resulting expression at discrete points of X̂ t , with discretization 
x . Exercise values across
paths are then approximated by using the value among discrete integral evaluations that is closest to the
given path value.
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which can be rewritten as

ρ f dt = E[d f ] + o(dt). (52)

By applying Itô’s lemma the RHS of (52) can be expanded as:

ρ f dt = E[d f ] + o(dt)

= E

[
∂ f

∂t
dt + ∂ f

∂ X̂ t

d X̂ t + 1

2

∂2 f

∂ X̂2
t

(d X̂ t )
2

]
+ o(dt)

= ∂ f

∂t
dt + E

[
L1(t)X̂ t dt + L2(t)d Z t

] ∂ f

∂ X̂ t

+ 1

2
E

[
L2

2(t)(d Z t )
2
] ∂2 f

∂ X̂2
t

+ o(dt)

= ∂ f

∂t
dt + [L1(t) + L2(t)]X̂ t

∂ f

∂ X̂ t

dt + 1

2
m2 L2

2(t)
∂2 f

∂ X̂2
t

dt + o(dt).

(53)

After dividing by dt on both sides and by taking the limit dt ↓ 0, this simplifies

to a partial differential equation (PDE) that characterizes the value function in the

continuation region:

∂ f (t, X̂ t )

∂t
+ [L1(t) + L2(t)]X̂ t

∂ f (t, X̂ t )

∂ X̂ t

+1

2
m2L2

2(t)
∂2 f (t, X̂ t )

∂ X̂2
t

− ρ f (t, X̂ t ) = 0. (54)

E The Longstaff-Schwartz method

Longstaff and Schwartz (2001) show that the simulated option value resulting from

the algorithm outlined in Sect. 4 is bounded by the true option value from above when

the number if trials S approach infinity, i.e.

F∗
0 ≥ lim

S→∞
1

S

S∑

s=1

L SM(ωs), (55)

where ωs indicates the s-th trial, and L SM(ωs) is the discounted exercise value of

ωs when following the algorithm investment rules. Note that any set of orthonormal

basis functions may be used in the regressions so long as their linear combination

span the range of the continuation value. Longstaff and Schwartz (2001) use Laguerre

polynomials, but point to other possibilities such as Hermite, Legendre, Chebyshev

and Jacobi polynomials. They then proceed to show that the option value resulting

from following the algorithm converges to the true option value when the number of

basis functions increases. Hence, for a high enough number of trials, the simulated

option value will approach the true option value from below when the number of basis

functions increases. This result is useful in that it allows the user to iteratively increase
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the number of basis functions until the estimated option value f0 increases from the

previous estimation by an amount ǭ that is deemed acceptably small.

Following Longstaff and Schwartz (2001), we have chosen the set of Laguerre poly-

nomials as basis functions. Using similar notation, we denote the nth order polynomial

as Ln(X̂ j ), expressed in closed form by

Ln(X̂ j ) =
n∑

k=0

(
n

k

)
(−1)k

k! X̂ k
j . (56)

The regression equation may then be written as follows, with X̂ j as the regressor and

Y (ωi , j
t) the regressand, at j = {1, . . . , N − 1},

Y (ωi , j
t) =
B∑

n=0

an, jLn(X̂ j ), (57)

where B denotes the number of basis functions and {a j } the corresponding coefficients.

The exercise boundary is found by solving for the estimation process values that

equate the regression equation—or, the conditional expectation of the continuation

value—with the exercise value, at each discrete time point j = {1, . . . , N − 1}, such

that

X̂∗
j = inf

{
X̂ j ∈ R :

B∑

n=0

ân, jLn(X̂ j ) = 0

}
, (58)

where {â j } are the estimated coefficients resulting from the regression. The free bound-

ary at j = N is set equal to the indifference value of exercising the option. Since the

regression functions consist of weighted polynomials of order potentially higher than

4, and the Abel-Ruffini theorem states that such polynomials do not have an algebraic

solution when equated to zero, we find the boundary points by a numerical solution

procedure. After the boundary points have been identified, we apply a polynomial

smoothing technique that identifies the least squares coefficients of a polynomial of

user-defined order η, with fixed endpoints.14

14 We have applied the functions fsolve and polyfix (Mjaavatten 2020) in MATLAB v. R2020a for
the numerical solution procedure and polynomial smoothing technique, respectively.
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F Proof of Proposition 1

The proof strategy is similar to the proof of Olsen and Stensland (1992, Proposition

3). Suppose that ã2 = a2 + ε, for some ε > 0. Let A and Ã denote the characteristic

operators under a and ã, respectively. Since F̃∗ is optimal we know that

ÃF̃∗ ≤ ρ F̃∗.

Let L̃ i , i = 1, 2 denote the L i function under ã. It holds that L2 = −L1 in this case,

whence

AF̃∗(t, x) = ÃF̃∗(t, x) + (A − Ã)F̃∗(t, x)

≤ρ F̃∗(t, x) + (A − Ã)F̃∗(t, x)

= ρ F̃∗(t, x) + 1

2
m2[L2

2(t) − L̃2
2(t)]

∂2 F̃∗(t, x)

∂x2

+ [(L1(t) − L̃1(t)) + (L2(t) − L̃2(t))]x
∂ F̃∗(t, x)

∂x
.

From the general theory (see, e.g., Olsen and Stensland 1992) we know that the value

function is non-decreasing and convex in x . It has already been established that L2 is

increasing in a. A similar calculation shows that L1 is also increasing in a. Therefore,

AF̃∗ ≤ ρ F̃∗,

so that F̃∗ is superharmonic under a. It also dominates U ◦ F . However, it is not

the least superharmonic function that dominates U ◦ F , because that is F∗. Hence,

F̃∗ ≥ F∗. �

G Relative error against number of basis functions

Figure 7 shows the relative error of the option values plotted against the number of

basis functions used in simulations of the base case. Note that the plots use different

horizontal axis ranges.
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Fig. 7 Relative errors of option values ǫ against the number of basis functions B under a risk neutrality,
and b risk aversion

H Further robustness checks

In this section we perform some further numerical experiments to illustrate the robust-

ness of the numerical scheme. In Fig. 8 we show the simulated investment time

distributions for the constant and OU processes for different values of the scaling

parameter of the initial estimate, X̂0 − μ, in the risk-neutral case. The same distri-
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Fig. 8 Exercise time distribution for different values of X̂0 − μ in the risk-neutral case
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Fig. 9 Exercise time distribution for different values of X̂0 − μ in the risk-averse case
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Fig. 10 Exercise time distribution for different values of a in the risk-neutral case
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Fig. 11 Exercise time distribution for different values of a in the risk-averse case

butions are plotted for the risk-averse case in Fig. 9. In Figs. 10 and 11 we plot the

investment time distributions for the constant and OU processes in the risk-neutral

and risk-averse cases, respectively, for different values of the standard deviation of

the initial estimate, a. In all these figures it is clear that the distribution of investment

times is skewed. This is consistent with the analytical result that the first-hitting time
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distribution of a standard Brownian motion is skewed (see, e.g., Øksendal 2013). Since

the randomness in our models are driven by a standard Brownian motion, we would

expect this skewness to carry over. We also note that, qualitatively, the distributions

all look similar, which we take as evidence of the method’s robustness.
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